L28: kernel-based feature extraction

Kernel PCA
 Kernel LDA

Principal Components Analysis

As we saw in L9, PCA can only extract a linear projection of the data

- To do so, we first compute the covariance matrix

$$
C=\frac{1}{M} \sum_{j=1}^{M} x_{j} x_{j}^{T}
$$

- Then, we find the eigenvectors and eigenvalues

$$
C v=\lambda v
$$

- And, finally, we project onto the eigenvectors with largest eigenvalues

$$
y=\left[v_{1} v_{2} \ldots v_{D}\right] x
$$

Can the kernel trick be used to perform this operation implicitly in a higher-dimensional space?

- If so, this would be equivalent to performing non-linear PCA in the feature space

Kernel PCA

To derive kernel-PCA

- We would first project the data into the high-dim feature space F

$$
\Phi: R^{N} \rightarrow F ; x \rightarrow X
$$

- Then we would compute the covariance matrix

$$
C_{F}=\frac{1}{M} \sum_{j=1}^{M} \varphi\left(x_{j}\right) \varphi\left(x_{j}\right)^{T}
$$

- where we have assumed that the data in F is centered $E[\varphi(x)]=0$ (more on this later)
- Then we would compute the principal components by solving the eigenvalue problem

$$
C_{F} v=\lambda v
$$

- The challenge is... how do we do this implicitly?

Solution

- As we saw in the snapshot PCA lecture, the eigenvectors can be expressed as linear combinations of the training data

$$
\begin{gathered}
C_{F} V=\left(\frac{1}{M} \sum_{i=1}^{M} \varphi\left(x_{i}\right) \varphi\left(x_{i}\right)^{T}\right) V=\lambda V \Rightarrow \\
V=\left(\frac{1}{M \lambda} \sum_{i=1}^{M} \varphi\left(x_{i}\right) \varphi\left(x_{i}\right)^{T}\right) V=\sum_{i=1}^{M} \frac{\left(\varphi\left(x_{i}\right)^{T} V\right)}{M \lambda} \varphi\left(x_{i}\right)=\sum_{i=1}^{M} \alpha_{i} \varphi\left(x_{i}\right)
\end{gathered}
$$

- We then multiply by $\varphi\left(x_{k}\right)$ both sides of $\lambda V=C_{F} V$

$$
\lambda\left[\varphi\left(x_{k}\right) V\right]=\left[\varphi\left(x_{k}\right) C_{F} V\right]
$$

- which, combining with the previous expression

$$
\lambda\left[\varphi\left(x_{k}\right) \sum_{i=1}^{M} \alpha_{i} \varphi\left(x_{i}\right)\right]=\varphi\left(x_{k}\right)\left[\frac{1}{M} \sum_{j=1}^{M} \varphi\left(x_{j}\right) \varphi\left(x_{j}\right)^{T}\right]\left[\sum_{i=1}^{M} \alpha_{i} \varphi\left(x_{i}\right)\right]
$$

- and regrouping terms, yields
$\lambda \sum_{i=1}^{M} \alpha_{i} \varphi\left(x_{k}\right) \varphi\left(x_{i}\right)=\frac{1}{M} \sum_{i=1}^{M} \alpha_{i}\left(\varphi\left(x_{k}\right) \sum_{j=1}^{M} \varphi\left(x_{j}\right)\right)\left(\varphi\left(x_{j}\right) \varphi\left(x_{i}\right)\right)$
- Defining an $M \times M$ matrix K as

$$
K_{i j}:=\left(\varphi\left(x_{i}\right) \cdot \varphi\left(x_{j}\right)\right)
$$

- the previous expression becomes

$$
M \lambda K \alpha=K^{2} \alpha
$$

- which can be solved through the eigenvalue problem

$$
M \lambda \alpha=K \alpha
$$

Normalization

- To ensure that eigenvectors V are orthonormal, we then scale eigenvectors α

$$
\left(V^{k} \cdot V^{k}\right)=1 \Rightarrow\left(\sum_{i=1}^{M} \alpha_{i}^{k} \varphi\left(x_{i}\right)\right)\left(\sum_{j=1}^{M} \alpha_{j}^{k} \varphi\left(x_{j}\right)\right)=1
$$

$\sum_{i, j=1}^{M} \alpha_{i}^{k} \alpha_{j}^{k} \varphi\left(x_{i}\right) \varphi\left(x_{j}\right)=1 \Rightarrow \sum_{i, j=1}^{M} \alpha_{i}^{k} \alpha_{j}^{k} K_{i j}=1 \Rightarrow\left(\alpha^{k} K \alpha^{k}\right)=1$

- which, since α are the eigenvectors of K, yields

$$
\lambda_{k}\left(\alpha^{k} \alpha^{k}\right)=1
$$

To find the k-th principal component of a new sample \mathbf{x}

$$
\left(V^{k} \cdot \varphi(x)\right)=\left(\sum_{i=1}^{M} \alpha_{i}^{k} \varphi\left(x_{i}\right)\right) \cdot \varphi(x)=\sum_{i=1}^{M} \alpha_{i}^{k} K\left(x_{i}, x\right)
$$

- Note that, when the kernel function is the dot-product, the kernel PCA solution reduces to the snapshot PCA solution
- However, unlike in snapshot PCA, here will be unable to find the eigenvectors since they reside in the high dimensional space F

$$
V=\sum_{i=1}^{M} \alpha_{i} \varphi\left(x_{i}\right)
$$

- This implies that kernel PCA can be used for feature extraction but CANNOT be used (at least directly) for reconstruction purposes

Centering in the high-dimensional space

Earlier we assumed that the data was centered in F

$$
\tilde{\varphi}\left(x_{i}\right):=\varphi\left(x_{i}\right)-\frac{1}{M} \sum_{i=1}^{M} \varphi\left(x_{i}\right)
$$

- So the covariance matrix in this centered space is

$$
\widetilde{K}_{i j}=\left(\tilde{\varphi}\left(x_{i}\right) \cdot \tilde{\varphi}\left(x_{j}\right)\right)
$$

- And the eigenvalue problem that we need to solve is

$$
\tilde{\lambda} \tilde{\alpha}=\widetilde{K} \tilde{\alpha}
$$

- Merging the first expression into the second one

$$
\begin{gathered}
\widetilde{K}_{i j}=\left[\left(\varphi\left(x_{i}\right)-\frac{1}{M} \sum_{m=1}^{M} \varphi\left(x_{m}\right)\right)\left(\varphi\left(x_{j}\right)-\frac{1}{M} \sum_{n=1}^{M} \varphi\left(x_{n}\right)\right)\right]= \\
K_{i j}-\frac{1}{M} \sum_{m=1}^{M} 1_{i m} K_{m j}-\frac{1}{M} \sum_{n=1}^{M} 1_{i n} K_{n j}+\frac{1}{M^{2}} \sum_{m=1}^{M} 1_{i m} K_{m n} 1_{n j}= \\
{\left[K-1_{M} K-K 1_{M}+1_{M} K 1_{M}\right]_{i j}}
\end{gathered}
$$

- where $1_{i j}=1$ (for all $\left.\mathrm{i}, \mathrm{j}\right),\left(1_{M}\right)_{i j}:=1 / M$
- So the centered kernel matrix can be computed from the uncentered one

To project new test data $t_{1}, t_{2}, \ldots, t_{L}$

- First, we define two matrices

$$
\begin{gathered}
K_{i j}^{t e s t}=\left(\varphi\left(t_{i}\right) \cdot \varphi\left(x_{j}\right)\right) \\
\widetilde{K}_{i j}^{t e s t}=\left(\left(\varphi\left(t_{i}\right)-\frac{1}{M} \sum_{m=1}^{M} \varphi\left(x_{m}\right)\right) \cdot\left(\varphi\left(x_{j}\right)-\frac{1}{M} \sum_{n=1}^{M} \varphi\left(x_{n}\right)\right)\right)
\end{gathered}
$$

- Then, we express $\widetilde{K}^{\text {test }}$ in terms of $K^{\text {test }}$

$$
\widetilde{K}^{\text {test }}=K^{\text {test }}-1_{M}^{\prime} K-K^{\text {test }} 1_{M}+1_{M}^{\prime} K 1_{M}
$$

- where 1_{M}^{\prime} is an $\mathrm{L} \times \mathrm{M}$ matrix with all entries equal to $1 / \mathrm{M}$
- From here, we can then find the principal components of test data as

$$
\left(\tilde{V}^{k} \tilde{\varphi}(t)\right)=\left(\sum_{i=1}^{M} \tilde{\alpha}_{i}^{k} \tilde{\varphi}\left(x_{i}\right)\right) \tilde{\varphi}(t)=\sum_{i=1}^{M} \tilde{\alpha}_{i}^{k} \widetilde{K}\left(x_{i}, t\right)
$$

Kernel PCA example

Simple dataset with three modes, 20 samples per mode

The (linear) PCA solution

The kernel PCA solution (Gaussian Kernel)

More kernel PCA projections (out of 60)

Kernel LDA

Assume a two-class discrimination problem, with N_{1} and N_{2} examples from classes ω_{1} and ω_{2}, respectively

- From L10, and under the homoscedatic Gaussian assumption, the optimum projection v is obtained by maximizing the Rayleigh quotient

$$
J(v)=\frac{v^{T} S_{B} v}{v^{T} S_{W} v}
$$

- where

$$
\begin{gathered}
S_{W}=\sum_{i=1}^{2} \sum_{x \in \omega_{i}}\left(x-m_{i}\right)\left(x-m_{i}\right)^{T} \\
S_{B}=\left(m_{2}-m_{1}\right)\left(m_{2}-m_{1}\right)^{T} \\
m_{i}=\frac{1}{N_{i}} \sum_{j=1}^{N_{i}} x_{j}^{i}
\end{gathered}
$$

Can we solve this problem (implicitly) in a high-D kernel space F to yield a non-linear version of the Fisher's LDA?

- To do so, we would define between-class and within-class covariance matrices in kernel space F to obtain the following quotient

$$
J(v)=\frac{v^{T} S_{B}^{\Phi} v}{v^{T} S_{W}^{\Phi} v}
$$

- where now $V \in F$, and mean and covariance are defined in F as

$$
\begin{gathered}
S_{W}^{\Phi}=\sum_{i=1}^{2} \sum_{x \in \omega_{i}}\left(\varphi(x)-m_{i}^{\Phi}\right)\left(\varphi(x)-m_{i}^{\Phi}\right)^{T} \\
S_{B}^{\Phi}=\left(m_{2}^{\Phi}-m_{1}^{\Phi}\right)\left(m_{2}^{\Phi}-m_{1}^{\Phi}\right)^{T} \\
m_{i}^{\Phi}=\frac{1}{N_{i}} \sum_{j=1}^{N_{i}} \varphi\left(x_{j}^{i}\right)
\end{gathered}
$$

- As earlier, we make use of the fact that the eigenvector V can be expressed as linear combinations of the training data

$$
V=\sum_{j=1}^{N} \alpha_{j} \varphi\left(x_{j}\right)
$$

- which, when multiplied by m_{i}^{Φ}, yields

$$
\begin{gathered}
V^{T} m_{i}^{\Phi}=\left(\sum_{j=1}^{N} \alpha_{j} \varphi\left(x_{j}\right)\right)^{T}\left(\frac{1}{N_{i}} \sum_{k=1}^{N_{i}} \varphi\left(x_{k}^{i}\right)\right)= \\
\frac{1}{N_{i}} \sum_{j=1}^{N} \sum_{k=1}^{N_{i}} \alpha_{j} K\left(x_{j}, x_{k}^{i}\right)=\alpha^{T} M_{i}
\end{gathered}
$$

- where we have defined

$$
\left(M_{i}\right)_{j}:=\frac{1}{N_{i}} \sum_{k=1}^{N_{i}} K\left(x_{j}, x_{k}^{i}\right)
$$

- Merging this result with the definition of S_{B}^{Φ} yields the following expression for the numerator

$$
V^{T} S_{B}^{\Phi} V=\alpha^{T} M \alpha
$$

- where

$$
M=\left(M_{1}-M_{2}\right)\left(M_{1}-M_{2}\right)^{T}
$$

- Likewise, merging with the definition of S_{W}^{Φ} yields

$$
V^{T} S_{W}^{\Phi} V=\alpha^{T} N \alpha
$$

- where

$$
N:=\sum_{j=1}^{2} K_{j}\left(1-1_{N_{j}}\right) K_{j}^{T}
$$

- where I is a $N_{j} \times N_{j}$ identity matrix, $1_{N_{j}}$ is a $N_{j} \times N_{j}$ matrix with all entries equal to $1 / N_{j}$, and K_{j} is a $N \times N_{j}$ matrix such that

$$
\left(K_{j}\right)_{n m}:=K\left(x_{n}, x_{m}^{j}\right)
$$

- Combining these results, we obtain a new expression for the Rayleigh quotient

$$
J(\alpha)=\frac{\alpha^{T} M \alpha}{\alpha^{T} N \alpha}
$$

- which can be solved by finding the leading eigenvector of $N^{-1} M$
- And the projection of a new pattern t is given by

$$
(V \cdot \varphi(t))=\sum_{i=1}^{N} \alpha_{i} K\left(x_{i}, t\right)
$$

Regularization

- To avoid numerical ill-conditioning, one may regularize matrix N by adding a multiple of the identity matrix

$$
N=N+\mu \mathrm{I}
$$

Kernel LDA examples

Kernel LDA

LDA

Kernel LDA

