L3: Review of linear algebra and MATLAB

Vector and matrix notation
Vectors
Matrices
Vector spaces
Linear transformations
Eigenvalues and eigenvectors
MATLAB ${ }^{\circledR}$ primer

Vector and matrix notation

- A d-dimensional (column) vector x and its transpose are written as:

$$
x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{d}
\end{array}\right] \text { and } x^{T}=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{d}
\end{array}\right]
$$

- An $n \times d$ (rectangular) matrix and its transpose are written as

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 d} \\
a_{21} & a_{22} & a_{23} & & a_{2 d} \\
\vdots & & & \ddots & \\
a_{n 1} & a_{n 2} & a_{n 3} & & a_{n d}
\end{array}\right] \text { and } a^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{n 1} \\
a_{12} & a_{22} & & a_{n 2} \\
a_{13} & a_{23} & & a_{n 3} \\
\vdots & & \ddots & \\
a_{1 d} & a_{2 d} & & a_{n d}
\end{array}\right]
$$

- The product of two matrices is

$$
\begin{array}{r}
A B=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{1 d} \\
a_{21} & a_{22} & a_{23} & a_{2 d} \\
a_{m 1} & a_{m 2} & a_{m 3} & a_{m d}
\end{array}\right]\left[\begin{array}{lll}
b_{11} & b_{12} & b_{1 n} \\
b_{21} & b_{22} & b_{2 n} \\
b_{31} & b_{32} & b_{3 n} \\
b_{d 1} & b_{d 2} & b_{d n}
\end{array}\right]=\left[\begin{array}{llll}
c_{11} & c_{12} & c_{13} & c_{1 n} \\
c_{21} & c_{22} & c_{23} & c_{2 n} \\
c_{31} & c_{32} & c_{33} & c_{3 n} \\
c_{m 1} & c_{m 2} & c_{m 3} & c_{m n}
\end{array}\right] \\
\text { where } c_{i j}=\sum_{k=1}^{d} a_{i k} b_{k j}
\end{array}
$$

Vectors

- The inner product (a.k.a. dot product or scalar product) of two vectors is defined by

$$
\langle x, y\rangle=x^{T} y=y^{T} x=\sum_{k=1}^{d} x_{k} y_{k}
$$

- The magnitude of a vector is

$$
|x|=\sqrt{x^{T} x}=\left[\sum_{k=1}^{d} x_{k} x_{k}\right]^{\frac{1}{2}}
$$

- The orthogonal projection of vector y onto vector x is $\left\langle y^{T} u_{x}\right\rangle u_{x}$
- where vector u_{x} has unit magnitude and the same direction as x
- The angle between vectors x and y is

$$
\cos \theta=\frac{\langle x, y\rangle}{|x||y|}
$$

- Two vectors x and y are said to be
- orthogonal if $x^{T} y=0$
- orthonormal if $x^{T} y=0$ and $|x|=|y|=1$

- A set of vectors $x_{1}, x_{2}, \ldots, x_{n}$ are said to be linearly dependent if there exists a set of coefficients $a_{1}, a_{2}, \ldots, a_{n}$ (at least one different than zero) such that

$$
a_{1} x_{1}+a_{2} x_{2} \ldots a_{n} x_{n}=0
$$

- Alternatively, a set of vectors $x_{1}, x_{2}, \ldots, x_{n}$ are said to be linearly independent if

$$
a_{1} x_{1}+a_{2} x_{2} \ldots a_{n} x_{n}=0 \Rightarrow a_{k}=0 \forall k
$$

Matrices

- The determinant of a square matrix $A_{d \times d}$ is

$$
|A|=\sum_{k=1}^{d} a_{i k}\left|A_{i k}\right|(-1)^{k+i}
$$

- where $A_{i k}$ is the minor formed by removing the $\mathrm{i}^{\text {th }}$ row and the $\mathrm{k}^{\text {th }}$ column of A
- NOTE: the determinant of a square matrix and its transpose is the same: $|A|=\left|A^{T}\right|$
- The trace of a square matrix $A_{d \times d}$ is the sum of its diagonal elements

$$
\operatorname{tr}(A)=\sum_{k=1}^{d} a_{k k}
$$

- The rank of a matrix is the number of linearly independent rows (or columns)
- A square matrix is said to be non-singular if and only if its rank equals the number of rows (or columns)
- A non-singular matrix has a non-zero determinant
- A square matrix is said to be orthonormal if $A A^{T}=A^{T} A=I$
- For a square matrix A
- if $x^{T} A x>0 \quad \forall x \neq 0$, then A is said to be positive-definite (i.e., the covariance matrix)
- $x^{T} A x \geq 0 \quad \forall x \neq 0$, then A is said to be positive-semi-definite
- The inverse of a square matrix A is denoted by A^{-1} and is such that

$$
A A^{-1}=A^{-1} A=I
$$

- The inverse A^{-1} of a matrix A exists if and only if A is non-singular
- The pseudo-inverse matrix A^{\dagger} is typically used whenever A^{-1} does not exist (because A is not square or A is singular)

$$
A^{\dagger}=\left[A^{T} A\right]^{-1} A^{T} \text { with } A^{\dagger} A=I \quad \text { (assuming } A^{T} A \text { is non-singular) }
$$

- Note that $\mathrm{A} A^{\dagger} \neq I$ in general

Vector spaces

- The n-dimensional space in which all the n-dimensional vectors reside is called a vector space
- A set of vectors $\left\{u_{1}, u_{2}, \ldots u_{n}\right\}$ is said to form a basis for a vector space if any arbitrary vector x can be represented by a linear combination of the $\left\{u_{i}\right\}$

$$
x=a_{1} u_{1}+a_{2} u_{2}+\cdots a_{n} u_{n}
$$

- The coefficients $\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$ are called the components of vector x with respect to the basis $\left\{u_{i}\right\}$
- In order to form a basis, it is necessary and sufficient that the $\left\{u_{i}\right\}$ vectors be linearly independent

- A basis $\left\{u_{i}\right\}$ is said to be orthogonal if $u_{i}^{T} u_{j} \begin{cases}\neq 0 & i=j \\ =0 & i \neq j\end{cases}$
- A basis $\left\{u_{i}\right\}$ is said to be orthonormal if $u_{i}^{T} u_{j} \begin{cases}=1 & i=j \\ =0 & i \neq j\end{cases}$
- As an example, the Cartesian coordinate base is an orthonormal base
- Given n linearly independent vectors $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$, we can construct an orthonormal base $\left\{\phi_{1}, \phi_{2}, \ldots \phi_{n}\right\}$ for the vector space spanned by $\left\{x_{i}\right\}$ with the Gram-Schmidt orthonormalization procedure (to be discussed in the RBF lecture)
- The distance between two points in a vector space is defined as the magnitude of the vector difference between the points

$$
d_{E}(x, y)=|x-y|=\left[\sum_{k=1}^{d}\left(x_{k}-y_{k}\right)^{2}\right]^{\frac{1}{2}}
$$

- This is also called the Euclidean distance

Linear transformations

- A linear transformation is a mapping from a vector space X^{N} onto a vector space Y^{M}, and is represented by a matrix
- Given vector $x \in X^{N}$, the corresponding vector y on Y^{M} is computed as

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{M}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & & a_{1 N} \\
a_{21} & a_{22} & & a_{2 N} \\
& & \ddots & \\
a_{M 1} & a_{M 2} & & a_{M N}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]
$$

- Notice that the dimensionality of the two spaces does not need to be the same
- For pattern recognition we typically have $M<N$ (project onto a lower-dim space)
- A linear transformation represented by a square matrix A is said to be orthonormal when $A A^{T}=A^{T} A=I$
- This implies that $A^{T}=A^{-1}$
- An orthonormal xform has the property of preserving the magnitude of the vectors

$$
|y|=\sqrt{y^{T} y}=\sqrt{(A x)^{T} A x}=\sqrt{x^{T} A^{T} A x}=\sqrt{x^{T} x}=|x|
$$

- An orthonormal matrix can be thought of as a rotation of the reference frame
- The row vectors of an orthonormal xform are a set of orthonormal basis vectors

$$
Y_{M \times 1}=\left[\begin{array}{l}
\leftarrow a_{1} \rightarrow \\
\leftarrow a_{2} \rightarrow \\
\leftarrow a_{N} \rightarrow
\end{array}\right] X_{N \times 1} \text { with } a_{i}^{T} a_{j}= \begin{cases}0 & i \neq j \\
1 & i=j\end{cases}
$$

Eigenvectors and eigenvalues

- Given a matrix $A_{N \times N}$, we say that v is an eigenvector* if there exists a scalar λ (the eigenvalue) such that

$$
A v=\lambda v
$$

- Computing the eigenvalues

$$
\begin{array}{r}
A v=\lambda v \Rightarrow(A-\lambda I) v=0 \Rightarrow\left\{\begin{array}{l}
v=0 \\
(A-\lambda I)=0
\end{array} \begin{array}{c}
\text { Trivial solution } \\
\text { Non-trivial solution }
\end{array}\right. \\
(A-\lambda I)=0 \Rightarrow|A-\lambda I|=0 \Rightarrow \underbrace{\lambda^{N}+a_{1} \lambda^{N-1}+a_{2} \lambda^{N-2}++a_{N-1} \lambda+a_{0}=0}
\end{array}
$$

Characteristic equation

- The matrix formed by the column eigenvectors is called the modal matrix M
- Matrix Λ is the canonical form of A : a diagonal matrix with eigenvalues on the main diagonal

$$
M=\left[\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
v_{1} & v_{2} & v_{N} \\
\downarrow & \downarrow & \downarrow
\end{array}\right] \Lambda=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & & \\
& & & \lambda_{N}
\end{array}\right]
$$

- Properties
- If A is non-singular, all eigenvalues are non-zero
- If A is real and symmetric, all eigenvalues are real
- The eigenvectors associated with distinct eigenvalues are orthogonal
- If A is positive definite, all eigenvalues are positive

Interpretation of eigenvectors and eigenvalues

- If we view matrix A as a linear transformation, an eigenvector represents an invariant direction in vector space
- When transformed by A, any point lying on the direction defined by v will remain on that direction, and its magnitude will be multiplied by λ

- For example, the transform that rotates 3-d vectors about the Z axis has vector [0 001 1] as its only eigenvector and $\lambda=1$ as its eigenvalue

- Given the covariance matrix Σ of a Gaussian distribution
- The eigenvectors of Σ are the principal directions of the distribution
- The eigenvalues are the variances of the corresponding principal directions
- The linear transformation defined by the eigenvectors of Σ leads to vectors that are uncorrelated regardless of the form of the distribution
- If the distribution happens to be Gaussian, then the transformed vectors will be

MATLAB primer

The MATLAB environment

- Starting and exiting MATLAB
- Directory path
- \quad The startup.m file
- The help command
- The toolboxes

Basic features (help general)

- Variables
- Special variables (i, NaN , eps, realmax, realmin, pi, \ldots...)
- Arithmetic, relational and logic operations
- Comments and punctuation (the semicolon shorthand)
- Math functions (help elfun)

Arrays and matrices

- Array construction
- Manual construction
- The 1:n shorthand
- The linspace command
- Matrix construction
- Manual construction
- Concatenating arrays and matrices
- Array and Matrix indexing (the colon shorthand)
- Array and matrix operations
- Matrix and element-by-element operations
- \quad Standard arrays and matrices (eye, ones and zeros)
- Array and matrix size (size and length)
- Character strings (help strfun)
- String generation
- The str2mat function

M-files

- Script files
- Function files

Flow control

- if..else..end construct
- for construct
- while construct
- switch..case construct

I/O (help iofun)

- Console I/O
- The fprintf and sprintf commands
- the input command
- File I/O
- load and save commands
- The fopen, fclose, fprintf and fscanf commands

2D Graphics (help graph2d)

- The plot command
- Customizing plots
- Line styles, markers and colors
- Grids, axes and labels
- Multiple plots and subplots
- Scatter-plots
- The legend and zoom commands

3D Graphics (help graph3d)

- Line plots
- Mesh plots
- image and imagesc commands
- 3D scatter plots
- the rotate3d command

Linear Algebra (help matfun)

- \quad Sets of linear equations
- The least-squares solution $(x=A \backslash b)$
- Eigenvalue problems

Statistics and Probability

- Generation
- Random variables
- Gaussian distribution: $N(0,1)$ and $N($ (0, $[$ [$)$
- Uniform distribution
- Random vectors
- correlated and uncorrelated variables
- Analysis
- Max, min and mean
- Variance and Covariance
- Histograms

