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L26: Advanced dimensionality reduction 

• The “snapshot” PCA approach 

• Oriented Principal Components Analysis 

• Non-linear dimensionality reduction (manifold learning) 
– ISOMAP 

– Locally Linear Embedding 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 2 

The “snapshot” PCA approach 
• Problem definition 

– Imagine that we have collected a small number of samples 𝑥(𝑝 (𝑝 = 1 … 𝑃) 
each of which has a very high number of features 𝐷 (e.g., high-resolution 
images or 3D scans) 

• In the conventional PCA approach, we would compute the sample covariance 
matrix as follows 

𝐶 =
1

𝑃−1
 𝑥(𝑝 − 𝜇 𝑥(𝑝 − 𝜇

𝑇𝑃
𝑝=1   

• And then try to diagonalize it! 

• This approach has two problems 

– First, the sample covariance matrix will not be full-rank, in which case direct 
inversion is not possible (we’d need to use SVD) 

– Second, 𝐶  will be very large (e.g., 400MB for 100x100 images with double 
precision) 

– However, we know that at most P eigenvectors will be non-zero…. Is there a 
better way to find these eigenvectors?  

 

 

 

 

 

[This material is based upon an unpublished manuscript by Sam Roweis,  
entitled “Finding the first few eigenvectors in a large space”] 
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• The “snapshot” trick is based on the fact that the eigenvectors are 
linear combinations of the data samples 
– Note that the eigenvectors capture the directions of variance, and there is 

no variance in directions normal to the subspace spanned by the data 

– Thus, we will seek to express the PCA decomposition in a manner that 
depends only on the number of samples P 

• Derivation 
– Assume that the data has been centered by subtraction of its mean 

– Then, the covariance matrix can be expressed as 

𝐶 =
1

𝑃−1
 𝑥(𝑝 𝑥(𝑝 𝑇𝑃

𝑝=1   

– Since the eigenvectors are linear combinations of the data, we can then 
express them as 

𝑒𝑗 =  𝛼𝑝
𝑗
𝑥(𝑝

𝑃

𝑝=1

 

• where 𝑒𝑗  denotes the 𝑗𝑡ℎ eigenvector 

– With this formulation, our goal becomes finding constants 𝛼𝑝
𝑗
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– Since 𝑒𝑗 are the eigenvectors, they satisfy the condition 
𝐶 𝑒𝑗 = 𝜆𝑗𝑒𝑗 

– Which after derivation becomes 

𝐶  𝛼𝑝
𝑗
𝑥(𝑝

𝑃

𝑝=1

= 𝜆𝑗  𝛼𝑝
𝑗
𝑥(𝑝

𝑃

𝑝=1

    ∀𝑗 

1

𝑃 − 1
 𝑥(𝑝1 𝑥(𝑝1 𝑇
𝑃

𝑝1=1

 𝛼𝑝2
𝑗

𝑥(𝑝2

𝑃

𝑝2=1

= 𝜆𝑗  𝛼𝑝3
𝑗

𝑥(𝑝3

𝑃

𝑝3=1

    ∀𝑗 

1

𝑃 − 1
  𝛼𝑝2

𝑗
𝑥(𝑝1 𝑥(𝑝1 𝑇

𝑥(𝑝2

𝑃

𝑝2=1

𝑃

𝑝1=1

= 𝜆𝑗  𝛼𝑝3
𝑗

𝑥(𝑝3

𝑃

𝑝3=1

    ∀𝑗 

– We now define matrix 𝑅, which is the sample inner product of pairs of 
samples (i.e., the covariance matrix is the sample outer product) 

𝑅𝑝1𝑝2 =
1

𝑃 − 1
𝑥(𝑝1 𝑇

𝑥(𝑝2  
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– Substituting this matrix into the previous expression yields 

  𝛼𝑝2
𝑗

𝑥(𝑝1 𝑅𝑝1𝑝2

𝑃

𝑝2=1

𝑃

𝑝1=1

= 𝜆𝑗  𝛼𝑝3
𝑗

𝑥(𝑝3

𝑃

𝑝3=1

 

– which, merging subindices 𝑝1 and 𝑝3, and moving terms to the LHS, yields 

  𝑥(𝑝1 𝛼𝑝2
𝑗

𝑅𝑝1𝑝2 − 𝜆𝑗𝛼𝑝1
𝑗

𝑃

𝑝2=1

𝑃

𝑝1=1

= 0 

– This condition can be met by finding 𝛼𝑝1
𝑗

 such that*  

𝛼𝑝2
𝑗

𝑅𝑝1𝑝2 − 𝜆𝑗𝛼𝑝1
𝑗

= 0   ∀𝑗, 𝑝1, 𝑝2 

– which can be written as 
𝑅𝛼𝑗 = 𝜆𝑗𝛼𝑗     ∀𝑗 

– Therefore, the 𝑃-dim vectors 𝛼𝑝
𝑗
 are the eigenvectors of matrix 𝑅, which can be 

found in a conventional matter since 𝑅 has size 𝑃 × 𝑃 

• Once 𝛼𝑝
𝑗
 have been found, the actual eigenvectors of the data 𝑒𝑗 are obtained by a 

weighted sum of the training samples 

𝑒𝑗 =  𝛼𝑝
𝑗
𝑥(𝑝

𝑃

𝑝=1

 
*This is one out of possibly many solutions (i.e., ways of 
expressing eigenvectors as linear combinations of the 
samples), but one that makes the problem very easy to 
solve, as we see next 
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Oriented principal components analysis 

• OPCA is a generalization of PCA that uses a generalized 
eigenvalue problem with two covariance matrices 
– The cost function maximized by OPCA is the signal-to-noise ratio 

between a pair of high-dimensional signals 𝑢 and 𝑣 

𝐽𝑂𝑃𝐶𝐴 𝑤 =
𝐸 𝑤𝑇𝑢 2

𝐸 𝑤𝑇𝑣 2
=

𝑤𝑇𝑆𝑢𝑤

𝑤𝑇𝑆𝑣𝑤
   𝑤ℎ𝑒𝑟𝑒    𝑆𝑢 = 𝐸 𝑢𝑢𝑇 ; 𝑆𝑣 = 𝐸 𝑣𝑣𝑇  

– Since 𝑆𝑢 and 𝑆𝑣 are symmetric, all the generalized eigenvectors are 
real, and can be sorted by decreasing generalized eigenvalues 

– Note that the generalized eigenvectors will NOT be orthogonal but 
instead will meet the constraint 

𝑒𝑇𝑆𝑢𝑒 = 𝑒𝑇𝑆𝑣𝑒 = 0   ∀𝑖 ≠ 𝑗 

– The term “oriented” is due to the fact that 𝑒 is similar to the ordinary 
principal direction of 𝑢, except that it is oriented towards the least 
principal direction of 𝑣 
• In other words, S𝑣 “steers” 𝑒 away from the directions of high energy in 𝑣 

• If 𝑣 is white noise, then there is no steering, and OPCA is identical to the 
PCA solution 
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OPCA: an example 
• Consider the problem of speech/speaker recognition 

– Short-time speech signals are typically represented by a feature vector 𝑥, 
which capture some of its stationary spectral properties (e.g, LPC, 
cepstrum) 

– Assume that we have data from two speakers (s1, s2) uttering two 
different phonemes (p1, p2), as illustrated below 
 
 
 
 
 
 
 
 
 

– We are interested in finding projection vectors 𝑤 of the feature vector 
that maximizes the signal to noise ratio, signal being linguistic information 
(LI) and noise being speaker information (SI) 

𝑆𝑁𝑅 =
𝐿𝐼

𝑆𝐼
 

 

Phoneme 1 Phoneme 2 

Speaker 1 

Speaker 2 

xs1 

xs2 xp1 xp2 

[Malayath et al., 1997] 
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– We then extract feature vectors 𝑥𝑝1 and 𝑥𝑝2 from the same speaker 
but different phonemes; the difference between these two vectors will 
only contain linguistic information 

𝑢 = 𝑥𝑝1 − 𝑥𝑝2 

– We also extract feature vectors 𝑥𝑠1 and 𝑥𝑠2 from the same phoneme 
but different speakers; the difference between these two vectors will 
only contain speaker information 

𝑣 = 𝑥𝑠1 − 𝑥𝑠2 

– We define the signal and noise covariance matrices as 
𝑆𝑢 = 𝐸 𝑢 − 𝑢 𝑢 − 𝑢 𝑇  
𝑆𝑣 = 𝐸 𝑣 − 𝑣 𝑣 − 𝑣 𝑇  

– And the SNR becomes 

𝑆𝑁𝑅 =
𝐿𝐼

𝑆𝐼
=

𝐸 𝑢𝑇𝑤 2

𝐸 𝑣𝑇𝑤 2
=

𝑤𝑇𝑆𝑢𝑤

𝑤𝑇𝑆𝑣𝑤
 

– Thus, the projection vectors 𝑤 that maximize the SNR are derived 
using an OPCA formulation 
• These vectors will span a speaker-independent subspace 
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Non-linear dimensionality reduction 

• PCA, LDA and their variants perform a global transformation 
of the data (rotation/translation/rescaling) 
– These techniques assume that most of the information in the data is 

contained in a linear subspace 

– What do we do when the data is actually embedded in a non-linear 
subspace (i.e., a low-dimensional manifold)? 

 

From http://www.cs.unc.edu/Courses/comp290-090-s06 

PCA 

http://www.cs.unc.edu/Courses/comp290-090-s06
http://www.cs.unc.edu/Courses/comp290-090-s06
http://www.cs.unc.edu/Courses/comp290-090-s06
http://www.cs.unc.edu/Courses/comp290-090-s06
http://www.cs.unc.edu/Courses/comp290-090-s06
http://www.cs.unc.edu/Courses/comp290-090-s06
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• One possible solution (ISOMAP) 
– To find the embedding manifold, find a transformation that preserves 

the geodesic distances between points in the high-dimensional space 

• This approach is related to multidimensional scaling (e.g., Sammon’s 
mapping; L10), except for MDS seeks to preserve the Euclidean distance in 
the high-dimensional space 

– The issue is how to compute geodesic distances from sample data 

 
Small 

Euclidean 
distance 

Large 
geodesic 
distance 
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ISOMAP 
• ISOMAP [Tenenbaum et al., 2000] is based on two simple ideas 

– For neighboring samples, Euclidean distance provides a good approximation to 
geodesic distance 

– For distant points, geodesic distance can be approximated with a sequence of 
steps between clusters of neighboring points 

• ISOMAP operates in three steps 

– Find nearest neighbors to each sample 

– Find shortest paths (e.g., Dijkstra) 

– Apply MDS 

 

 

 

 

 

[Tenenbaum et al., 1997] 
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• STEP 1 
– Determine which points are neighbors in the manifold, based on the 

distances 𝑑𝑋(𝑖, 𝑗) in the input space 𝑋 

– This can be performed in two different ways 

• Connect each point to all points within a fixed radius 𝜖 

• Connect each point to all of its K nearest neighbors 

– These neighborhood relations are represented as a weighted graph G, 
each edge of weight 𝑑𝑋(𝑖, 𝑗) between neighboring points 

– Result: 

 

 

 

This discussion is borrowed from [Tenenbaum et al., 1997] 
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• STEP 2 
– Estimate the geodesic distances 𝑑𝑀(𝑖, 𝑗) between all pair of points on the manifold 

𝑀 by computing their shortest path distances 𝑑𝐺(𝑖, 𝑗) in the graph G 

– This can be performed, e.g., using Dijkstra’s algorithm 

• STEP 3 
– Find 𝑑-dim embedding 𝑌 that best preserves the manifold’s estimated distances  

• In other words, apply classical MDS to the matrix of graph distances 𝐷𝐺 = {𝑑𝐺(𝑖, 𝑗)} 

– The coordinate vectors 𝑦𝑖 are chosen to minimize the following cost function 
𝐸 = 𝜏 𝐷𝐺 − 𝜏 𝐷𝑌 𝐿2 

– where 𝐷𝑌 denotes the matrix of Euclidean distances 𝑑𝑌(𝑖, 𝑗) = 𝑦𝑖 − 𝑦𝑗 , and 
operator 𝜏 converts distances to inner products 

𝜏 = −𝐻𝑆𝐻/2 

– where 𝑆 is the matrix of squared distances 𝑆𝑖𝑗 = 𝐷𝑖𝑗
2 , and 𝐻 is a centering matrix, 

defined as 

𝐻 = 𝐼 −
1

𝑁
𝑒𝑒𝑇;    𝑒 = 111 … 1 𝑇 

– It can be shown that the global minimum of 𝐸 is obtained by setting the 
coordinates 𝑦𝑖 to the top 𝑑 eigenvectors of the matrix 𝜏(𝐷𝐺) 
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(1) Construct neighborhood graph 

 (a) Define graph 𝐺 by connecting points 𝑖 and 𝑗 if they are [as measured by 𝑑𝑋 𝑖, 𝑗 ]  

  closer than epsilon (epsilon -Isomap), or  
 if i is one of the K nearest neighbors of j (K-Isomap). 

 (b) Set edge lengths equal to 𝑑𝑋 𝑖, 𝑗  

(2)  Compute shortest paths 

 (a) Initialize  

  𝑑𝐺 𝑖, 𝑗 = 𝑑𝑋 𝑖, 𝑗  if 𝑖, 𝑗 are linked by an edge;  
 𝑑𝐺 𝑖, 𝑗 = ∞ otherwise.  

 (b) For 𝑘 =  1, 2 … 𝑁, replace all entries 𝑑𝐺 𝑖, 𝑗  by min 𝑑𝐺 𝑖, 𝑗 , 𝑑𝐺 𝑖, 𝑘 + 𝑑𝐺 𝑘, 𝑗  

 (c) Matrix 𝐷𝐺 = 𝑑𝐺 𝑖, 𝑗  will contain the shortest path distances between all pairs of points in 𝐺 

(3) Construct d-dimensional embedding 

 (a) Let 𝜆𝑝 be the 𝑝𝑡ℎ  eigenvalue (in decreasing order) of matrix 𝜏 𝐷𝐺 , and 𝑣𝑝
𝑖  be the 𝑖𝑡ℎ component of 

the 𝑝𝑡ℎ  eigenvector 

 (b) Set the 𝑝𝑡ℎ  component of the d-dimensional coordinate vector 𝑦𝑖  equal to 𝜆𝑝𝑣𝑝
𝑖  
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ISOMAP results 

 

[Tenenbaum et al., 1997] 
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ISOMAP discussion 
• ISOMAP is guaranteed asymptotically to recover the true dimensionality 

and geometric structure of a certain class of Euclidean manifolds 
– These are manifolds whose intrinsic geometry is that of a convex region of 

Euclidean space, but whose geometry in the high-dimensional space may be highly 
folded, twisted or curved 
• Intuitively, in 2D, these include any physical transformations one can perform on a sheet 

of paper without introducing tears, holes, or self-intersections 

– For non-Euclidean manifolds (hemispheres or tori), ISOMAP will still provide a 
globally-optimal low-dimensional representation 

• These guarantees are based on the fact that, as the number of samples 
increases, the graph distances 𝑑𝐺(𝑖, 𝑗) provide increasingly better 
approximations of the intrinsic geodesic distances 𝑑𝑀(𝑖, 𝑗)  
– However, this proof has limited application [Carreira-Perpiñán, in press] because 

• Data in high-dimensions is scarce (!) and  

• Computational complexity would preclude the use of large datasets anyway 

• Mapping 
– Note that ISOMAP does not provide a mapping function 𝑌 = 𝑓(𝑋) 

– One could however be learned from the pairs {𝑋𝑖 , 𝑌𝑖} in a supervised fashion  
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Locally Linear Embedding 

• LLE uses a different strategy than ISOMAP to recover the 
global non-linear structure 
– ISOMAP estimates pairwise geodesic distances for all points in the 

manifold 

– Instead, LLE uses only distances within locally linear neighborhoods 

• Intuition 
– Assume that the dataset consists of 𝑁 vectors 𝑥𝑖, each having 𝐷 

dimensions, sampled from an underlying manifold 

– Provided that there is sufficient data (i.e., the manifold is well 
sampled) one can expect that each point and its neighbors will lie on a 
linear patch of the manifold 

• Approach 
– LLE solves the problem in two stages 

• First, compute a linear approximation of each sample in the original space 

• Second, find the coordinates in the manifold that are consistent with the 
previous linear approximation 

 

 

 

This discussion is borrowed from [Roweis and Saul, 2000] 
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• Algorithm (part 1) 
– The local geometry of these patches is modeled by linear weights that 

reconstruct each data point as a linear combination of its neighbors 

– Reconstruction errors are measured with the L2 cost function 

𝜖 𝑊 =  𝑋𝑖 −  𝑊𝑖𝑗𝑋𝑗

𝑗

2𝑁

𝑖=1

 

• where weights 𝑊𝑖𝑗 measure the contribution of the 𝑗𝑡ℎ example to the 

reconstruction of the 𝑖𝑡ℎ example 

– Weights 𝑊𝑖𝑗 are minimized subject to two constraints 

• Each data point is reconstructed only from its neighbors 

• Rows of the weight matrix sum up to one:  𝑊𝑖𝑗𝑗 = 1 

– These constraints ensure that, for any particular sample, the weights 
are invariant to translation, rotation or scaling 

– This problem can be solved using least-squares (details next) 
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• Algorithm (part 2) 
– Given that these weights reflect intrinsic properties of the local 

geometry, we expect that they will also be valid for local patches in the 
manifold 

– Therefore, we seek to find 𝑑-dimensional coordinates 𝑌𝑖 that minimize 
the following cost function 

Φ 𝑌 =  𝑌𝑖 −  𝑊𝑖𝑗𝑌𝑗

𝑗

2

𝑖

 

– Note that this function is similar to the previous one, except that here 
𝑊𝑖𝑗 are fixed and we solve for 𝑌𝑖 

– This minimization problem can be solved as a sparse 𝑁 × 𝑁 eigenvalue 
problem, whose bottom 𝑑 non-zero eigenvectors are the orthogonal 
coordinates of the data in the manifold (details follow) 
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LLE summary 

 

[Roweis and Saul, 2000] 
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LLE: solving for Wij 
• The linear weights 𝑊𝑖𝑗 can be solved as a constrained LS problem 

– Consider a particular sample 𝑥 with K nearest neighbors 𝜂𝑗 and reconstruction 
weights 𝑤𝑗 (that sum up to one) 

– These weights can be found in three steps: 

– STEP 1: Evaluate inner product between neighbors to compute the neighborhood 
correlation matrix 𝐶𝑗𝑘 and its inverse 𝐶−1 

𝐶𝑗𝑘 = 𝜂𝑗
𝑇𝜂𝑘  

– STEP 2: Compute Lagrange multiplier 𝜆 that enforces the constraint  𝑤𝑗 = 1𝑗  

𝜆 =
1 −  𝐶𝑗𝑘

−1 𝑥𝑇𝜂𝑘𝑗𝑘

 𝐶𝑗𝑘
−1

𝑗𝑘

 

– STEP 3: Compute the reconstruction weights as 

𝑤𝑗 =  𝐶𝑗𝑘
−1 𝑥𝑇𝜂𝑘 + 𝜆

𝑘

 

• NOTE: If 𝐶 is singular, regularize by adding a small multiple of the identity matrix 

– Since this 3-step process requires matrix inversion, a more efficient solution is to 
• First, solve the linear system of equations  𝐶𝑗𝑘𝑤𝑘 = 1𝑗 , and  

• Then, rescale the weights so they sum up to one (which yields the same results) 

 
[Roweis and Saul, 2000; Saul and Roweis, 2001] 
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LLE: solving for Yi 
• The embedding vectors 𝑌𝑖 are found by minimizing the cost function 

Φ 𝑌 =  𝑌𝑖 −  𝑊𝑖𝑗𝑌𝑗

𝑗

2

𝑖

 

– To make the optimization problem well-posed we introduce two constraints 
• Since coordinates 𝑌𝑖  can be translated without affecting the cost function, we remove 

this degree of freedom by imposing that they are centered 

 𝑌𝑗 = 0

𝑗

 

– To avoid degenerate solutions, we constraint the embedding vectors to have unit 
covariance matrix 

1

𝑁
 𝑌𝑖𝑌𝑖

𝑇 = 𝐼

𝑖

 

– This allows the cost function to be expressed in a quadratic form involving inner 
products of the embedding vectors 

Φ 𝑌 =  𝑀𝑖𝑗 𝑌𝑖
𝑇𝑌𝑗

𝑖𝑗

 

– where  

𝑀𝑖𝑗 = 𝛿𝑖𝑗 − 𝑊𝑖𝑗 − 𝑊𝑗𝑖 +  𝑊𝑘𝑖𝑊𝑘𝑗

𝑘
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• It can be shown that the optimal embedding is found by 
computing the bottom 𝑑 + 1 eigenvectors of matrix 𝑀 
– We discard the bottom eigenvector, which is the unit vector  

• This eigenvector represents a free translation mode with eigenvalue zero  

• Discarding this eigenvector enforces the constraint that the embedding 
coordinates have zero mean 

– The remaining 𝑑 eigenvectors form the 𝑑 embedding coordinates 
found by LLE 
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LLE examples  

 

[Roweis and Saul, 2000] 
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[Roweis and Saul, 2000] 
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LLE discussion 

• LLE is simple and attractive, but shares some of the 
limitations of MDS methods 
– Sensitivity to noise 

– Sensitivity to non-uniform sampling of the manifold 

– Does not provide a mapping (though one can be learned in a 
supervised fashion from the pairs {𝑋𝑖 , 𝑌𝑖} 

– Quadratic complexity on the training set size 

– Unlike ISOMAP, no robust method to compute the intrinsic 
dimensionality, and 

– No robust method to define the neighborhood size K 

 




