L5: Quadratic classifiers

Bayes classifiers for Normally distributed classes
— Case1:3; = 0?1

— Case 2: X; = X (X diagonal)

— Case 3: X; = X (2 non-diagonal)

— Case 4:X; = 0l

— Case 5: X; # X (general case)

Numerical example
Linear and quadratic classifiers: conclusions
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Bayes classifiers for Gaussian classes

Class assignment

Recap !

— On L4 we showed that the decision rule that Select max
minimized P[error] could be formulated in
terms of a family of discriminant functions  piscriminant

. functions
For normally Gaussian classes, these
DFs reduce to simple expressions

— The multivariate Normal pdf is
f () = (2m)~N/2|3| 122 0TE )
— Using Bayes rule, the DFs become
gi(x) = P(w;|x) = (P(w)p(x|w;))/p(x)
L ATy =10y,
= (2m) /2|5y T2 T2 HOE G P(wy) /p (x)
— Eliminating constant terms

Features

gi(x) = |2,|71/2 e—%(x—m)TZi_l(x—ui) P(w;)
— And taking natural logs
1 S 1
gi(x) = _E(x — 1) Z (e — ) — 5108|Zi| + logP(w;)
— This expression is called a quadratic discriminant function
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Case 1: X; = 0°1

This situation occurs when features are statistically independent with
equal variance for all classes

— In this case, the quadratic DFs become
0u) = =3 G = )T (@71 )71 (x = 1) — 310l + LogP, = — 5 (x — 1) (x = 1) + logP,
— Expanding this expression

gi(x) = —%(XTX — 2u x + uf ;) + logP;

Tx, which is constant for all classes

— Eliminating the term x
1
9i(x) = —F(—Zu{x +pf ;) +logP; = wix +wy
— So the DFs are linear, and the boundaries g;(x) = g;(x) are hyper-planes

— If we assume equal priors

_ 1 T M1 —» .
gi(x) - = 202 (X - ,U»L) (x - ,ul) 2 »| Distance i
(o]
* This is called a minimum-distance s 3
o > Distance 2
or nearest mean classifier e |— class
° =)
. ° €
* The equiprobable contours are hyper-spheres . E
=
e For unit variance (2 = 1), g;(x) is e Distance
the Euclidean distance

[Schalkoff, 1992]
CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU



— Three-class 2D problem
with equa| priOFS

=132 py = [74]"

{ ..mm,‘ [
S=2-a
iﬁ;{¢\$\\\

N
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Case 2: X; = X (diagonal)

Classes still have the same covariance, but features are
allowed to have different variances

— In this case, the quadratic DFs becomes
1 1
gi(x) = ——(x — ) E7 (= ) — Elog|2i| + logP; =

2
(xk .u',k)
——ZN O_zl — > log[Tk=10% + logP;
k

— Eliminating the term x£, which is constant for all classes

1 —2Xp i + Uik
gi(0) = =5 ks ;2 = — - logNlY_yof + logP,
k

— This discriminant is also linear, so the decision boundaries
gi(x) = g;j(x) will also be hyper-planes

— The equiprobable contours are hyper-ellipses aligned with the
reference frame

— Note that the only difference with the previous classifier is that the
distance of each axis is normalized by its variance
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Example

— Three-class 2D problem
with equal priors

u = [32]" py = [54]" us = [25]"

Zl:[l 2] ZZ:[l 2] Z3=[1 2]
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Case 3: X; = X (non-diagonal)

Classes have equal covariance matrix, but no longer diagonal
— The quadratic discriminant becomes

1 1
9i(x) = _E(x —u)"E T (xe - wy) - ElongI + logP;

— Eliminating the term log|X|, which is constant for all classes, and assuming
equal priors

1
gi(x) = _E(x —u) 27 0 — )

— The quadratic term is called the Mahalanobis distance, a very important
concept in statistical pattern recognition

— The Mahalanobis distance is a
vector distance that uses a X~ thorm,

— Y71 acts as a stretching factor on
the space

— Note that when X = [, the
Mahalanobis distance becomes
the familiar Euclidean distance
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— Expanding the quadratic term

1
9i(@) = = ("Z70x — 2uf £ x + w7 )

— Removing the term xT X~ 1x, which is constant for all classes

1
9i(x) = —5 (—2uf 2 2 + w27 1y) = wix + wy

— So the DFs are still linear, and the decision boundaries will also be

hyper-planes

— The equiprobable contours are hyper-ellipses aligned with the

eigenvectors of X

— This is known as a minimum (Mahalanobis) distance classifier

My —>

)

X

» Distance

Hy —»

» Distance

He —»

» Distance
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Example

— Three-class 2D problem
with equal priors

u = [32]" py = [54]" us = [25]"

17 17 717
Z1_[.7 2 22_[.7 2 23_.7 2
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Case4:X; = O'%I

In this case, each class has a different covariance matrix,
which is proportional to the identity matrix

— The quadratic discriminant becomes
1 _ 1
gi(x) = _E(x —u) o7 (o — ) — EN10g|0i2| + logP;
— This expression cannot be reduced further

— The decision boundaries are quadratic: hyper-ellipses

— The equiprobable contours are hyper-spheres aligned with the feature
axis
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Example

— Three-class 2D problem

with equal priors

[54]"

Hz =

[32]"

11
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Case 5: X; #+ X; (general case)

We already derived the expression for the general case
1 1
9i(x) = —E(X —u)TE (e — ) — ElogIZiI + logP;

— Reorganizing terms in a quadratic form yields
9:(x) = xTWy ix + wi;x + wy

( 1a—1
Wai=—352;
where ¢ wy; = Zi_lui

1 e 1
| Wo,i = — Wi 27 iy — 5 log|| + logP;

— The equiprobable contours are hyper-ellipses, oriented with the
eigenvectors of X; for that class

— The decision boundaries are again quadratic: hyper-ellipses or hyper-
parabolloids

— Notice that the quadratic expression in the discriminant is
proportional to the Mahalanobis distance for covariance X;
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Example

— Three-class 2D problem
with equal priors

u =[32]" py =[5 4]" s = [34]"
1 -1 1 -1 5 5
Z1=[—1 2] 2= 7] 2255 3
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Numerical example

Derive a linear DF for the following 2-class 3D problem

25
25

— Solution

1
+log§

1 x—0
91(95)_—_(95—#1) (x —pq) +logP, = __[)’ 0][ ][)’_0

z—20
x—1 x—1
s [ b
z—1 z—1

g1(x) 2 go(x) = —2(x% + y? +Z2)+lg— Z —2((x—1)2+(y—1)2+(z—1)2)+1g—

w2 op)

+log§

2 6—10g2
= OTege
x+y+z(§1 T = 1.32
— Classify the test example x,, = [0.1 0.7 0.8]"
W32
0.1+0.7+08=16 2 1.32 = x, € w,

w1
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Conclusions

The examples in this lecture illustrate the following points
— The Bayes classifier for Gaussian classes (general case) is quadratic
— The Bayes classifier for Gaussian classes with equal covariance is linear
— The Mahalanobis distance classifier is Bayes-optimal for
* normally distributed classes and
e equal covariance matrices and
e equal priors
— The Euclidean distance classifier is Bayes-optimal for

* normally distributed classes and
e equal covariance matrices proportional to the identity matrix and

e equal priors
— Both Euclidean and Mahalanobis distance classifiers are linear classifiers
Thus, some of the simplest and most popular classifiers can be
derived from decision-theoretic principles

— Using a specific (Euclidean or Mahalanobis) minimum distance classifier
implicitly corresponds to certain statistical assumptions

— The question whether these assumptions hold or don’t can rarely be
answered in practice; in most cases we can only determine whether the
classifier solves our problem
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