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L29: Fourier analysis 

• Introduction 

• The discrete Fourier Transform (DFT) 

• The DFT matrix 

• The Fast Fourier Transform (FFT) 

• The Short-time Fourier Transform (STFT) 

• Fourier Descriptors  
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Introduction 

• Similarity between time series 
– Suppose that you are to determine whether two time series 𝑥(𝑘) and 
𝑦(𝑘) are similar 

 

 

 

 

 
– One measure of alignment is the inner product of the two signals 

𝑥, 𝑦 = 𝑥 𝑘 𝑦 𝑘

𝑘

 

• If the inner product is large, then the two signals are very much in in 
alignment 

• If the inner product is zero, the two signals are orthogonal  

 

 

x(k) 

y(k) 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 3 

– The Euclidean distance is another measure of (dis)similarity 
𝑥 − 𝑦 2 = 𝑥 2 − 2 𝑥, 𝑦 + 𝑦 2 

• Note that, if we assume that the two signals have unit norm 

𝑥 2 = 𝑦 2 = 1 

• then the Euclidean distance and the inner product are equivalent  

– Small distance ⇔ large inner product 

– Large distance ⇔ small inner product 

• For this reason, we will use the inner product for the rest of this lecture 
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• Example 
– Assume the following time series 

𝑥 = …1,1, −1,−1,1,1 − 1,−1,1,1 − 1,−1,…  
𝑦 = …1,−1,1, −1,1, −1,1, −1,1, −1,1, −1,…  

– Compute their inner product   

• What can you say about their degree of similarity? 

– How about the degree of similarity with the signal 𝑧 below? 
𝑧 = … , 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, …  
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– Since all inner products are zero, the three signals (x,y,z) are 
orthogonal, and therefore independent 

– Thus, linear combinations of these signals defines a subspace with 
three dimensions 

𝑢 = 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 

 

 

 

 

 

 

 

 

 

 

x 

y 

z 

u 

v 

a1 

a2 

a3 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 6 

– Likewise, two sine waves (shown below) are orthogonal whenever 
their frequencies are different (𝑓1 ≠ 𝑓2) 

𝑥 𝑡 = sin 2𝜋𝑓1𝑡  
𝑦 𝑡 = sin 2𝜋𝑓2𝑡  

– As we will see, a family of sine functions (for all possible frequencies 
𝑓𝑖) is at the core of Fourier analysis  

– Since sine waves are orthogonal, the analysis is dramatically simplified 
(e.g., a unique representation exists for every conceivable signal) 
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Cross-correlation and autocorrelation 

• Definition 
– The inner-product operator allows us to define the cross-correlation 

between two continuous signals 𝑥(𝑡) and 𝑦(𝑡) as: 

𝑅𝑥𝑦 𝜏 =  𝑥 𝑘 𝑦 𝑘 + 𝜏

∞

𝑘=−∞

 

• where 𝜏 is a shift applied to 𝑦(𝑡) 

– Or, for continuous-time signals 

𝑅𝑥𝑦 𝜏 =  𝑥 𝑡 𝑦 𝑡 + 𝜏
∞

−∞

𝑑𝑡 = 𝑥 𝑡 , 𝑦(𝑡 + 𝜏)  

– When the cross-correlation is applied to a signal and a copy of itself, it 
is called the autocorrelation 

𝑅𝑥𝑥 𝜏 =  𝑥 𝑘 𝑥 𝑘 + 𝜏

∞

𝑘=−∞
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• Example 
– Recall the two signals on slide 2 

 

 

 

 

 

– The cross correlation function reveals that one signal is very close (in 
our case identical ) to a delayed version of the other 
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• Example II 
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The Fourier Transform 

• In Fourier analysis, one represents a signal with a family of 
sinusoidal functions 
– Recall from a few slides back that sine waves of different frequencies 

are orthogonal, so this representation is unique to each signal 

– Fourier analysis transforms the signal from a “time-domain” 
representation 𝑥(𝑡) into a “frequency-domain” representation 𝑋(𝑓) 

– The collection of values of 𝑋(𝑓) at each and every frequency 𝑓 is 
called the spectrum of 𝑥(𝑡) 

• Mathematically, the Fourier Transform is defined as 

𝑋 𝑓 =  𝑥 𝑡 𝑒−𝑗2𝜋ft𝑑𝑡 = 𝑥 𝑡 , 𝑒𝑗2𝜋ft
∞

−∞

 

– which you can recognize as the inner product between our signal 
𝑥(𝑡) and the complex sine wave 𝑒𝑗2𝜋ft 

• Recall Euler’s formula 𝑒±𝑗𝜃 = cos 𝜃 ± 𝑗 sin 𝜃  

• And the inner product of functions 𝑓 and 𝑔 being defined as 

𝑓, 𝑔 =  𝑓𝑔∗𝑑𝑡
∞

−∞
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• Interpretation of the Fourier Transform 
– The Fourier Transform 𝑋(𝑓) is defined for each and every frequency 𝑓 

• Each term in 𝑋(𝑓) represents the inner product of our signal 𝑥(𝑡) with a 
sine wave of frequency 𝑓 

• 𝑋(𝑓) is a complex number with magnitude 𝑚 and phase 𝜃 , which 
represent the sine wave that is “closest” to 𝑥(𝑡) 

• Because the sine waves are orthogonal, their magnitudes m represent the 
amount of frequency 𝑓 that is present in 𝑥(𝑡)  

– The collection of values of 𝑋(𝑓) for every frequency (each defined by a 
magnitude 𝑚 and phase 𝜃) is called the spectrum of 𝑥(𝑡) 

– The Fourier Transform is lossless and invertible, which means that the 
original signal 𝑥(𝑡) can be perfectly reconstructed from 𝑋(𝑓) 

• This reconstruction is achieved by means of the INVERSE Fourier 
transform 

𝑥 𝑡 =  𝑋 𝑓 𝑒𝑗2𝜋ft𝑑𝑓 = 𝑋 𝑓 , 𝑒−𝑗2𝜋ft
∞

−∞
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• The Fourier Transform as a sound “prism” 

[Sethares (2007). Rhythms and transforms] 
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The Discrete Fourier Transform  

• The DFT differs from the Fourier Transform in three respects 
– It applies to discrete-time sequences 𝑥[𝑘]  =  𝑥(𝑛𝑇), where 𝑇 is the 

sampling period of a continuous-time signal 𝑥(𝑡) 

– Because we operate in discrete time, the frequency representation is 
also discrete, and the transform is a summation rather than an integral 

– Finally, we work with a finite data record (i.e., we do not have access 
to the value of the signal for 𝑘 → ∞) 

• Mathematically, the DFT is defined as 

𝑋 𝑛 =  𝑥 𝑘 𝑒−
𝑗2𝜋
𝑁 𝑛𝑘

𝑁−1

𝑘=0

= 𝑥 𝑘 , 𝑒−
𝑗2𝜋
𝑁 𝑛𝑘 , 𝑛 = 0,1,2…𝑁 − 1 

– So the DFT is (again) the inner product of our signal 𝑥[𝑘] with a sine 
wave 
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Frequency vs. time resolution 
• The DFT is only defined at frequency multiples of 2𝝅/𝑁, which 

can be thought of as a “fundamental frequency” 
– NOTE: 2𝜋 radians correspond to the sampling frequency in Hz 

– Therefore, for a given window size, the frequency resolution of the DFT is 

Δ𝑓 = 𝑓𝑛 − 𝑓𝑛−1 = 𝑛
2𝜋

𝑁
− 𝑛 − 1

2𝜋

𝑁
=

2𝜋

𝑁
=

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 (𝐻𝑧)

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 #𝑠𝑎.
  

– So, the longer the recording, the better the frequency resolution 

• Why not then use long analysis windows? 
– Because longer windows reduce the  

temporal resolution of frequency events 

– Therefore, there is a trade-off between  
spectral resolution (long windows) and  
temporal resolution (shorter windows) 

– NOTE: Zero-padding can be used to increase  
the smoothness (or apparent resolution) of  
the DFT spectrum, but not its true resolution,  
which remains limited by the length of the  
original (unpadded) signal 

 
[Sethares, 2007] 
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• The DFT matrix 
– Let us denote the “fundamental frequency” signal as 

𝑊𝑁 = 𝑒−𝑗
2𝜋
𝑁 = cos 2𝜋 𝑁 − 𝑗 sin 2𝜋 𝑁  

– Then, the DFT can be expressed as 

𝑋 𝑛 =  𝑥 𝑘 𝑊𝑁
𝑘𝑛

𝑁−1

𝑘=0

 

– Or, using matrix notation, as 

𝑋 0
𝑋 1
𝑋 2

𝑋 𝑁 − 1

=

1 1 1 1 1
1 𝑊𝑁 𝑊𝑁

2 𝑊𝑁
𝑁−1

1 𝑊𝑁
2 𝑊𝑁

4 𝑊𝑁
2(𝑁−1)

1 𝑊𝑁
𝑁−1 𝑊𝑁

2(𝑁−1)
𝑊𝑁

(𝑁−1)(𝑁−1)

𝑥 0
𝑥 1
𝑥 2

𝑥 𝑁 − 1

  

– So the DFT can also be thought of as a projection of the time series 
data by means of a complex-valued matrix 
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• Symmetry of the DFT matrix 
– Note that the k-th row of the DFT matrix consist of a unitary vector 

rotating clockwise with a constant increment of 2𝜋𝑘/𝑁 

 

 

 

 

 

 

 

 

 

 

– The second and last row are complex conjugates 

– The third and second-to-last are complex conjugates… 
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• Interpretation of the DFT 
– So, expressing these rotating unitary vectors in terms of the underlying 

sine waves, we obtain 

 

 

 

 

 

 

 

 

 

 

– where the solid line represents the real part and the dashed line represent 
the imaginary part of the corresponding sine wave 

– Note how this illustration brings us back to the definition of the DFT as an 
inner product between our signal 𝑥[𝑘] and a complex sine wave 

 Illustration borrowed from http://en.wikipedia.org/wiki/DFT_matrix  
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• Example I 
– Sampling rate 𝐹𝑆 = 2𝑘𝐻𝑧  

– Signal 𝑥(𝑡) = sin (2𝜋10𝑡) 

– Recording length 1 sec 
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• Example II 
– Sampling rate 𝐹𝑆 = 2𝑘𝐻𝑧  

– Signal 𝑥(𝑡)  =  10sin (2𝜋10𝑡)  +  3sin (2𝜋100𝑡) 

– Recording length 1 sec 
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The Fast Fourier Transform 

• Definition 
– The FFT refers to any fast algorithm for computing the DFT 

– The DFT runs in 𝑂(𝑁2), whereas FFT algorithms run in 𝑂(𝑁𝑙𝑜𝑔2𝑁) 

– Several FFT algorithms exists, but the most widely used are radix-2 
algorithms, which require 𝑁 = 2𝑘 

• When the number of data points is not a power of 2, it is then just a 
matter of padding the sequence 𝑥[𝑘] with zeros 
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• What happens when the signal is not stationary? 
– As we saw a few slides back, if the DFT/FFT is applied to the entire 

signal, we will be unable to resolve the spectral changes over time 

– Instead, we can divide the signal into “chunks”, and apply the DFT/FFT 
to each one of them 

– This strategy is known as the Short-Time Fourier Transform (STFT), and 
the resulting time-frequency representation is known as a 
spectrogram 

• The SFTF preserves both temporal and spectral information 
– By adjusting the size of the “chunks”, the STFT provides a tradeoff 

between 

– Perfect temporal resolution, as given by the original signal 𝑥(𝑡) 

– Perfect spectral resolution, as obtained by the Fourier Transform 𝑋(𝑓) 
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• The SFTF is performed as follows 
– Define an analysis window size  

(e.g., 30 ms for narrowband,  
5 ms for wideband) 

– Define the amount of overlap  
between windows (e.g., 30%) 

– Define a windowing function  
(e.g., Hann, Gaussian) 

– Generate windowed segments  
(by multiplying signal with the  
windowing function) 

– Apply the FFT to each windowed  
segment 

 

 

 

[Sethares, 2007] 
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• Windowing 
– The window function serves several purposes 

• It localizes the Fourier Transform in time, by considering only a short time 
interval in the signal 

• By having a smooth shape, it minimizes the effects (e.g., high side lobes) 
of chopping the signal into pieces 

• By overlapping windows, it provides spectral continuity across time 

– The windowing functions 𝑤[𝑘 − 𝑛𝑆] must be such that, when 
overlapped, their sum is unity (or constant) 
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– The STFT is then computed as 

𝑋 𝑓𝑛, 𝑡𝑖 =  𝑥 𝑘 𝑤 𝑘 − 𝑖 𝑒−𝑗
2𝜋
𝑁 𝑛𝑘

𝑁−1

𝑘=0

= 𝑥 𝑘 ,𝑤 𝑘 − 𝑖 𝑒𝑗
2𝜋
𝑁 𝑛𝑘  

– where 𝑓𝑛 is the n-th discrete frequency, and 𝑡𝑖 is the starting time of 
the i-th analysis window 
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• Example I 
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• Example II 
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Fourier descriptors 

• Problem definition 
– Consider the object below, with contour defined in terms of the 

coordinates of N points along its periphery 

• We assume that these points are ordered (e.g., CW or CCW) 

 

 

 

 

 

 

 

– which can be represented by a complex vector u as 

𝑢 =

𝑥0 + 𝑗𝑦0
𝑥1 + 𝑗𝑦1

𝑥𝑁 + 𝑗𝑦𝑁
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– Taking the (one-dimensional) DFT of the complex vector 𝑢, we obtain 

𝑈 𝑛 = 𝐹𝐹𝑇 𝑢 =  𝑢 𝑘 𝑒−𝑗
2𝜋
𝑁 𝑛𝑘

𝑁−1

𝑘=1

 

– Properties of U(n) 

• Translation (𝑢 → 𝑢 + 𝑑) only affects the first FD (𝑈(0) → 𝑈(0) + 𝑁𝑑) 

• Scaling by a factor 𝛼 (𝑢 → 𝛼𝑢) scales all FDs accordingly (𝑈 → 𝛼𝑈)  

• Rotation by an angle 𝜃, results in a phase shift (𝑈 → 𝑒𝑗𝜃𝑈) 

• Changing the starting point by 𝑚 positions (𝑢[𝑘] → 𝑢[𝑘 + 𝑚]), also 
results in a phase shift 𝑈(𝑛) → 𝑒𝑗2𝜋𝑛𝑚/𝑁𝑈(𝑛) 
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– Hence, by ignoring 𝑈(0) and 𝑈(1), taking norms, and dividing by 
𝑈(1)  

𝑈 𝑛 =
𝑈 𝑛

𝑈 1
  𝑛 = 2,3… ,𝑁 − 1 

– The coefficients become translation-, scale-, rotation-, and start-point-
invariant  

– These are known as the Fourier Descriptors of the shape defined by u 

• However, by ignoring the phase of 𝑈(𝑛), an essential part of the contour 
is lost (e.g., two different shapes may have the same FDs) 

– Additionally, smooth versions of the original contour can be obtained 
by performing the IDFT on a subset of the coefficients 𝑈(𝑛) 

 

Original 
shape 

n=1..5 n=1..13 n=1..25 n=1..65 

[Krzyzak et al. 1988] 




