L6: Parameter estimation

Introduction
Parameter estimation
Maximum likelihood
Bayesian estimation
Numerical examples
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In previous lectures we showed how to build classifiers when the
underlying densities are known

— Bayesian Decision Theory introduced the general formulation

— Quadratic classifiers covered the special case of unimodal Gaussian data
In most situations, however, the true distributions are unknown
and must be estimated from data

— Two approaches are commonplace
* Parameter Estimation (this lecture)
* Non-parametric Density Estimation (the next two lectures)
Parameter estimation

— Assume a particular form for the density (e.g. Gaussian), so only the
parameters (e.g., mean and variance) need to be estimated

* Maximum Likelihood
* Bayesian Estimation
Non-parametric density estimation

— Assume NO knowledge about the density
e Kernel Density Estimation
* Nearest Neighbor Rule
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ML vs. Bayesian parameter estimation

Maximum Likelihood

— The parameters are assumed to be FIXED but unknown

— The ML solution seeks the solution that “best” explains the dataset X
6 = argmax[p(X|6)]

Bayesian estimation

— Parameters are assumed to be random variables with some (assumed)
known a priori distribution

— Bayesian methods seeks to estimate the posterior density p(0]X)
— The final density p(x|X) is obtained by integrating out the parameters
p(x|X) = | p(x|6)p(8]X)d6

Maximum Likelihood Bayesian
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Maximum Likelihood

Problem definition
— Assume we seek to estimate a density p(x) that is known to depends
on a number of parameters 8 = [0, 65, ...0y]"
* For a Gaussian pdf, 8; = u, 6, = ocandp(x) = N(u, o)
* To make the dependence explicit, we write p(x|0)
— Assume we have dataset X = {x(1 ,xZ, ... x(¥} drawn independently
from the distribution p(x|8) (an i.i.d. set)
* Then we can write
p(X160) = Y_;p(x*|6)
* The ML estimate of @ is the value that maximizes the likelihood p(X|6)
6 = argmax[p(X|6)]
* This corresponds to the intuitive idea of choosing the value of 8 that is
most likely to give rise to the data
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For convenience, we will work with the log likelihood
— Because the log is a monotonic function, then:
6 = argmax[p(X|0)] = argmax[logp(X|6)]

Taking logs

p(X[0)
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— Hence, the ML estimate of 8 can be written as:

6 = argmax|log}_,p(x*|0)| = argmax|=}_; logp(x*|6)]

* This simplifies the problem, since now we have to maximize a sum of
terms rather than a long product of terms

* An added advantage of taking logs will become very clear when the
distribution is Gaussian
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Example: Gaussian case, u unknown

Problem statement
— Assume a dataset X = {x(1,x©Z, ... x("} and a density of the form
p(x) = N(u, o) where o is known

— What is the ML estimate of the mean?
0=u=0= argmafoc\’:llogp(x("W) =

1
— argmaxZ,’é’zllog (\/EJ exp( 252 (x(k — .U) ))
1

= argmaxZl_, [log (\/ﬁ > 502 (x® — ) ]

— The maxima of a function are defined by the zeros of its derivative

ozp_,logp(xk|)
= 90 ; aezk 1logp()_0:
=—3xN_ xk
U N “k=1
— So the ML estimate of the mean is the average value of the training

data, a very intuitive result!
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Example: Gaussian case, both L and ¢ unknown

A more general case when neither i nor o is known
— Fortunately, the problem can be solved in the same fashion
The derivative becomes a gradient since we have two varlables

i
o — N 1logp(x(k|t9) —(x( ~6,)
g=[0=H 15y, = |0 =5y =0
e, =02 T 0T - k=t (x* —0,)"|
= Zi-1logp(x|9) ——+ !
100, | i 292 202

— Solving for 6, and 0, yields

R 1 R 1 A N2
0, = NZ£=1x(k; 0,= NZ£=1(x(k - 91)

* Therefore, the ML of the variance is the sample variance of the dataset,

again a very pleasing result
Similarly, it can be shown that the ML estimates for the multivariate

Gaussian are the sample mean vector and sample covariance matrix

1 . 1
= Nzgqx(k; L= Nz:g:l(x(k - m)(xt - ﬁ)T
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Bias and variance

How good are these estimates?
— Two measures of “goodness” are used for statistical estimates

— BIAS: how close is the estimate to the true value?

— VARIANCE: how much does it change for different datasets?
4 BIAS

s
>
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— The bias-variance tradeoff VARIANCE

N

Y.

* In most cases, you can only decrease one of them at the expense of the

other
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What is the bias of the ML estimate of the mean?
1 1
Elgl = E [NZﬁzlx(k] = Nsz:lE[x(k] = u
— Therefore the mean is an unbiased estimate

What is the bias of the ML estimate of the variance?

R 1 21 N-1
E[6%] =E lﬁzﬁzl(x“‘ — f) ] =—

— Thus, the ML estimate of variance is BIASED

* This is because the ML estimate of variance uses /i instead of u
— How “bad” is this bias?

* For N = oo the bias becomes zero asymptotically

0% + g2

e The bias is only noticeable when we have very few samples, in which case
we should not be doing statistics in the first place!

— Notice that MATLAB uses an unbiased estimate of the covariance

1

Sunpias = N_1 her (= ) (2 — ﬁ)T
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Bayesian estimation

In the Bayesian approach, our uncertainty about the
parameters is represented by a pdf

— Before we observe the data, the parameters are described by a prior
density p(8) which is typically very broad to reflect the fact that we
know little about its true value

— Once we obtain data, we make use of Bayes theorem to find the
posterior p(0|X)
* |deally we want the data to sharpen the posterior p(8|X), that is, reduce
our uncertainty about the parameters

p(e|x)

— Remember, though, that our goal is to estimate p(x) or, more exactly,
p(x|X), the density given the evidence provided by the dataset X
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Let us derive the expression of a Bayesian estimate
— From the definition of conditional probability
p(x,01X) = p(x|6,X)p(6]X)
— P(x]0,X) is independent of X since knowledge of 8 completely
specifies the (parametric) density. Therefore

p(x,0|X) = p(x|6)p(6]X)
— and, using the theorem of total probability we can integrate 6 out:

p(x|X) = [ p(x|8)p(6]X)d6

e The only unknown in this expression is p(6|X); using Bayes rule
p(X|0)p(6) p(X|0)p(6)
p(8|X) = =

p(X) [ p(X|6)p(6)do
* Where p(X|60) can be computed using the i.i.d. assumption

N
px10) = | [p(x*10)
k=1

* NOTE: The last three expressions suggest a procedure to estimate p(x|X).
This is not to say that integration of these expressions is easy!
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Example

— Assume a univariate density where our random variable x is generated
from a normal distribution with known standard deviation

— Our goal is to find the mean u of the distribution given some i.i.d. data
points X = {x(,x@, . x"}

— To capture our knowledge about 8 = u, we assume that it also follows
a normal density with mean p, and standard deviation g,

1
(6—pp)?
po(0) = ’

T 552
e 20j

V21o,
— We use Bayes rule to develop an expression for the posterior p(6|X)
p(X|0)p(8)  po(0)

p(9|X) — p(X) - p(X) H£=1p(x(k|€) =
1
1 e—m(e—ﬂo)z 1 . 1 e—ﬁ(x(k—e)z
V2mao, p(X) " V2ne

[Bishop, 1995]
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— To understand how Bayesian estimation changes the posterior as more
data becomes available, we will find the maximum of p(6|X)

— The partial derivative with respectto 8 = u is

0 0 1 1 2
~510gp(B1X) = 0= —— | ——— (u — 10)* = Ty 5 (x* —p)"| = 0

a0 ou| 208
— which, after some algebraic manipulation, becomes
2 2
o Noy 1
= + — 3zl x&
KN 02+NJ§MO o2+ NgZ N *=1
PRIOR ML

* Therefore, as N increases, the estimate of the mean ) moves from the
initial prior uy to the ML solution
— Similarly, the standard deviation oycan be found to be
1 N 1

— T_
ok 02 of

[Bishop, 1995]
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Example

Assume that the true mean of the distribution p(x) is
1 = 0.8 with standard deviation 0 = 0.3
* In reality we would not know the true mean; we are just “playing God”
— We generate a number of examples from this distribution

— To capture our lack of knowledge about the mean, we assume a
normal prior py(6,), with uy = 0.0 and gy = 0.3
— The figure below shows the posterior p(u|X)

e As N increases, the estimate u, approaches its true value (u = 0.8) and
the spread gy (or uncertainty in the estimate) decreases
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ML vs. Bayesian estimation

What is the relationship between these two estimates?
— By definition, p(X|60) peaks at the ML estimate

— If this peak is relatively sharp and the prior is broad, then the integral
below will be dominated by the region around the ML estimate

p(x|X) = [ p(x|0)p(81X)do = p(x|9)J p(81X)df = p(x|6)
=1
* Therefore, the Bayesian estimate will approximate the ML solution

— As we have seen in the previous example, when the number of
available data increases, the posterior p(6|X) tends to sharpen

e Thus, the Bayesian estimate of p(x) will approach the ML solution as
N — o

* In practice, only when we have a limited number of observations will the
two approaches yield different results
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