L3: Review of linear algebra and MATLAB

Vector and matrix notation

Vectors

Matrices

Vector spaces

Linear transformations

Eigenvalues and eigenvectors

MATLAB® primer

Vector and matrix notation

- A d-dimensional (column) vector x and its transpose are written as:

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix} \text{ and } x^T = \begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix}$$

- An $n \times d$ (rectangular) matrix and its transpose are written as

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1d} \\ a_{21} & a_{22} & a_{23} & & a_{2d} \\ \vdots & & \ddots & & \\ a_{n1} & a_{n2} & a_{n3} & & a_{nd} \end{bmatrix} \text{ and } a^T = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & & a_{n2} \\ a_{13} & a_{23} & & a_{n3} \\ \vdots & & \ddots & & \\ a_{1d} & a_{2d} & & a_{nd} \end{bmatrix}$$

The product of two matrices is

$$AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} & & a_{1d} \\ a_{21} & a_{22} & a_{23} & & a_{2d} \\ a_{m1} & a_{m2} & a_{m3} & & a_{md} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & & b_{1n} \\ b_{21} & b_{22} & & b_{2n} \\ b_{31} & b_{32} & & b_{3n} \\ b_{d1} & b_{d2} & & b_{dn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & & c_{1n} \\ c_{21} & c_{22} & c_{23} & & c_{2n} \\ c_{31} & c_{32} & c_{33} & & c_{3n} \\ c_{m1} & c_{m2} & c_{m3} & & c_{mn} \end{bmatrix}$$

where
$$c_{ij} = \sum_{k=1}^{d} a_{ik} b_{kj}$$

Vectors

 The <u>inner product</u> (a.k.a. dot product or scalar product) of two vectors is defined by

$$\langle x, y \rangle = x^T y = y^T x = \sum_{k=1}^d x_k y_k$$

The <u>magnitude</u> of a vector is

$$|x| = \sqrt{x^T x} = \left[\sum_{k=1}^d x_k x_k\right]^{\frac{1}{2}}$$

- The <u>orthogonal projection</u> of vector y onto vector x is $\langle y^T u_x \rangle u_x$
 - where vector u_x has unit magnitude and the same direction as x
- The <u>angle</u> between vectors x and y is $\begin{pmatrix} x & y \\ y \end{pmatrix}$

$$cos\theta = \frac{\langle x, y \rangle}{|x||y|}$$

- Two vectors x and y are said to be
 - <u>orthogonal</u> if $x^T y = 0$
 - <u>orthonormal</u> if $x^T y = 0$ and |x| = |y| = 1

- A set of vectors $x_1, x_2, ..., x_n$ are said to be <u>linearly dependent</u> if there exists a set of coefficients $a_1, a_2, ..., a_n$ (at least one different than zero) such that

$$a_1x_1 + a_2x_2 \dots a_nx_n = 0$$

- Alternatively, a set of vectors x_1, x_2, \dots, x_n are said to be <u>linearly independent</u> if

$$a_1 x_1 + a_2 x_2 \dots a_n x_n = 0 \Rightarrow a_k = 0 \ \forall k$$

Matrices

- The <u>determinant</u> of a square matrix $A_{d \times d}$ is $|A| = \sum_{k=1}^{d} a_{ik} |A_{ik}| (-1)^{k+i}$
 - where A_{ik} is the minor formed by removing the ith row and the kth column of A
 - NOTE: the determinant of a square matrix and its transpose is the same: $|A| = |A^T|$
- The <u>trace</u> of a square matrix $A_{d \times d}$ is the sum of its diagonal elements

$$tr(A) = \sum_{k=1}^{a} a_{kk}$$

- The <u>rank</u> of a matrix is the number of linearly independent rows (or columns)
- A square matrix is said to be <u>non-singular</u> if and only if its rank equals the number of rows (or columns)
 - A non-singular matrix has a non-zero determinant

- A square matrix is said to be <u>orthonormal</u> if $AA^T = A^TA = I$
- For a square matrix A
 - if $x^T A x > 0$ $\forall x \neq 0$, then A is said to be <u>positive-definite</u> (i.e., the covariance matrix)
 - $x^T A x \ge 0$ $\forall x \ne 0$, then A is said to be <u>positive-semi-definite</u>
- The <u>inverse</u> of a square matrix A is denoted by A^{-1} and is such that $AA^{-1} = A^{-1}A = I$
 - The inverse A^{-1} of a matrix A exists if and only if A is non-singular
- The <u>pseudo-inverse</u> matrix A^{\dagger} is typically used whenever A^{-1} does not exist (because A is not square or A is singular)

 $A^{\dagger} = [A^{T}A]^{-1}A^{T}$ with $A^{\dagger}A = I$ (assuming $A^{T}A$ is non-singular)

• Note that $AA^{\dagger} \neq I$ in general

Vector spaces

- The n-dimensional space in which all the n-dimensional vectors reside is called a vector space
- A set of vectors $\{u_1, u_2, \dots, u_n\}$ is said to form a <u>basis</u> for a vector space if any arbitrary vector x can be represented by a linear combination of the $\{u_i\}$

• As an example, the Cartesian coordinate base is an orthonormal base

- Given n linearly independent vectors $\{x_1, x_2, ..., x_n\}$, we can construct an orthonormal base $\{\phi_1, \phi_2, ..., \phi_n\}$ for the vector space spanned by $\{x_i\}$ with the <u>Gram-Schmidt</u> orthonormalization procedure (to be discussed in the RBF lecture)
- The <u>distance</u> between two points in a vector space is defined as the magnitude of the vector difference between the points

$$d_E(x, y) = |x - y| = \left[\sum_{k=1}^d (x_k - y_k)^2\right]^{\frac{1}{2}}$$

• This is also called the Euclidean distance

Linear transformations

- A linear transformation is a mapping from a vector space X^N onto a vector space Y^M , and is represented by a matrix
 - Given vector $x \in X^N$, the corresponding vector y on Y^M is computed as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & & a_{1N} \\ a_{21} & a_{22} & & a_{2N} \\ & & \ddots & & \\ a_{M1} & a_{M2} & & a_{MN} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{bmatrix}$$

- Notice that the dimensionality of the two spaces does not need to be the same
- For pattern recognition we typically have M < N (project onto a lower-dim space)
- A linear transformation represented by a square matrix A is said to be orthonormal when $AA^T = A^T A = I$
 - This implies that $A^T = A^{-1}$
 - An orthonormal xform has the property of preserving the magnitude of the vectors

$$|y| = \sqrt{y^T y} = \sqrt{(Ax)^T Ax} = \sqrt{x^T A^T Ax} = \sqrt{x^T x} = |x|$$

- An orthonormal matrix can be thought of as a rotation of the reference frame
- The row vectors of an orthonormal xform are a set of orthonormal basis vectors

$$Y_{M \times 1} = \begin{bmatrix} \leftarrow a_1 \rightarrow \\ \leftarrow a_2 \rightarrow \\ \leftarrow a_N \rightarrow \end{bmatrix} X_{N \times 1} \text{ with } a_i^T a_j = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Eigenvectors and eigenvalues

- Given a matrix $A_{N \times N}$, we say that v is an eigenvector* if there exists a scalar λ (the eigenvalue) such that

$$Av = \lambda v$$

Computing the eigenvalues

(*A***)**

$$Av = \lambda v \implies (A - \lambda I)v = 0 \implies \begin{cases} v = 0 & \text{Trivial solution} \\ (A - \lambda I) = 0 & \text{Non-trivial solution} \end{cases}$$
$$-\lambda I) = 0 \implies |A - \lambda I| = 0 \implies \lambda^{N} + a_{1}\lambda^{N-1} + a_{2}\lambda^{N-2} + a_{N-1}\lambda + a_{0} = 0$$

Characteristic equation

*The "eigen-" in "eigenvector" translates as "characteristic"

- The matrix formed by the column eigenvectors is called the modal matrix M

- Matrix Λ is the canonical form of A: a diagonal matrix with eigenvalues on the main diagonal

$$M = \begin{bmatrix} \uparrow & \uparrow & & \uparrow \\ v_1 & v_2 & & v_N \\ \downarrow & \downarrow & & \downarrow \end{bmatrix} \Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & & \lambda_N \end{bmatrix}$$

- Properties
 - If A is non-singular, all eigenvalues are non-zero
 - If A is real and symmetric, all eigenvalues are real
 - The eigenvectors associated with distinct eigenvalues are orthogonal
 - If A is positive definite, all eigenvalues are positive

Interpretation of eigenvectors and eigenvalues

- If we view matrix A as a linear transformation, an eigenvector represents an invariant direction in vector space
 - When transformed by A, any point lying on the direction defined by v will remain on that direction, and its magnitude will be multiplied by λ

• For example, the transform that rotates 3-d vectors about the Z axis has vector $[0 \ 0 \ 1]$ as its only eigenvector and $\lambda = 1$ as its eigenvalue

- Given the covariance matrix Σ of a Gaussian distribution
 - The eigenvectors of Σ are the principal directions of the distribution
 - The eigenvalues are the variances of the corresponding principal directions
- The linear transformation defined by the eigenvectors of Σ leads to vectors that are uncorrelated <u>regardless</u> of the form of the distribution
 - If the distribution happens to be Gaussian, then the transformed vectors will be statistically independent

Sufficiently independent

$$\Sigma M = M\Lambda \text{ with } M = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ v_1 & v_2 & v_N \\ \downarrow & \downarrow & \downarrow \end{bmatrix} \Lambda = \begin{bmatrix} \lambda_1 & \lambda_2 & \\ \lambda_2 & \\ \lambda_N \end{bmatrix}$$

$$f_x(x) = \frac{1}{(2\pi)^{N/2} |\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right]$$

$$f_y(y) = \prod_{l=1}^N \frac{1}{\sqrt{2\pi\lambda_l}} \exp\left[-\frac{(y_l - \mu_{y_l})^2}{2\lambda_l}\right]$$

$$y = M^T x$$

$$\mu_{y_2}$$

$$\mu_{y_2}$$

$$\mu_{y_2}$$

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

MATLAB primer

The MATLAB environment

- Starting and exiting MATLAB
- Directory path
- The startup.m file
- The help command
- The toolboxes

Basic features (help general)

- Variables
- Special variables (i, NaN, eps, realmax, realmin, pi, ...)
- Arithmetic, relational and logic operations
- Comments and punctuation (the semicolon shorthand)
- Math functions (help elfun)

Arrays and matrices

- Array construction
 - Manual construction
 - The 1:n shorthand
 - The linspace command
- Matrix construction
 - Manual construction
 - Concatenating arrays and matrices
- Array and Matrix indexing (the colon shorthand)
- Array and matrix operations
 - Matrix and element-by-element operations
- Standard arrays and matrices (eye, ones and zeros)
- Array and matrix size (size and length)
- Character strings (help strfun)
 - String generation
 - The str2mat function

M-files

- Script files
- Function files

Flow control

- if..else..end construct
- for construct
- while construct
- switch..case construct

I/O (help iofun)

- Console I/O
 - The fprintf and sprintf commands
 - the input command
- File I/O
 - load and save commands
 - The fopen, fclose, fprintf and fscanf commands

2D Graphics (help graph2d)

- The plot command
- Customizing plots
 - Line styles, markers and colors
 - Grids, axes and labels
- Multiple plots and subplots
- Scatter-plots
- The legend and zoom commands

3D Graphics (help graph3d)

- Line plots
- Mesh plots
- image and imagesc commands
- 3D scatter plots
- the rotate3d command

Linear Algebra (help matfun)

- Sets of linear equations
- The least-squares solution ($x = A \setminus b$)
- Eigenvalue problems

Statistics and Probability

- Generation
 - Random variables
 - Gaussian distribution: N(0,1) and N(P,P)
 - Uniform distribution
 - Random vectors
 - correlated and uncorrelated variables
- Analysis
 - Max, min and mean
 - Variance and Covariance
 - Histograms