L26: Advanced dimensionality reduction

The "snapshot" PCA approach
Oriented Principal Components Analysis
Non-linear dimensionality reduction (manifold learning)

- ISOMAP
- Locally Linear Embedding

The "snapshot" PCA approach

Problem definition

- Imagine that we have collected a small number of samples $x^{(p}(p=1 \ldots P)$ each of which has a very high number of features D (e.g., high-resolution images or 3D scans)
- In the conventional PCA approach, we would compute the sample covariance matrix as follows

$$
\hat{C}=\frac{1}{P-1} \sum_{p=1}^{P}\left(x^{(p}-\mu\right)\left(x^{(p}-\mu\right)^{T}
$$

- And then try to diagonalize it!

This approach has two problems

- First, the sample covariance matrix will not be full-rank, in which case direct inversion is not possible (we'd need to use SVD)
- Second, \hat{C} will be very large (e.g., 400MB for 100×100 images with double precision)
- However, we know that at most P eigenvectors will be non-zero.... Is there a better way to find these eigenvectors?
[This material is based upon an unpublished manuscript by Sam Roweis, entitled "Finding the first few eigenvectors in a large space"]

The "snapshot" trick is based on the fact that the eigenvectors are linear combinations of the data samples

- Note that the eigenvectors capture the directions of variance, and there is no variance in directions normal to the subspace spanned by the data
- Thus, we will seek to express the PCA decomposition in a manner that depends only on the number of samples P

Derivation

- Assume that the data has been centered by subtraction of its mean
- Then, the covariance matrix can be expressed as

$$
\hat{C}=\frac{1}{P-1} \sum_{p=1}^{P}\left(x^{(p}\right)\left(x^{(p}\right)^{T}
$$

- Since the eigenvectors are linear combinations of the data, we can then express them as

$$
e^{j}=\sum_{p=1}^{P} \alpha_{p}^{j} x^{(p}
$$

- where e^{j} denotes the $j^{\text {th }}$ eigenvector
- With this formulation, our goal becomes finding constants α_{p}^{j}
- Since e^{j} are the eigenvectors, they satisfy the condition

$$
\hat{C} e^{j}=\lambda^{j} e^{j}
$$

- Which after derivation becomes

$$
\begin{gathered}
\hat{C} \sum_{p=1}^{P} \alpha_{p}^{j} x^{(p}=\lambda^{j} \sum_{p=1}^{P} \alpha_{p}^{j} x^{(p} \quad \forall j \\
\left(\frac{1}{P-1} \sum_{p 1=1}^{P}\left(x^{(p 1}\right)\left(x^{(p 1}\right)^{T}\right)\left(\sum_{p 2=1}^{P} \alpha_{p 2}^{j} x^{(p 2}\right)=\lambda^{j} \sum_{p 3=1}^{P} \alpha_{p 3}^{j} x^{(p 3} \quad \forall j \\
\frac{1}{P-1} \sum_{p 1=1}^{P} \sum_{p 2=1}^{P} \alpha_{p 2}^{j}\left(x^{(p 1)}\right)\left(x^{(p 1}\right)^{T} x^{(p 2}=\lambda^{j} \sum_{p 3=1}^{P} \alpha_{p 3}^{j} x^{(p 3} \quad \forall j
\end{gathered}
$$

- We now define matrix R, which is the sample inner product of pairs of samples (i.e., the covariance matrix is the sample outer product)

$$
R_{p 1 p 2}=\frac{1}{P-1}\left(x^{(p 1}\right)^{T}\left(x^{(p 2}\right)
$$

- Substituting this matrix into the previous expression yields

$$
\sum_{p 1=1}^{P} \sum_{p 2=1}^{P} \alpha_{p 2}^{j}\left(x^{(p 1}\right) R_{p 1 p 2}=\lambda^{j} \sum_{p 3=1}^{P} \alpha_{p 3}^{j} x^{(p 3}
$$

- which, merging subindices $p 1$ and $p 3$, and moving terms to the LHS, yields

$$
\sum_{p 1=1}^{P} \sum_{p 2=1}^{P} x^{(p 1}\left(\alpha_{p 2}^{j} R_{p 1 p 2}-\lambda^{j} \alpha_{p 1}^{j}\right)=0
$$

- This condition can be met by finding $\alpha_{p 1}^{j}$ such that*

$$
\left(\alpha_{p 2}^{j} R_{p 1 p 2}-\lambda^{j} \alpha_{p 1}^{j}\right)=0 \quad \forall j, p 1, p 2
$$

- which can be written as

$$
R \alpha^{j}=\lambda^{j} \alpha^{j} \quad \forall j
$$

- Therefore, the P-dim vectors α_{p}^{j} are the eigenvectors of matrix R, which can be found in a conventional matter since R has size $P \times P$
- Once α_{p}^{j} have been found, the actual eigenvectors of the data e^{j} are obtained by a weighted sum of the training samples

$$
e^{j}=\sum_{p=1}^{P} \alpha_{p}^{j} x^{(p}
$$

Oriented principal components analysis

OPCA is a generalization of PCA that uses a generalized eigenvalue problem with two covariance matrices

- The cost function maximized by OPCA is the signal-to-noise ratio between a pair of high-dimensional signals u and v

$$
J_{O P C A}(w)=\frac{E\left[w^{T} u\right]^{2}}{E\left[w^{T} v\right]^{2}}=\frac{w^{T} S_{u} w}{w^{T} S_{v} w} \quad \text { where } \quad S_{u}=E\left[u u^{T}\right] ; S_{v}=E\left[v v^{T}\right]
$$

- Since S_{u} and S_{v} are symmetric, all the generalized eigenvectors are real, and can be sorted by decreasing generalized eigenvalues
- Note that the generalized eigenvectors will NOT be orthogonal but instead will meet the constraint

$$
e^{T} S_{u} e=e^{T} S_{v} e=0 \quad \forall i \neq j
$$

- The term "oriented" is due to the fact that e is similar to the ordinary principal direction of u, except that it is oriented towards the least principal direction of v
- In other words, S_{v} "steers" e away from the directions of high energy in v
- If v is white noise, then there is no steering, and OPCA is identical to the PCA solution

OPCA: an example

Consider the problem of speech/speaker recognition

- Short-time speech signals are typically represented by a feature vector x, which capture some of its stationary spectral properties (e.g, LPC, cepstrum)
- Assume that we have data from two speakers (s1, s2) uttering two different phonemes (p1, p2), as illustrated below

- We are interested in finding projection vectors w of the feature vector that maximizes the signal to noise ratio, signal being linguistic information (LI) and noise being speaker information (SI)

$$
S N R=\frac{L I}{S I}
$$

- We then extract feature vectors $x_{p 1}$ and $x_{p 2}$ from the same speaker but different phonemes; the difference between these two vectors will only contain linguistic information

$$
u=x_{p 1}-x_{p 2}
$$

- We also extract feature vectors $x_{s 1}$ and $x_{s 2}$ from the same phoneme but different speakers; the difference between these two vectors will only contain speaker information

$$
v=x_{s 1}-x_{s 2}
$$

- We define the signal and noise covariance matrices as

$$
\begin{aligned}
S_{u} & =E\left[(u-\bar{u})(u-\bar{u})^{T}\right] \\
S_{v} & =E\left[(v-\bar{v})(v-\bar{v})^{T}\right]
\end{aligned}
$$

- And the SNR becomes

$$
S N R=\frac{L I}{S I}=\frac{E\left[u^{T} w\right]^{2}}{E\left[v^{T} w\right]^{2}}=\frac{w^{T} S_{u} w}{w^{T} S_{v} w}
$$

- Thus, the projection vectors w that maximize the SNR are derived using an OPCA formulation
- These vectors will span a speaker-independent subspace

Non-linear dimensionality reduction

PCA, LDA and their variants perform a global transformation of the data (rotation/translation/rescaling)

- These techniques assume that most of the information in the data is contained in a linear subspace
- What do we do when the data is actually embedded in a non-linear subspace (i.e., a low-dimensional manifold)?

From http://www.cs.unc.edu/Courses/comp290-090-s06

One possible solution (ISOMAP)

- To find the embedding manifold, find a transformation that preserves the geodesic distances between points in the high-dimensional space
- This approach is related to multidimensional scaling (e.g., Sammon's mapping; L10), except for MDS seeks to preserve the Euclidean distance in the high-dimensional space
- The issue is how to compute geodesic distances from sample data

ISOMAP

ISOMAP [Tenenbaum et al., 2000] is based on two simple ideas

- For neighboring samples, Euclidean distance provides a good approximation to geodesic distance
- For distant points, geodesic distance can be approximated with a sequence of steps between clusters of neighboring points

ISOMAP operates in three steps

- Find nearest neighbors to each sample
- Find shortest paths (e.g., Dijkstra)
- Apply MDS

B

C

[Tenenbaum et al., 1997]

STEP 1

- Determine which points are neighbors in the manifold, based on the distances $d_{X}(i, j)$ in the input space X
- This can be performed in two different ways
- Connect each point to all points within a fixed radius ϵ
- Connect each point to all of its K nearest neighbors
- These neighborhood relations are represented as a weighted graph G, each edge of weight $d_{X}(i, j)$ between neighboring points
- Result:

STEP 2

- Estimate the geodesic distances $d_{M}(i, j)$ between all pair of points on the manifold M by computing their shortest path distances $d_{G}(i, j)$ in the graph G
- This can be performed, e.g., using Dijkstra's algorithm

STEP 3

- Find d-dim embedding Y that best preserves the manifold's estimated distances
- In other words, apply classical MDS to the matrix of graph distances $D_{G}=\left\{d_{G}(i, j)\right\}$
- The coordinate vectors y_{i} are chosen to minimize the following cost function

$$
E=\left\|\tau\left(D_{G}\right)-\tau\left(D_{Y}\right)\right\|_{L^{2}}
$$

- where D_{Y} denotes the matrix of Euclidean distances $\left\{d_{Y}(i, j)=\left\|y_{i}-y_{j}\right\|\right\}$, and operator τ converts distances to inner products

$$
\tau=-H S H / 2
$$

- where S is the matrix of squared distances $\left\{S_{i j}=D_{i j}^{2}\right\}$, and H is a centering matrix, defined as

$$
H=I-\frac{1}{N} e e^{T} ; \quad e=[111 \ldots 1]^{T}
$$

- It can be shown that the global minimum of E is obtained by setting the coordinates y_{i} to the top d eigenvectors of the matrix $\tau\left(D_{G}\right)$

(1) Construct neighborhood graph

(a) Define graph G by connecting points i and j if they are [as measured by $d_{X}(i, j)$]
closer than epsilon (epsilon -Isomap), or if i is one of the K nearest neighbors of j (K-Isomap).
(b) Set edge lengths equal to $d_{X}(i, j)$
(2) Compute shortest paths
(a) Initialize

$$
\begin{aligned}
& d_{G}(i, j)=d_{X}(i, j) \text { if } i, j \text { are linked by an edge; } \\
& d_{G}(i, j)=\infty \text { otherwise. }
\end{aligned}
$$

(b) For $k=1,2 \ldots N$, replace all entries $d_{G}(i, j)$ by $\min \left\{d_{G}(i, j), d_{G}(i, k)+d_{G}(k, j)\right\}$
(c) Matrix $D_{G}=\left\{d_{G}(i, j)\right\}$ will contain the shortest path distances between all pairs of points in G
(3) Construct d-dimensional embedding
(a) Let λ_{p} be the $p^{t h}$ eigenvalue (in decreasing order) of matrix $\tau\left(D_{G}\right)$, and v_{p}^{i} be the $i^{\text {th }}$ component of the $p^{\text {th }}$ eigenvector
(b) Set the $p^{\text {th }}$ component of the d-dimensional coordinate vector y_{i} equal to $\sqrt{\lambda_{p}} v_{p}^{i}$

ISOMAP results

[Tenenbaum et al., 1997]

ISOMAP discussion

ISOMAP is guaranteed asymptotically to recover the true dimensionality and geometric structure of a certain class of Euclidean manifolds

- These are manifolds whose intrinsic geometry is that of a convex region of Euclidean space, but whose geometry in the high-dimensional space may be highly folded, twisted or curved
- Intuitively, in 2D, these include any physical transformations one can perform on a sheet of paper without introducing tears, holes, or self-intersections
- For non-Euclidean manifolds (hemispheres or tori), ISOMAP will still provide a globally-optimal low-dimensional representation
These guarantees are based on the fact that, as the number of samples increases, the graph distances $d_{G}(i, j)$ provide increasingly better approximations of the intrinsic geodesic distances $d_{M}(i, j)$
- However, this proof has limited application [Carreira-Perpiñán, in press] because
- Data in high-dimensions is scarce (!) and
- Computational complexity would preclude the use of large datasets anyway

Mapping

- Note that ISOMAP does not provide a mapping function $Y=f(X)$
- One could however be learned from the pairs $\left\{X_{i}, Y_{i}\right\}$ in a supervised fashion

Locally Linear Embedding

LLE uses a different strategy than ISOMAP to recover the global non-linear structure

- ISOMAP estimates pairwise geodesic distances for all points in the manifold
- Instead, LLE uses only distances within locally linear neighborhoods Intuition
- Assume that the dataset consists of N vectors x_{i}, each having D dimensions, sampled from an underlying manifold
- Provided that there is sufficient data (i.e., the manifold is well sampled) one can expect that each point and its neighbors will lie on a linear patch of the manifold

Approach

- LLE solves the problem in two stages
- First, compute a linear approximation of each sample in the original space
- Second, find the coordinates in the manifold that are consistent with the previous linear approximation

Algorithm (part 1)

- The local geometry of these patches is modeled by linear weights that reconstruct each data point as a linear combination of its neighbors
- Reconstruction errors are measured with the L2 cost function

$$
\epsilon(W)=\sum_{i=1}^{N}\left|X_{i}-\sum_{j} W_{i j} X_{j}\right|^{2}
$$

- where weights $W_{i j}$ measure the contribution of the $j^{t h}$ example to the reconstruction of the $i^{\text {th }}$ example
- Weights $W_{i j}$ are minimized subject to two constraints
- Each data point is reconstructed only from its neighbors
- Rows of the weight matrix sum up to one: $\sum_{j} W_{i j}=1$
- These constraints ensure that, for any particular sample, the weights are invariant to translation, rotation or scaling
- This problem can be solved using least-squares (details next)

Algorithm (part 2)

- Given that these weights reflect intrinsic properties of the local geometry, we expect that they will also be valid for local patches in the manifold
- Therefore, we seek to find d-dimensional coordinates Y_{i} that minimize the following cost function

$$
\Phi(Y)=\sum_{i}\left|Y_{i}-\sum_{j} W_{i j} Y_{j}\right|^{2}
$$

- Note that this function is similar to the previous one, except that here $W_{i j}$ are fixed and we solve for Y_{i}
- This minimization problem can be solved as a sparse $N \times N$ eigenvalue problem, whose bottom d non-zero eigenvectors are the orthogonal coordinates of the data in the manifold (details follow)

LLE summary

LLE: solving for W_{ij}

The linear weights $W_{i j}$ can be solved as a constrained LS problem

- Consider a particular sample x with K nearest neighbors η_{j} and reconstruction weights w_{j} (that sum up to one)
- These weights can be found in three steps:
- STEP 1: Evaluate inner product between neighbors to compute the neighborhood correlation matrix $C_{j k}$ and its inverse C^{-1}

$$
C_{j k}=\eta_{j}^{T} \eta_{k}
$$

- STEP 2: Compute Lagrange multiplier λ that enforces the constraint $\sum_{j} w_{j}=1$

$$
\lambda=\frac{1-\sum_{j k} C_{j k}^{-1}\left(x^{T} \eta_{k}\right)}{\sum_{j k} C_{j k}^{-1}}
$$

- STEP 3: Compute the reconstruction weights as

$$
w_{j}=\sum_{k} C_{j k}^{-1}\left(x^{T} \eta_{k}+\lambda\right)
$$

- NOTE: If C is singular, regularize by adding a small multiple of the identity matrix
- Since this 3-step process requires matrix inversion, a more efficient solution is to
- First, solve the linear system of equations $\sum_{j} C_{j k} w_{k}=1$, and
- Then, rescale the weights so they sum up to one (which yields the same results)

LLE: solving for Y_{i}

The embedding vectors Y_{i} are found by minimizing the cost function

$$
\Phi(Y)=\sum_{i}\left|Y_{i}-\sum_{j} W_{i j} Y_{j}\right|^{2}
$$

- To make the optimization problem well-posed we introduce two constraints
- Since coordinates Y_{i} can be translated without affecting the cost function, we remove this degree of freedom by imposing that they are centered

$$
\sum_{j} Y_{j}=0
$$

- To avoid degenerate solutions, we constraint the embedding vectors to have unit covariance matrix

$$
\frac{1}{N} \sum_{i} Y_{i} Y_{i}^{T}=I
$$

- This allows the cost function to be expressed in a quadratic form involving inner products of the embedding vectors

$$
\Phi(Y)=\sum_{i j} M_{i j}\left(Y_{i}^{T} Y_{j}\right)
$$

- where

$$
M_{i j}=\delta_{i j}-W_{i j}-W_{j i}+\sum_{k} W_{k i} W_{k j}
$$

It can be shown that the optimal embedding is found by computing the bottom $d+1$ eigenvectors of matrix M

- We discard the bottom eigenvector, which is the unit vector
- This eigenvector represents a free translation mode with eigenvalue zero
- Discarding this eigenvector enforces the constraint that the embedding coordinates have zero mean
- The remaining d eigenvectors form the d embedding coordinates found by LLE

LLE examples

[Roweis and Saul, 2000]

LLE discussion

LLE is simple and attractive, but shares some of the limitations of MDS methods

- Sensitivity to noise
- Sensitivity to non-uniform sampling of the manifold
- Does not provide a mapping (though one can be learned in a supervised fashion from the pairs $\left\{X_{i}, Y_{i}\right\}$
- Quadratic complexity on the training set size
- Unlike ISOMAP, no robust method to compute the intrinsic dimensionality, and
- No robust method to define the neighborhood size K

