L23: hidden Markov models

Discrete Markov processes
Hidden Markov models
Forward and Backward procedures
The Viterbi algorithm

Introduction

The next two lectures in the course deal with the recognition of temporal or sequential patterns

- Sequential pattern recognition is a relevant problem in several disciplines
- Human-computer interaction: Speech recognition
- Bioengineering: ECG and EEG analysis
- Robotics: mobile robot navigation
- Bioinformatics: DNA base sequence alignment

A number of approaches can be used to perform time series analysis

- Tap delay lines can be used to form a feature vector that captures the behavior of the signal during a fixed time window
- This represents a form of "short-term" memory
- This simple approach is, however, limited by the finite length of the delay line
- Feedback connections can be used to produce recurrent MLP models
- Global feedback allows the model to have "long-term" memory capabilities
- Training and using recurrent networks is, however, rather involved and outside the scope of this class (refer to [Principe et al., 2000; Haykin, 1999])
- Instead, we will focus on hidden Markov models, a statistical approach that has become the "gold standard" for time series analysis

Discrete Markov Processes

Consider a system described by the following process

- At any given time, the system can be in one of N possible states $S=\left\{S_{1}, S_{2} \ldots S_{N}\right\}$
- At regular times, the system undergoes a transition to a new state
- Transition between states can be described probabilistically

Markov property

- In general, the probability that the system is in state $q_{t}=S_{j}$ is a function of the complete history of the system
- To simplify the analysis, however, we will assume that the state of the system depends only on its immediate past

$$
P\left(q_{t}=S_{j} \mid q_{t-1}=S_{i}, q_{t-2}=S_{k} \cdots\right)=P\left(q_{t}=S_{j} \mid q_{t-1}=S_{i}\right)
$$

- This is known as a first-order Markov Process
- We will also assume that the transition probability between any two states is independent of time

$$
a_{i j}=P\left(q_{t}=S_{j} \mid q_{t-1}=S_{i}\right) \text { s.t. }\left\{\begin{array}{c}
a_{i j} \geq 0 \\
\sum_{j=1}^{N} a_{i j}=1
\end{array}\right.
$$

Example

- Consider a simple three-state Markov model of the weather
- Any given day, the weather can be described as being
- State 1: precipitation (rain or snow)
- State 2: cloudy
- State 3: sunny
- Transitions between states are described by the transition matrix

$$
A=\left\{a_{i j}\right\}=\left[\begin{array}{lll}
0.4 & 0.3 & 0.3 \\
0.2 & 0.6 & 0.2 \\
0.1 & 0.1 & 0.8
\end{array}\right]
$$

- Question

- Given that the weather on day $t=1$ is sunny, what is the probability that the weather for the next 7 days will be "sun, sun, rain, rain, sun, clouds, sun" ?
- Answer:

$$
\begin{aligned}
& P\left(S_{3}, S_{3}, S_{3}, S_{1}, S_{1}, S_{3}, S_{2}, S_{3} \mid \text { model }\right) \\
& \quad=P\left(S_{3}\right) P\left(S_{3} \mid S_{3}\right) P\left(S_{3} \mid S_{3}\right) P\left(S_{1} \mid S_{3}\right) P\left(S_{1} \mid S_{1}\right) P\left(S_{3} \mid S_{1}\right) P\left(S_{2} \mid S_{3}\right) P\left(S_{3} \mid S_{2}\right) \\
& \quad=\pi_{3} a_{33} a_{33} a_{13} a_{11} a_{31} a_{23} a_{32} \\
& \quad=1 \times 0.8 \times 0.8 \times 0.1 \times 0.4 \times 0.3 \times 0.1 \times 0.2
\end{aligned}
$$

- Question
- What is the probability that the weather stays in the same known state S_{i} for exactly T consecutive days?
- Answer:

$$
P\left(q_{t}=S_{i}, q_{t+1}=S_{i} \ldots q_{t+T}=S_{j \neq i}\right)=a_{i i}^{T-1}\left(1-a_{i i}\right)
$$

Hidden Markov models

Introduction

- The previous model assumes that each state can be uniquely associated with an observable event
- Once an observation is made, the state of the system is then trivially retrieved
- This model, however, is too restrictive to be of practical use for most realistic problems
- To make the model more flexible, we will assume that the outcomes or observations of the model are a probabilistic function of each state
- Each state can produce a number of outputs according to a unique probability distribution, and each distinct output can potentially be generated at any state
- These are known a Hidden Markov Models (HMM), because the state sequence is not directly observable, it can only be approximated from the sequence of observations produced by the system

The coin-toss problem

- To illustrate the concept of an HMM, consider the following scenario
- You are placed in a room with a curtain
- Behind the curtain there is a person performing a coin-toss experiment
- This person selects one of several coins, and tosses it: heads (H) or tails (T)
- She tells you the outcome (H,T), but not which coin was used each time
- Your goal is to build a probabilistic model that best explains a sequence of observations $O=\left\{o_{1}, o_{2}, o_{3} \ldots\right\}=\{H, T, T, H \ldots\}$
- The coins represent the states; these are hidden because you do not know which coin was tossed each time
- The outcome of each toss represents an observation
- A "likely" sequence of coins may be inferred from the observations, but this state sequence will not be unique
- If the coins are hidden, how many states should the HMM have?
- One-coin model
- In this case, we assume that the person behind the curtain only has one coin
- As a result, the Markov model is observable since there is only one state
- In fact, we may describe the system with a deterministic model where the states are the actual observations (see figure)
- In either case, the model parameter P(H) may be found from the ratio of heads and tails
- Two-coin model
- A more sophisticated HMM would be to assume that there are two coins
- Each coin (state) has its own distribution of heads and tails, to model the fact that the coins may be biased
- Transitions between the two states model the random process used by the person behind the curtain to select one of the coins

HEADS
TAILS

[Rabiner, 1989]

- The model has 4 free parameters
- Three-coin model
- In this case, the model would have three separate states
- This HMM can be interpreted in a similar fashion as the two-coin model
- The model has 9 free parameters
- Which of these models is best?
- Since the states are not observable, the best we can do is select the model that best explains the data (e.g., using a Maximum Likelihood criterion)
- Whether the observation sequence is long and rich enough to warrant a more complex model is a different story, though

The urn-ball problem

- To further illustrate the concept of an HMM, consider this scenario
- You are placed in the same room with a curtain
- Behind the curtain there are N urns, each containing a large number of balls from M different colors
- The person behind the curtain selects an urn according to an internal random process, then randomly grabs a ball from the selected urn
- He shows you the ball, and places it back in the urn
- This process is repeated over and over
- Questions
- How would you represent this experiment with an HMM? What are the states? Why are the states hidden? What are the observations?

Elements of an HMM

- An HMM is characterized by the following set of parameters
- N, the number of states in the model $S=\left\{S_{1}, S_{2} \ldots S_{N}\right\}$
- M, the number of discrete observation symbols $V=\left\{v_{1}, v_{2} \ldots v_{M}\right\}$
- $A=\left\{a_{i j}\right\}$, the state transition probability

$$
a_{i j}=P\left(q_{t+1}=S_{j} \mid q_{t}=S_{i}\right)
$$

- $B=\left\{b_{j}(k)\right\}$, the observation or emission probability distribution

$$
b_{j}(k)=P\left(o_{t}=v_{k} \mid q_{t}=S_{j}\right)
$$

- π, the initial state distribution

$$
\pi_{j}=P\left(q_{1}=S_{j}\right)
$$

- Therefore, an HMM is specified by two scalars (N and M) and three probability distributions (A, B, and π)
- In what follows, we will represent an HMM by the compact notation

$$
\lambda=(A, B, \pi)
$$

HMM generation of observation sequences

- Given a completely specified HMM $\lambda=(A, B, \pi)$, how can an observation sequence $O=\left\{o_{1}, o_{2}, o_{3}, o_{4}, \ldots\right\}$ be generated?

1. Choose an initial state S_{1} according to the initial state distribution π
2. Set $t=1$
3. Generate observation o_{t} according to the emission probability $b_{j}(k)$
4. Move to a new state S_{t+1} according to state-transition at that state $a_{i j}$
5. Set $t=t+1$ and return to 3 until $t \geq T$

- Example
- Generate an observation sequence with $T=5$ for a coin tossing experiment with three coins and the following probabilities

	$\boldsymbol{S}_{\mathbf{1}}$	$\boldsymbol{S}_{\mathbf{2}}$	$\boldsymbol{S}_{\mathbf{3}}$
$\boldsymbol{P}(\boldsymbol{H})$	0.5	0.75	0.25
$\boldsymbol{P}(\boldsymbol{T})$	0.5	0.25	0.75

The three basic HMM problems

- Problem 1: Probability Evaluation
- Given observation sequence $O=\left\{o_{1}, o_{2}, o_{3} \ldots\right\}$ and model $\lambda=\{A, B, \pi\}$, how do we efficiently compute $P(O \mid \lambda)$, the likelihood of the observation sequence given the model?
- The solution is given by the Forward and Backward procedures
- Problem 2: Optimal State Sequence
- Given observation sequence $O=\left\{o_{1}, o_{2}, o_{3} \ldots\right\}$ and model λ, how do we choose a state sequence $Q=\left\{q_{1}, q_{2}, q_{3} \ldots\right\}$ that is optimal (i.e., best explains the data)?
- The solution is provided by the Viterbi algorithm
- Problem 3: Parameter Estimation
- How do we adjust the parameters of the model $\lambda=\{A, B, \pi\}$ to maximize the likelihood $P(O \mid \lambda)$
- The solution is given by the Baum-Welch re-estimation procedure

Forward and Backward procedures

Problem 1: Probability Evaluation

- Our goal is to compute the likelihood of an observation sequence $O=\left\{o_{1}, o_{2}, o_{3} \ldots\right\}$ given a particular HMM model $\lambda=\{A, B, \pi\}$
- Computation of this probability involves enumerating every possible state sequence and evaluating the corresponding probability

$$
P(O \mid \lambda)=\sum_{\forall Q} P(O \mid Q, \lambda) P(Q \mid \lambda)
$$

- For a particular state sequence $Q=\left\{q_{1}, q_{2}, q_{3} \ldots\right\}, P(O \mid Q, \lambda)$ is

$$
P(O \mid Q, \lambda)=\prod_{t=1}^{T} P\left(o_{t} \mid q_{t}, \lambda\right)=\prod_{t=1}^{T} b_{q_{t}}\left(o_{t}\right)
$$

- The probability of the state sequence Q is

$$
P(Q \mid \lambda)=\pi_{q_{1}} a_{q_{1} q_{2}} a_{q_{2} q_{3}} \ldots a_{q_{T-1} q_{T}}
$$

- Merging these results, we obtain

$$
P(O \mid \lambda)=\sum_{q_{1}, q_{2} \ldots q_{T}} \pi_{q_{1}} b_{q_{1}}\left(o_{q_{1}}\right) a_{q_{1} q_{2}} b_{q_{2}}\left(o_{q_{2}}\right) \ldots a_{q_{T-1} q_{T}} b_{q_{T}}\left(o_{q_{T}}\right)
$$

- Computational complexity
- With N^{T} possible state sequences, this approach becomes unfeasible even for small problems... sound familiar?
- For $N=5$ and $T=100$, the order of computations is in the order of 10^{72}
- Fortunately, the computation of $P(O \mid \lambda)$ has a lattice (or trellis) structure, which lends itself to a very efficient implementation known as the Forward procedure

The Forward procedure

- Consider the following variable $\alpha_{t}(i)$ defined as

$$
\alpha_{t}(i)=P\left(o_{1}, o_{2} \ldots o_{t}, q_{t}=S_{i} \mid \lambda\right)
$$

- which represents the probability of the observation sequence up to time t AND the state S_{i} at time t, given model λ
- Computation of this variable can be efficiently performed by induction
- Initialization: $\quad \alpha_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right)$
- Induction: $\quad \alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(o_{t+1}\right) \quad\left\{\begin{array}{c}1 \leq t \leq \mathrm{T}-1 \\ 1 \leq j \leq N\end{array}\right.$
- Termination: $\quad P(O \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)$
- As a result, computation of $P(O \mid \lambda)$ can be reduced from $2 T \times N^{T}$ down to $N^{2} \times \mathrm{T}$ operations (from 10^{72} to 3000 for $N=5, T=100$)

The Backward procedure

- Analogously, consider the backward variable $\beta_{t}(i)$ defined as

$$
\beta_{t}(i)=P\left(o_{t+1}, o_{t+2} \ldots o_{T} \mid q_{t}=S_{i}, \lambda\right)
$$

- $\beta_{t}(i)$ represents the probability of the partial observation sequence from $t+1$ to the end, given state S_{i} at time t and model λ
- As before, $\beta_{t}(i)$ can be computed through induction
- Initialization: $\beta_{T}(i)=1$ (arbitrarily)
- Induction: $\quad \beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(o_{t+1}\right) \beta_{t+1}(j)\left\{\begin{array}{c}t=T-1, T-2 \ldots 1 \\ 1 \leq i \leq N\end{array}\right.$
- Similarly, this computation can be effectively performed in the order of $N^{2} \times T$ operations

The Viterbi algorithm

Problem 2: Optimal State Sequence

- Finding the optimal state sequence is more difficult problem that the estimation of $P(O \mid \lambda)$
- Part of the issue has to do with defining an optimality measure, since several criteria are possible
- Finding the states q_{t} that are individually more likely at each time t
- Finding the single best state sequence path (i.e., maximize the posterior $P(O \mid Q, \lambda)$
- The second criterion is the most widely used, and leads to the wellknown Viterbi algorithm
- However, we first optimize the first criterion as it allows us to define a variable that will be used later in the solution of Problem 3
- As in the Forward-Backward procedures, we define a variable $\gamma_{t}(i)$

$$
\gamma_{t}(i)=P\left(q_{t}=S_{i} \mid 0, \lambda\right)
$$

- which represents the probability of being in state S_{i} at time t, given the observation sequence O and model λ
- Using the definition of conditional probability, we can write
$\gamma_{t}(i)=P\left(q_{t}=S_{i} \mid O, \lambda\right)=\frac{P\left(0, q_{t}=S_{i} \mid \lambda\right)}{P(O \mid \lambda)}=\frac{P\left(O, q_{t}=S_{i} \mid \lambda\right)}{\sum_{i=1}^{N} P\left(O, q_{t}=S_{i} \mid \lambda\right)}$
- Now, the numerator of $\gamma_{t}(i)$ is equal to the product of $\alpha_{t}(i)$ and $\beta_{t}(i)$

$$
\gamma_{t}(i)=\frac{P\left(0, q_{t}=S_{i} \mid \lambda\right)}{\sum_{i=1}^{N} P\left(0, q_{t}=S_{i} \mid \lambda\right)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{i=1}^{N} \alpha_{t}(i) \beta_{t}(i)}
$$

- The individually most likely state q_{t}^{*} at each time is then

$$
q_{t}^{*}=\underset{1 \leq i \leq N}{\arg \max }\left[\gamma_{t}(i)\right] \quad \forall t=1 \ldots T
$$

- The problem with choosing the individually most likely states is that the overall state sequence may not be valid
- Consider a situation where the individually most likely states are $q_{t}=S_{i}$ and $q_{t+1}=S_{j}$, but the transition probability $a_{i j}=0$
- Instead, and to avoid this problem, it is common to look for the single best state sequence, at the expense of having sub-optimal individual states
- This is accomplished with the Viterbi algorithm

The Viterbi algorithm

- To find the single best state sequence we define yet another variable

$$
\delta_{t}(i)=\max _{q_{1} q_{2} \ldots q_{t-1}} P\left(q_{1} q_{2} \ldots q_{t}=S_{i}, o_{1} o_{2} \ldots o_{t} \mid \lambda\right)
$$

- which represents the highest probability along a single path that accounts for the first t observations and ends at state S_{i}
- By induction, $\delta_{t+1}(j)$ can be computed as

$$
\delta_{t+1}(j)=\max _{i}\left[\delta_{t}(i) a_{i j}\right] b_{j}\left(o_{t+1}\right)
$$

- To retrieve the state sequence, we also need to keep track of the state that maximizes $\delta_{t}(i)$ at each time t, which is done by constructing an array

$$
\Psi_{t+1}(j)=\underset{1 \leq i \leq N}{\arg \max }\left[\delta_{t}(i) a_{i j}\right]
$$

- $\Psi_{t+1}(j)$ is the state at time t from which a transition to state S_{j} maximizes the probability $\delta_{t+1}(j)$

- The Viterbi algorithm for finding the optimal state sequence becomes
- Initialization: $\left\{\begin{array}{cc}\delta_{1}(i)=\pi_{i} b_{i}\left(o_{1}\right) & 1 \leq i \leq N \\ \Psi_{1}(i)=0 & \text { (no previous states) }\end{array}\right.$
- Recursion:

$$
\left.\begin{array}{c}
\delta_{t}(j)=\max _{1 \leq i \leq N}\left[\delta_{t-1}(i) a_{i j}\right] b_{j}\left(o_{t}\right) \\
\Psi_{t}(j)=\underset{1 \leq i \leq N}{\arg \max }\left[\delta_{t-1}(i) a_{i j}\right]
\end{array}\right\} 2 \leq t \leq T ; 1 \leq j \leq N
$$

- Termination: $\left\{\begin{array}{c}P^{*}=\max _{1 \leq i \leq N}\left[\delta_{T}(i)\right] \\ q_{T}^{*}=\arg \max _{1 \leq i \leq N}\left[\delta_{T}(i)\right]\end{array}\right.$
- And the optimal state sequence can be retrieved by backtracking
$q_{t}^{*}=\Psi_{t+1}\left(q_{t+1}^{*}\right) t=T-1, T-2 \ldots 1$
- Notice that the Viterbi algorithm is similar to the Forward procedure, except that it uses a maximization over previous states instead of a

