
CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 1 

L6: Parameter estimation 

• Introduction 

• Parameter estimation 

• Maximum likelihood 

• Bayesian estimation 

• Numerical examples 
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• In previous lectures we showed how to build classifiers when the 
underlying densities are known 
– Bayesian Decision Theory introduced the general formulation 
– Quadratic classifiers covered the special case of unimodal Gaussian data 

• In most situations, however, the true distributions are unknown 
and must be estimated from data 
– Two approaches are commonplace 

• Parameter Estimation (this lecture) 
• Non-parametric Density Estimation (the next two lectures) 

• Parameter estimation 
– Assume a particular form for the density (e.g. Gaussian), so only the 

parameters (e.g., mean and variance) need to be estimated 
• Maximum Likelihood 
• Bayesian Estimation 

• Non-parametric density estimation 
– Assume NO knowledge about the density 

• Kernel Density Estimation 
• Nearest Neighbor Rule 
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ML vs. Bayesian parameter estimation 

• Maximum Likelihood 
– The parameters are assumed to be FIXED but unknown 

– The ML solution seeks the solution that “best” explains the dataset X 

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝 𝑋|𝜃  

• Bayesian estimation 
– Parameters are assumed to be random variables with some (assumed) 

known  a priori distribution 

– Bayesian methods seeks to estimate the posterior density 𝑝(𝜃|𝑋)  

– The final density 𝑝(𝑥|𝑋) is obtained by integrating out the parameters 

𝑝 𝑥|𝑋 = ∫ 𝑝 𝑥 𝜃 𝑝 𝜃|𝑋 𝑑𝜃 

•     

 

Maximum Likelihood Bayesian 

θ̂
θ
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Maximum Likelihood 

• Problem definition 
– Assume we seek to estimate a density 𝑝(𝑥) that is known to depends 

on a number of parameters 𝜃 = 𝜃1, 𝜃2, … 𝜃𝑀
𝑇 

• For a Gaussian pdf, 𝜃1 = 𝜇, 𝜃2 = 𝜎 and 𝑝(𝑥) = 𝑁(𝜇, 𝜎) 

• To make the dependence explicit, we write 𝑝(𝑥|𝜃) 

– Assume we have dataset 𝑋 = {𝑥(1 , 𝑥(2, … 𝑥(𝑁} drawn independently 
from the distribution 𝑝(𝑥|𝜃) (an i.i.d. set) 

• Then we can write 

𝑝 𝑋|𝜃 = Π𝑘=1
𝑁 𝑝 𝑥(𝑘|𝜃   

• The ML estimate of 𝜃 is the value that maximizes the likelihood 𝑝 𝑋 𝜃  

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝 𝑋|𝜃  

• This corresponds to the intuitive idea of choosing the value of 𝜃 that is 
most likely to give rise to the data 
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• For convenience, we will work with the log likelihood 
– Because the log is a monotonic function, then: 

 𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝 𝑋|𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 log 𝑝 𝑋|𝜃  

 

 

 

 

 

– Hence, the ML estimate of 𝜃 can be written as: 

 𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 log Π𝑘=1
𝑁 𝑝 𝑥(𝑘|𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 Σ𝑘=1

𝑁 log 𝑝 𝑥(𝑘|𝜃  

 

• This simplifies the problem, since now we have to maximize a sum of 
terms rather than a long product of terms 

• An added advantage of taking logs will become very clear when the 
distribution is Gaussian 
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Example: Gaussian case, 𝝁 unknown 

• Problem statement 

– Assume a dataset 𝑋 = 𝑥(1, 𝑥(2, … 𝑥(𝑁  and a density of the form 

𝑝 𝑥 = 𝑁 𝜇, 𝜎  where 𝜎 is known 

– What is the ML estimate of the mean? 
𝜃 = 𝜇 ⇒ 𝜃 = arg 𝑚𝑎𝑥Σ𝑘=1

𝑁 𝑙𝑜𝑔𝑝 𝑥(𝑘|𝜃 = 

                      = arg 𝑚𝑎𝑥Σ𝑘=1
𝑁 𝑙𝑜𝑔

1

2𝜋𝜎
exp −

1

2𝜎2 𝑥(𝑘 − 𝜇
2

= 

                     = arg 𝑚𝑎𝑥Σ𝑘=1
𝑁 𝑙𝑜𝑔

1

2𝜋𝜎
−

1

2𝜎2
𝑥(𝑘 − 𝜇

2
 

– The maxima of a function are defined by the zeros of its derivative 

𝜕Σ𝑘=1
𝑁 𝑙𝑜𝑔𝑝 𝑥(𝑘|𝜃

𝜕𝜃
=

𝜕

𝜕𝜃
 Σ𝑘=1

𝑁 𝑙𝑜𝑔𝑝 ⋅ = 0 ⇒ 

𝜇 =
1

𝑁
Σ𝑘=1

𝑁 𝑥(𝑘 

– So the ML estimate of the mean is the average value of the training 
data, a very intuitive result! 
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Example: Gaussian case, both  and  unknown 

• A more general case when neither 𝝁 nor 𝝈 is known 
– Fortunately, the problem can be solved in the same fashion 

– The derivative becomes a gradient since we have two variables 

𝜃 =
𝜃1 = 𝜇   

𝜃2 =  𝜎2 ⇒ 𝛻𝜃 =

𝜕

𝜕𝜃1
 Σ𝑘=1

𝑁 𝑙𝑜𝑔𝑝 𝑥(𝑘|𝜃

𝜕

𝜕𝜃2
 Σ𝑘=1

𝑁 𝑙𝑜𝑔𝑝 𝑥(𝑘|𝜃

= Σ𝑘=1
𝑁

1

𝜃2
𝑥(𝑘 − 𝜃1

−
1

2𝜃2
+

𝑥(𝑘 − 𝜃1
2

2𝜃2
2

= 0 

– Solving for 𝜃1 and 𝜃2 yields 

𝜃 1 =
1

𝑁
Σ𝑘=1

𝑁 𝑥(𝑘;     𝜃 2=
1

𝑁
Σ𝑘=1

𝑁 𝑥(𝑘 − 𝜃 1
2

 

• Therefore, the ML of the variance is the sample variance of the dataset, 
again a very pleasing result 

– Similarly, it can be shown that the ML estimates for the multivariate 
Gaussian are the sample mean vector and sample covariance matrix 

𝜇 =
1

𝑁
Σ𝑘=1

𝑁 𝑥(𝑘;     Σ  =
1

𝑁
Σ𝑘=1

𝑁 𝑥(𝑘 − 𝜇 𝑥(𝑘 − 𝜇 
𝑇
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Bias and variance 

• How good are these estimates?  
– Two measures of “goodness” are used for statistical estimates 

– BIAS: how close is the estimate to the true value? 

– VARIANCE: how much does it change for different datasets? 

 

 

 

 
– The bias-variance tradeoff 

• In most cases, you can only decrease one of them at the expense of the 
other  

 

 

VARIANCE 

 TRUE 

BIAS 

 TRUE 
 TRUE 

LOW BIAS 
HIGH VARIANCE 

HIGH BIAS 
LOW VARIANCE 
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• What is the bias of the ML estimate of the mean? 

𝐸 𝜇 = 𝐸
1

𝑁
Σ𝑘=1

𝑁 𝑥(𝑘 =
1

𝑁
Σ𝑘=1

𝑁 𝐸 𝑥(𝑘 = 𝜇 

– Therefore the mean is an unbiased estimate 

• What is the bias of the ML estimate of the variance? 

𝐸 𝜎 2 = 𝐸
1

𝑁
Σ𝑘=1

𝑁 𝑥(𝑘 − 𝜇 
2

=
𝑁 − 1

𝑁
𝜎2 ≠ 𝜎2 

– Thus, the ML estimate of variance is BIASED 

• This is because the ML estimate of variance uses 𝜇  instead of 𝜇 

– How “bad” is this bias? 

• For 𝑁 → ∞ the bias becomes zero asymptotically 

• The bias is only noticeable when we have very few samples, in which case 
we should not be doing statistics in the first place! 

– Notice that MATLAB uses an unbiased estimate of the covariance  

Σ 𝑈𝑁𝐵𝐼𝐴𝑆 =
1

𝑁 − 1
Σ𝑘=1

𝑁 𝑥(𝑘 − 𝜇 𝑥(𝑘 − 𝜇 
𝑇
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Bayesian estimation 

• In the Bayesian approach, our uncertainty about the 
parameters is represented by a pdf 
– Before we observe the data, the parameters are described by a prior 

density 𝑝(𝜃) which is typically very broad to reflect the fact that we 
know little about its true value 

– Once we obtain data, we make use of Bayes theorem to find the 
posterior 𝑝(𝜃|𝑋) 

• Ideally we want the data to sharpen the posterior 𝑝(𝜃|𝑋), that is, reduce 
our uncertainty about the parameters 

 

 

 

 

 

– Remember, though, that our goal is to estimate 𝑝(𝑥) or, more exactly, 
𝑝(𝑥|𝑋), the density given the evidence provided by the dataset X 

 

 X|θp

 θp

 X|θp

θ
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• Let us derive the expression of a Bayesian estimate 
– From the definition of conditional probability 

𝑝 𝑥, 𝜃|𝑋 = 𝑝 𝑥|𝜃, 𝑋 𝑝 𝜃|𝑋  

– 𝑃(𝑥|𝜃, 𝑋) is independent of X since knowledge of 𝜃 completely 
specifies the (parametric) density.  Therefore 

𝑝 𝑥, 𝜃|𝑋 = 𝑝 𝑥|𝜃 𝑝 𝜃|𝑋  

– and, using the theorem of total probability we can integrate 𝜃 out: 

𝑝 𝑥|𝑋 = ∫ 𝑝 𝑥|𝜃 𝑝 𝜃|𝑋 𝑑𝜃 

• The only unknown in this expression is 𝑝(𝜃|𝑋); using Bayes rule 

𝑝 𝜃|𝑋 =
𝑝 𝑋|𝜃 𝑝 𝜃

𝑝 𝑋
=

𝑝 𝑋|𝜃 𝑝 𝜃

∫ 𝑝 𝑋|𝜃 𝑝 𝜃 𝑑𝜃
 

• Where 𝑝(𝑋|𝜃) can be computed using the i.i.d. assumption 

𝑝 𝑋|𝜃 =  𝑝 𝑥(𝑘|𝜃

𝑁

𝑘=1

 

• NOTE: The last three expressions suggest a procedure to estimate 𝑝(𝑥|𝑋). 
This is not to say that integration of these expressions is easy! 
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• Example 
– Assume a univariate density where our random variable 𝑥 is generated 

from a normal distribution with known standard deviation 

– Our goal is to find the mean 𝜇 of the distribution given some i.i.d. data 

points 𝑋 = 𝑥(1, 𝑥(2, … 𝑥(𝑁  

– To capture our knowledge about 𝜃 = 𝜇, we assume that it also follows 
a normal density with mean 𝜇0 and standard deviation 𝜎0 

𝑝0 𝜃 =
1

2𝜋𝜎0

𝑒
−

1

2𝜎0
2 𝜃−𝜇0

2

 

– We use Bayes rule to develop an expression for the posterior 𝑝 𝜃 𝑋  

𝑝 𝜃|𝑋 =
𝑝 𝑋|𝜃 𝑝 𝜃

𝑝 𝑋
=

𝑝0 𝜃

𝑝 𝑋
Π𝑘=1

𝑁 𝑝 𝑥(𝑘|𝜃 = 

1

2𝜋𝜎0

e
−

1

2𝜎0
2 𝜃−𝜇0

2 1

𝑝 𝑋
∏𝑘=1

𝑁 1

2𝜋𝜎
e

−
1

2𝜎2 𝑥(𝑘−𝜃
2

 

 [Bishop, 1995] 
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– To understand how Bayesian estimation changes the posterior as more 
data becomes available, we will find the maximum of 𝑝(𝜃|𝑋) 

– The partial derivative with respect to 𝜃 = 𝜇 is 
𝜕

𝜕𝜃
log 𝑝 𝜃|𝑋 = 0 ⇒

𝜕

𝜕𝜇
−

1

2𝜎0
2 𝜇 − 𝜇0

2 − Σ𝑘=1
𝑁 1

2𝜎2
𝑥(𝑘 − 𝜇

2
= 0 

– which, after some algebraic manipulation, becomes 

𝜇𝑁 =
𝜎2

𝜎2 + 𝑁𝜎0
2 𝜇0

𝑃𝑅𝐼𝑂𝑅

+
𝑁𝜎0

2

𝜎2 + 𝑁𝜎0
2

1

𝑁
Σ𝑘=1

𝑁 𝑥(𝑘

𝑀𝐿

 

• Therefore, as N increases, the estimate of the mean 𝜇𝑁 moves from the 
initial prior 𝜇0 to the ML solution  

– Similarly, the standard deviation 𝜎𝑁can be found to be 

1

𝜎𝑁
2 =

𝑁

𝜎2+ 
1

𝜎0
2 

[Bishop, 1995] 
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Example 

• Assume that the true mean of the distribution 𝑝(𝑥) is 
𝜇 = 0.8 with standard deviation 𝜎 = 0.3 

• In reality we would not know the true mean; we are just “playing God” 

– We generate a number of examples from this distribution 

– To capture our lack of knowledge about the mean, we assume a 
normal prior 𝑝0(𝜃0), with 𝜇0 = 0.0 and 𝜎0 = 0.3 

– The figure below shows the posterior 𝑝(𝜇|𝑋) 

• As 𝑁 increases, the estimate 𝜇𝑁 approaches its true value (𝜇 = 0.8) and 
the spread 𝜎𝑁 (or uncertainty in the estimate) decreases 
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ML vs. Bayesian estimation 

• What is the relationship between these two estimates? 
– By definition, 𝑝(𝑋|𝜃) peaks at the ML estimate 

– If this peak is relatively sharp and the prior is broad, then the integral 
below will be dominated by the region around the ML estimate 

 𝑝 𝑥|𝑋 = ∫ 𝑝 𝑥|𝜃 𝑝 𝜃|𝑋 𝑑𝜃 ≅ 𝑝 𝑥|𝜃 ∫ 𝑝 𝜃|𝑋 𝑑𝜃
=1

= 𝑝 𝑥|𝜃  

• Therefore, the Bayesian estimate will approximate the ML solution 

– As we have seen in the previous example, when the number of 
available data increases, the posterior 𝑝(𝜃|𝑋) tends to sharpen 

• Thus, the Bayesian estimate of 𝑝(𝑥) will approach the ML solution as 
𝑁 → ∞ 

• In practice, only when we have a limited number of observations will the 
two approaches yield different results 

 




