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L5: Quadratic classifiers 

• Bayes classifiers for Normally distributed classes 
– Case 1: Σ𝑖 = 𝜎2𝐼 

– Case 2: Σ𝑖 = Σ (Σ diagonal) 

– Case 3: Σ𝑖 = Σ (Σ non-diagonal) 

– Case 4: Σ𝑖 = 𝜎𝑖
2𝐼  

– Case 5: Σ𝑖 ≠ Σ𝑗  (general case) 

• Numerical example 

• Linear and quadratic classifiers: conclusions 
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Bayes classifiers for Gaussian classes 
• Recap 

– On L4 we showed that the decision rule that  
minimized 𝑃[𝑒𝑟𝑟𝑜𝑟] could be formulated in  
terms of a family of discriminant functions 

• For normally Gaussian classes, these  
DFs reduce to simple expressions 
– The multivariate Normal pdf is 

𝑓𝑋 𝑥 = 2𝜋 −𝑁/2 Σ −1/2𝑒−
1
2
𝑥−𝜇 𝑇Σ−1 𝑥−𝜇  

– Using Bayes rule, the DFs become 

𝑔𝑖 𝑥 = 𝑃 𝜔𝑖|𝑥 = 𝑃 𝜔𝑖 𝑝 𝑥 𝜔𝑖 𝑝 𝑥 

= 2𝜋 −𝑁/2 Σ𝑖
−1/2𝑒−

1
2
𝑥−𝜇𝑖

𝑇Σ𝑖
−1 𝑥−𝜇𝑖 𝑃 𝜔𝑖 𝑝 𝑥  

– Eliminating constant terms 

𝑔𝑖 𝑥 = Σ𝑖
−1/2 𝑒−

1
2
𝑥−𝜇𝑖

𝑇Σ𝑖
−1 𝑥−𝜇𝑖 𝑃 𝜔𝑖  

– And taking natural logs 

𝑔𝑖 𝑥 = −
1

2
𝑥 − 𝜇𝑖

𝑇Σ𝑖
−1 𝑥 − 𝜇𝑖 −

1

2
log Σ𝑖 + 𝑙𝑜𝑔𝑃(𝜔𝑖) 

– This expression is called a quadratic discriminant function 
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Case 1: 𝚺𝒊 = 𝝈𝟐𝑰 
• This situation occurs when features are statistically independent with 

equal variance for all classes 

– In this case, the quadratic DFs become 

𝑔𝑖 𝑥 = −
1

2
𝑥 − 𝜇𝑖

𝑇 𝜎2𝐼 −1 𝑥 − 𝜇𝑖 −
1

2
log 𝜎2𝐼 + 𝑙𝑜𝑔𝑃𝑖 ≡ −

1

2𝜎2
𝑥 − 𝜇𝑖

𝑇 𝑥 − 𝜇𝑖 + 𝑙𝑜𝑔𝑃𝑖  

– Expanding this expression 

𝑔𝑖 𝑥 = −
1

2𝜎2
𝑥𝑇𝑥 − 2𝜇𝑖

𝑇𝑥 + 𝜇𝑖
𝑇𝜇𝑖 + 𝑙𝑜𝑔𝑃𝑖 

– Eliminating the term 𝑥𝑇𝑥, which is constant for all classes 

𝑔𝑖 𝑥 = −
1

2𝜎2
−2𝜇𝑖

𝑇𝑥 + 𝜇𝑖
𝑇𝜇𝑖 + 𝑙𝑜𝑔𝑃𝑖 = 𝑤𝑖

𝑇𝑥 + 𝑤0 

– So the DFs are linear, and the boundaries  𝑔𝑖(𝑥) = 𝑔𝑗(𝑥) are hyper-planes 

– If we assume equal priors 

 𝑔𝑖 𝑥 = −
1

2𝜎2
𝑥 − 𝜇𝑖

𝑇 𝑥 − 𝜇𝑖  

• This is called a minimum-distance  
or nearest mean classifier 

• The equiprobable contours are hyper-spheres 

• For unit variance (𝜎2 = 1), 𝑔𝑖 𝑥  is  
the Euclidean distance 
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[Schalkoff, 1992] 
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• Example 
– Three-class 2D problem  

with equal priors 

 
𝜇1 = 3 2 𝑇 𝜇2 = 7 4 𝑇 𝜇3 = 2 5 𝑇

Σ1 =
2

2
Σ1 =

2
2

Σ1 =
2

2
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Case 2: 𝚺𝒊 = 𝚺 (diagonal) 

• Classes still have the same covariance, but features are 
allowed to have different variances 
– In this case, the quadratic DFs becomes 

𝑔𝑖 𝑥 = −
1

2
𝑥 − 𝜇𝑖

𝑇Σ𝑖
−1 𝑥 − 𝜇𝑖 −

1

2
log Σ𝑖 + 𝑙𝑜𝑔𝑃𝑖 = 

−
1

2
∑𝑘=1
𝑁

𝑥𝑘 − 𝜇𝑖,𝑘
2

𝜎𝑘
2 −

1

2
𝑙𝑜𝑔∏𝑘=1

𝑁 𝜎𝑘
2 + 𝑙𝑜𝑔𝑃𝑖 

– Eliminating the term 𝑥𝑘
2, which is constant for all classes 

𝑔𝑖 𝑥 =  −
1

2
∑𝑘=1
𝑁

−2𝑥𝑘𝜇𝑖,𝑘 + 𝜇𝑖,𝑘
2

𝜎𝑘
2 −

1

2
𝑙𝑜𝑔Π𝑘=1

𝑁 𝜎𝑘
2 + 𝑙𝑜𝑔𝑃𝑖 

– This discriminant is also linear, so the decision boundaries  
𝑔𝑖(𝑥) = 𝑔𝑗(𝑥) will also be hyper-planes 

– The equiprobable contours are hyper-ellipses aligned with the 
reference frame 

– Note that the only difference with the previous classifier is that the 
distance of each axis is normalized by its variance 
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• Example 
– Three-class 2D problem  

with equal priors 

 
𝜇1 = 3 2 𝑇 𝜇2 = 5 4 𝑇 𝜇3 = 2 5 𝑇

Σ1 =
1

2
Σ2 =

1
2

Σ3 =
1

2
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Case 3: 𝚺𝒊 = 𝚺 (non-diagonal) 
• Classes have equal covariance matrix, but no longer diagonal 

– The quadratic discriminant becomes 

𝑔𝑖 𝑥 = −
1

2
𝑥 − 𝜇𝑖

𝑇Σ−1 𝑥 − 𝜇𝑖 −
1

2
log Σ + 𝑙𝑜𝑔𝑃𝑖  

– Eliminating the term log Σ , which is constant for all classes, and assuming 
equal priors 

𝑔𝑖 𝑥 = −
1

2
𝑥 − 𝜇𝑖

𝑇Σ−1 𝑥 − 𝜇𝑖  

– The quadratic term is called the Mahalanobis distance,  a very important 
concept in statistical pattern recognition 

 

– The Mahalanobis distance is a  
vector distance that  uses a Σ−1norm,  

– Σ−1 acts as a stretching factor on  
the space 

– Note that when Σ = 𝐼, the  
Mahalanobis  distance becomes  
the familiar Euclidean distance 
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– Expanding the quadratic term 

𝑔𝑖 𝑥 = −
1

2
𝑥𝑇Σ−1𝑥 − 2𝜇𝑖

𝑇Σ−1𝑥 + 𝜇𝑖
𝑇Σ−1𝜇𝑖  

– Removing the term 𝑥𝑇Σ−1𝑥, which is constant for all classes 

𝑔𝑖 𝑥 = −
1

2
−2𝜇𝑖

𝑇Σ−1𝑥 + 𝜇𝑖
𝑇Σ−1𝜇𝑖 = 𝑤1

𝑇𝑥 + 𝑤0 

– So the DFs are still linear, and the decision boundaries will also be 
hyper-planes 

– The equiprobable contours are hyper-ellipses aligned with the 
eigenvectors of Σ 

– This is known as a minimum (Mahalanobis) distance classifier 
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• Example 
– Three-class 2D problem  

with equal priors 

 
𝜇1 = 3 2 𝑇 𝜇2 = 5 4 𝑇 𝜇3 = 2 5 𝑇

Σ1 =
1 .7
.7 2

Σ2 =
1 .7
.7 2

Σ3 =
1 .7
.7 2
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Case 4: 𝚺𝒊 = 𝝈𝒊
𝟐𝑰 

• In this case, each class has a different covariance matrix, 
which is proportional to the identity matrix 
– The quadratic discriminant becomes 

𝑔𝑖 𝑥 = −
1

2
𝑥 − 𝜇𝑖

𝑇𝜎𝑖
−2 𝑥 − 𝜇𝑖 −

1

2
𝑁log 𝜎𝑖

2 + 𝑙𝑜𝑔𝑃𝑖 

– This expression cannot be reduced further 

– The decision boundaries are quadratic: hyper-ellipses  

– The equiprobable contours are hyper-spheres aligned with the feature 
axis 
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• Example 
– Three-class 2D problem  

with equal priors 

 
𝜇1 = 3 2 𝑇 𝜇2 = 5 4 𝑇 𝜇3 = 2 5 𝑇

Σ1 =
.5

.5
Σ2 =

1
1

Σ3 =
2

2

 

Zoom out 
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Case 5: 𝚺𝒊 ≠ 𝚺𝒋 (general case) 

• We already derived the expression for the general case 

𝑔𝑖 𝑥 = −
1

2
𝑥 − 𝜇𝑖

𝑇Σ𝑖
−1 𝑥 − 𝜇𝑖 −

1

2
log Σ𝑖 + 𝑙𝑜𝑔𝑃𝑖 

– Reorganizing terms in a quadratic form yields 

𝑔𝑖 𝑥 = 𝑥𝑇𝑊2,𝑖𝑥 + 𝑤1,𝑖
𝑇 𝑥 + 𝑤0,𝑖 

where 

𝑊2,𝑖 = −
1

2
Σ𝑖
−1                                            

𝑤1,𝑖 = Σ𝑖
−1𝜇𝑖                                                

𝑤𝑜,𝑖 = −
1

2
𝜇𝑖
𝑇Σ𝑖

−1𝜇𝑖 −
1

2
log Σ𝑖 + 𝑙𝑜𝑔𝑃𝑖

 

– The equiprobable contours are hyper-ellipses, oriented with the 
eigenvectors of Σ𝑖 for that class 

– The decision boundaries are again quadratic: hyper-ellipses or hyper-
parabolloids 

– Notice that the quadratic expression in the discriminant is 
proportional to the Mahalanobis distance for covariance Σ𝑖  
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• Example 
– Three-class 2D problem  

with equal priors 

 
𝜇1 = 3 2 𝑇 𝜇2 = 5 4 𝑇 𝜇3 = 3 4 𝑇

Σ1 =
1 −1
−1 2

Σ2 =
1 −1
−1 7

Σ3 =
.5 .5
.5 3

 

Zoom 
out 
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Numerical example 
• Derive a linear DF for the following 2-class 3D problem 

𝜇1 = 0 0 0 𝑇; 𝜇2 = 1 1 1 𝑇; Σ1 = Σ2 =
.25

.25
.25

; P2 = 2P1 

– Solution 

𝑔1 𝑥 = −
1

2𝜎2
𝑥 − 𝜇1

𝑇 𝑥 − 𝜇1 + 𝑙𝑜𝑔𝑃1 = −
1

2

𝑥 − 0
𝑦 − 0
𝑧 − 0

𝑇
4

4
4

𝑥 − 0
𝑦 − 0
𝑧 − 0

+ 𝑙𝑜𝑔
1

3
 

• 𝑔2 𝑥 = −
1

2

𝑥 − 1
𝑦 − 1
𝑧 − 1

𝑇
4

4
4

𝑥 − 1
𝑦 − 1
𝑧 − 1

+ 𝑙𝑜𝑔
2

3
 

• 𝑔1 𝑥
𝜔1
>
<
𝜔2

𝑔2 𝑥 ⇒ −2 𝑥2 + 𝑦2 + 𝑧2 + 𝑙𝑔
1

3
  
𝜔1
>
<
𝜔2

− 2 𝑥 − 1 2 + 𝑦 − 1 2 + 𝑧 − 1 2 + lg
2

3
 

• 𝑥 + 𝑦 + 𝑧 
𝜔2
>
<
𝜔1

6−𝑙𝑜𝑔2

4
= 1.32 

– Classify the test example 𝑥𝑢 = 0.1 0.7 0.8 𝑇 

0.1 + 0.7 + 0.8 = 1.6

𝜔2

>
<
𝜔1

1.32 ⇒ 𝑥𝑢 ∈ 𝜔2  
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Conclusions 
• The examples in this lecture illustrate the following points 

– The Bayes classifier for Gaussian classes (general case) is quadratic 
– The Bayes classifier for Gaussian classes with equal covariance is linear 
– The Mahalanobis distance classifier is Bayes-optimal for 

• normally distributed classes and 
• equal covariance matrices and  
• equal priors 

– The Euclidean distance classifier is Bayes-optimal for 
• normally distributed classes and 
• equal covariance matrices proportional to the identity matrix and  
• equal priors 

– Both Euclidean and Mahalanobis distance classifiers are linear classifiers 

• Thus, some of the simplest and most popular classifiers can be 
derived from decision-theoretic principles 
– Using a specific (Euclidean or Mahalanobis) minimum distance classifier 

implicitly corresponds to certain statistical assumptions 
– The question whether these assumptions hold or don’t can rarely be 

answered in practice; in most cases we can only determine whether the 
classifier solves our problem 




