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L4: Bayesian Decision Theory 

• Likelihood ratio test 

• Probability of error 

• Bayes risk 

• Bayes, MAP and ML criteria 

• Multi-class problems 

• Discriminant functions 
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Likelihood ratio test (LRT) 

• Assume we are to classify an object based on the evidence 
provided by feature vector 𝑥 
– Would the following decision rule be reasonable? 

• "Choose the class that is most probable given observation x” 

• More formally: Evaluate the posterior probability of each class 𝑃(𝜔𝑖|𝑥) 
and choose the class with largest 𝑃(𝜔𝑖|𝑥)  

• Let’s examine this rule for a 2-class problem 
– In this case the decision rule becomes 

if 𝑃 𝜔1|𝑥 > 𝑃 𝜔2|𝑥  choose 𝜔1 else choose 𝜔2 

– Or, in a more compact form 

𝑃 𝜔1|𝑥
𝜔1
>
<
𝜔2

𝑃 𝜔2|𝑥  

– Applying Bayes rule 
𝑝 𝑥|𝜔1 𝑃 𝜔1

𝑝 𝑥

𝜔1
>
<
𝜔2

𝑝 𝑥|𝜔2 𝑃 𝜔2
𝑝 𝑥
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– Since 𝑝(𝑥) does not affect the decision rule, it can be eliminated*  

– Rearranging the previous expression 

 

Λ 𝑥 =  
𝑝 𝑥|𝜔1
𝑝 𝑥|𝜔2

𝜔1
>
<
𝜔2

𝑃 𝜔2
𝑃 𝜔1

 

 

– The term Λ 𝑥  is called the likelihood ratio, and the decision rule is 
known as the likelihood ratio test 

 

*𝑝(𝑥) can be disregarded in the decision rule since it is constant regardless of 
class 𝜔𝑖. However, 𝑝(𝑥) will be needed if we want to estimate the posterior 
𝑃 𝜔𝑖|𝑥  which, unlike 𝑝 𝑥|𝜔1 𝑃 𝜔1 , is a true probability value and, 
therefore, gives us an estimate of the “goodness” of our decision 
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Likelihood ratio test: an example 
• Problem 

– Given the likelihoods below, derive a decision rule based on the LRT 
(assume equal priors) 

𝑝 𝑥 𝜔1 = 𝑁 4,1 ;        𝑝 𝑥 𝜔2 = 𝑁 10,1  

• Solution 

– Substituting into the LRT expression Λ 𝑥 =
1

√2𝜋
e
−
1
2
𝑥−4 2

1

√2𝜋
e
−
1
2
𝑥−10 2

𝜔1
>
<
𝜔2

1

1
 

– Simplifying the LRT expression Λ 𝑥 = e−
1

2
𝑥−4 2+

1

2
𝑥−10 2

𝜔1
>
<
𝜔2

1 

– Changing signs and taking logs 𝑥 − 4 2 − 𝑥 − 10 2
𝜔1
<
>
𝜔2

0 

– Which yields 𝑥
𝜔1
<
>
𝜔2

7 

– This LRT result is intuitive since the  
likelihoods differ only in their mean 

– How would the LRT decision rule change  
if the priors were such that𝑃 𝜔1 = 2𝑃(𝜔2)? 

 

R1: say 1 

x 

R2: say 2 

P(x|1) P(x|2) 

4 10 
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Probability of error 
• The performance of any decision rule can be measured by 
𝑃[𝑒𝑟𝑟𝑜𝑟]  
– Making use of the Theorem of total probability (L2): 

𝑃 𝑒𝑟𝑟𝑜𝑟 = ∑𝑖=1
𝐶 𝑃 𝑒𝑟𝑟𝑜𝑟 𝜔𝑖 𝑃[𝜔𝑖] 

– The class conditional probability 𝑃 𝑒𝑟𝑟𝑜𝑟 𝜔𝑖  can be expressed as 

𝑃 𝑒𝑟𝑟𝑜𝑟|𝜔𝑖 = 𝑃 𝑐ℎ𝑜𝑜𝑠𝑒 𝜔𝑗 𝜔𝑖 =  𝑝 𝑥 𝜔𝑖 𝑑𝑥
𝑅𝑗

= 𝜖𝑖 

– So, for our 2-class problem, 𝑃 𝑒𝑟𝑟𝑜𝑟  becomes 

𝑃 𝑒𝑟𝑟𝑜𝑟 = 𝑃 𝜔1  𝑝 𝑥 𝜔1 𝑑𝑥
𝑅2

𝜖1

+ 𝑃 𝜔2  𝑝 𝑥 𝜔2 𝑑𝑥
𝑅1

𝜖2

 

• where 𝜖𝑖 is the integral of 𝑝 𝑥 𝜔𝑖   
over region 𝑅𝑗  where we choose 𝜔𝑗 

– For the previous example, since we  
assumed equal priors, then  

𝑃[𝑒𝑟𝑟𝑜𝑟]  =  (𝜖1  + 𝜖2)/2 

– How would you compute 𝑃 𝑒𝑟𝑟𝑜𝑟   
numerically? 

 

R1: say 1 

x 

R2: say 2 

P(x|1) P(x|2) 

4 10 
2 1 
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• How good is the LRT decision rule? 
– To answer this question, it is convenient to express 𝑃[𝑒𝑟𝑟𝑜𝑟] in terms 

of the posterior 𝑃[𝑒𝑟𝑟𝑜𝑟|𝑥] 

 

𝑃 𝑒𝑟𝑟𝑜𝑟 =  𝑃 𝑒𝑟𝑟𝑜𝑟 𝑥 𝑝 𝑥 𝑑𝑥
∞ 

−∞

 

 

– The optimal decision rule will minimize 𝑃[𝑒𝑟𝑟𝑜𝑟|𝑥] at every value of 𝑥 
in feature space, so that the integral above is minimized 

 

 

 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 7 

– At each 𝑥′, 𝑃[𝑒𝑟𝑟𝑜𝑟|𝑥′] is equal to 𝑃[𝜔𝑖|𝑥
′] when we choose 𝜔𝑗 

• This is illustrated in the figure below 

 

 

 

 

 

 

– From the figure it becomes clear that, for any value of 𝑥′, the LRT  
will always have a lower 𝑃[𝑒𝑟𝑟𝑜𝑟|𝑥′] 

• Therefore, when we integrate over the real line, the LRT decision rule  
will yield a lower 𝑃[𝑒𝑟𝑟𝑜𝑟] 

 
For any given problem, the minimum probability of error is 
achieved by the LRT decision rule; this probability of error is called 
the Bayes Error Rate and is the best any classifier can do. 

x

P
ro

b
a

b
il
it

y

P(1|x)

P(2|x)

R1, ALT R2, ALT

ruledecisionALTfor]'x|error[P

R1,LTR R2,LRT

ruledecisionLRTfor]'x|error[P

x’
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Bayes risk 

• So far we have assumed that the penalty of misclassifying 
𝐱 ∈ 𝝎1 as 𝝎𝟐 is the same as the reciprocal error 
– In general, this is not the case 

– For example, misclassifying a cancer sufferer as a healthy patient is a 
much more serious problem than the other way around 

– This concept can be formalized in terms of a cost function 𝐶𝑖𝑗 

• 𝐶𝑖𝑗 represents the cost of choosing class 𝜔𝑖 when 𝜔𝑗 is the true class 

• We define the Bayes Risk as the expected value of the cost 

 
ℜ = 𝐸 𝐶 = ∑𝑖=1

2 ∑𝑗=1
2 𝐶𝑖𝑗𝑃 𝑐ℎ𝑜𝑜𝑠𝑒 𝜔𝑖𝑎𝑛𝑑 𝑥 ∈ 𝜔𝑗 =

= ∑𝑖=1
2 ∑𝑗=1

2 𝐶𝑖𝑗𝑃 𝑥 ∈ 𝑅𝑖|𝜔𝑗 𝑃 𝜔𝑗  
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• What is the decision rule that minimizes the Bayes Risk? 
– First notice that  

𝑃 𝑥 ∈ R𝑖 𝜔𝑗 =  𝑝 𝑥 𝜔𝑗 𝑑𝑥
𝑅𝑖

 

– We can express the Bayes Risk as 

ℜ =  [𝐶11𝑃 𝜔1 𝑝(𝑥|𝜔1) + 𝐶12𝑃 𝜔2 𝑝 𝑥 𝜔2 𝑑𝑥
𝑅1

+ 

          [𝐶21𝑃 𝜔1 𝑝(𝑥|𝜔1) + 𝐶22𝑃 𝜔2 𝑝 𝑥 𝜔2 𝑑𝑥
𝑅2

 

– Then we note that, for either likelihood, one can write: 

 

 𝑝 𝑥 𝜔𝑖 𝑑𝑥
𝑅1

+ 𝑝 𝑥 𝜔𝑖 𝑑𝑥
𝑅2

=  𝑝 𝑥 𝜔𝑖 𝑑𝑥
𝑅1∪𝑅2

= 1 
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– Merging the last equation into the Bayes Risk expression yields 

ℜ = 𝐶11𝑃1 𝑝 𝑥 𝜔1 𝑑𝑥
𝑅1

+ 𝐶12𝑃2 𝑝 𝑥 𝜔2 𝑑𝑥
𝑅1

 

+𝐶21𝑃1 𝑝 𝑥 𝜔1 𝑑𝑥
𝑅2

+ 𝐶22𝑃2 𝑝 𝑥 𝜔2 𝑑𝑥
𝑅2

 

+𝐶21𝑃1 𝑝 𝑥 𝜔1 𝑑𝑥
𝑅1

+ 𝐶22𝑃2 𝑝 𝑥 𝜔2 𝑑𝑥
𝑅1

  

−𝐶21𝑃1 𝑝 𝑥 𝜔1 𝑑𝑥
𝑅1

− 𝐶22𝑃2 𝑝 𝑥 𝜔2 𝑑𝑥
𝑅1

 

– Now we cancel out all the integrals over 𝑅2  

ℜ = 𝐶21𝑃1 + 𝐶22𝑃2 + 𝐶12 − 𝐶22 𝑃2 𝑝 𝑥 𝜔2 𝑑𝑥 − 𝐶21 − 𝐶11 𝑃1
𝑅1

 𝑝 𝑥 𝜔1 𝑑𝑥
𝑅1

 

 

– The first two terms are constant w.r.t. 𝑅1 so they can be ignored 

– Thus, we seek a decision region 𝑅1 that minimizes 

𝑅1 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐶12 − 𝐶22 𝑃2𝑝 𝑥 𝜔2 − 𝐶21 − 𝐶11 𝑃1𝑝(𝑥|𝜔1) 𝑑𝑥 
𝑅1

 

= 𝑎𝑟𝑔𝑚𝑖𝑛 𝑔 𝑥
𝑅1

 

 

 

 

>0 >0 
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– Let’s forget about the actual expression of 𝑔(𝑥) to develop some intuition 
for what kind of decision region 𝑅1 we are looking for 

• Intuitively, we will select for 𝑅1 those regions that minimize  𝑔 𝑥
𝑅1

 

• In other words, those regions where 𝑔 𝑥 < 0 

 

 

 

 

 

 

 

– So we will choose 𝑅1 such that 
𝐶21 − 𝐶11 𝑃1𝑝 𝑥 𝜔1 > 𝐶12 − 𝐶22 𝑃2𝑝 𝑥 𝜔2  

– And rearranging 
𝑃 𝑥|𝜔1
𝑃 𝑥|𝜔2

𝜔1
>
<
𝜔2

𝐶12 − 𝐶22 𝑃 𝜔2
𝐶21 − 𝐶11  𝑃 𝜔1

 

– Therefore, minimization of the Bayes Risk also leads to an LRT 

 
 

R1A R1B R1C 

R1=R1A R1B R1C 

x 

g(x) 
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The Bayes risk: an example 
– Consider a problem with likelihoods 

𝐿1 = 𝑁 0, 3  and 𝐿2 = 𝑁 2,1  

• Sketch the two densities 

• What is the likelihood ratio? 

• Assume 𝑃1 = 𝑃2, 𝐶𝑖𝑖 = 0, 𝐶12 = 1 
and 𝐶21 = 3

1/2 

• Determine a decision rule to 
minimize 𝑃[𝑒𝑟𝑟𝑜𝑟] 

Λ 𝑥 =
𝑁 0, 3

𝑁 2,1 

𝜔1
>
<
𝜔2

1

√3
⇒  

⇒ −
1

2

𝑥2

3
+
1

2
𝑥 − 2 2

𝜔1
>
<
𝜔2

0 ⇒ 

⇒ 2𝑥2 − 12𝑥 + 12

𝜔1
>
<
𝜔2

0 ⇒ 

⇒ 𝑥 = 4.73,1.27 

 

 

 

 

 

 

 

-6 -4 -2 0 2 4 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

lik
e
lih

o
o
d

-6 -4 -2 0 2 4 6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

R1 R2 R1 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 13 

LRT variations 

• Bayes criterion 
– This is the LRT that minimizes the Bayes risk 

ΛBayes 𝑥 =
𝑝 𝑥|𝜔1
𝑝 𝑥|𝜔2

𝜔1
>
<
𝜔2

𝐶12 − 𝐶22 𝑃 𝜔2
𝐶21 − 𝐶11  𝑃 𝜔1

 

• Maximum A Posteriori criterion 
– Sometimes we may be interested in minimizing 𝑃 𝑒𝑟𝑟𝑜𝑟  

– A special case of ΛBayes 𝑥  that uses a zero-one cost Cij =  
0; 𝑖 = 𝑗
1; 𝑖 ≠ 𝑗

 

– Known as the MAP criterion, since it seeks to maximize 𝑃 𝜔𝑖 𝑥  

ΛMAP 𝑥 =
𝑝 𝑥|𝜔1
𝑝 𝑥|𝜔2

𝜔1
>
<
𝜔2

𝑃 𝜔2
 𝑃 𝜔1

⇒
𝑃 𝜔1|𝑥

𝑃 𝜔2|𝑥

𝜔1
>
<
𝜔2

1 

• Maximum Likelihood criterion 
– For equal priors 𝑃[𝜔𝑖] = 1/2 and 0/1 loss function, the LTR is known 

as a ML criterion, since it seeks to maximize 𝑃(𝑥|𝜔𝑖) 

ΛML 𝑥 =
𝑝 𝑥|𝜔1
𝑝 𝑥|𝜔2

𝜔1
>
<
𝜔2

1 
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• Two more decision rules are commonly cited in the literature 
– The Neyman-Pearson Criterion, used in Detection and Estimation 

Theory, which also leads to an LRT, fixes one class error probabilities, 
say 𝜖1 < 𝛼, and seeks to minimize the other 

• For instance, for the sea-bass/salmon classification problem of L1, there 
may be some kind of government regulation that we must not misclassify 
more than 1% of salmon as sea bass 

• The Neyman-Pearson Criterion is very attractive since it does not require 
knowledge of priors and cost function 

– The Minimax Criterion, used in Game Theory, is derived from the 
Bayes criterion, and seeks to minimize the maximum Bayes Risk 

• The Minimax Criterion does nor require knowledge of the priors, but it 
needs a cost function 

– For more information on these methods, refer to “Detection, 
Estimation and Modulation Theory”, by H.L. van Trees 
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Minimum 𝑃[𝑒𝑟𝑟𝑜𝑟] for multi-class problems 

• Minimizing 𝑃[𝑒𝑟𝑟𝑜𝑟] generalizes well for multiple classes 
– For clarity in the derivation, we express 𝑃[𝑒𝑟𝑟𝑜𝑟] in terms of the 

probability of making a correct assignment 
𝑃 𝑒𝑟𝑟𝑜𝑟 = 1 − 𝑃[𝑐𝑜𝑟𝑟𝑒𝑐𝑡] 

• The probability of making a correct assignment is 

𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = Σ𝑖=1
𝐶 𝑃 𝜔𝑖  𝑝 𝑥 𝜔𝑖 𝑑𝑥

𝑅𝑖

 

• Minimizing 𝑃[𝑒𝑟𝑟𝑜𝑟] is equivalent to maximizing 𝑃[𝑐𝑜𝑟𝑟𝑒𝑐𝑡], so 
expressing the latter in terms of posteriors 

𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = Σ𝑖=1
𝐶  𝑝 𝑥 𝑃 𝜔𝑖|𝑥 𝑑𝑥

𝑅𝑖

 

• To maximize 𝑃[𝑐𝑜𝑟𝑟𝑒𝑐𝑡], we must maximize  
each integral   

𝑅𝑖
, which we achieve by  

choosing the class with largest posterior 

• So each 𝑅𝑖  is the region where 𝑃 𝜔𝑖|𝑥  is  
maximum, and the decision rule that  
minimizes P[error] is the MAP criterion 

 

x
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P(1|x)

P(2|x)

P(3|x)
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Minimum Bayes risk for multi-class problems  

• Minimizing the Bayes risk also generalizes well 
– As before, we use a slightly different formulation 

• We denote by 𝛼𝑖 the decision to choose class 𝜔𝑖 

• We denote by 𝛼(𝑥) the overall decision rule that maps feature vectors 𝑥 
into classes 𝜔𝑖, 𝛼 𝑥 → 𝛼1, 𝛼2, …𝛼𝐶  

– The (conditional) risk ℜ 𝛼𝑖 𝑥  of assigning 𝑥 to class 𝜔𝑖 is 

ℜ 𝛼 𝑥 → 𝛼𝑖 = ℜ 𝛼𝑖 𝑥 = Σ𝑗=1
𝐶 𝐶𝑖𝑗𝑃 𝜔𝑗|𝑥  

– And the Bayes Risk associated with decision rule 𝛼(𝑥) is 

ℜ 𝛼 𝑥 =  ℜ 𝛼 𝑥 𝑥 𝑝 𝑥 𝑑𝑥 

– To minimize this expression,  
we must minimize the  
conditional risk ℜ 𝛼 𝑥 𝑥   
at each 𝑥, which is  
equivalent to choosing 𝜔𝑖   
such that ℜ 𝛼𝑖 𝑥  is minimum 

 

 x 

R
is

k 

R1 R2 R3 R2 R1 R2 R2 

 (2|x) 

 (3|x) 

 (1|x) 
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Discriminant functions 

• All the decision rules shown in L4 have the same structure 
– At each point 𝑥 in feature space, choose class 𝜔𝑖 that maximizes (or 

minimizes) some measure 𝑔𝑖(𝑥) 

– This structure can be formalized with a set of discriminant functions  
𝑔𝑖(𝑥), 𝑖 = 1. . 𝐶, and the decision rule 

“assign 𝒙 to class 𝝎𝒊 if 𝒈𝒊 𝒙 > 𝒈𝒋 𝒙   ∀𝒋 ≠ 𝒊” 

– Therefore, we can visualize the  
decision rule as a network that  
computes 𝐶 df’s and selects the  
class with highest discriminant 

– And the three decision rules  
can be summarized as 

 

 
x2
x2 x3

x3 xd
xd
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