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L2: Review of probability and statistics 

• Probability  

– Definition of probability 

– Axioms and properties 

– Conditional probability 

– Bayes theorem 

• Random variables 

– Definition of a random variable 

– Cumulative distribution function 

– Probability density function 

– Statistical characterization of random variables 

• Random vectors 

– Mean vector 

– Covariance matrix 

• The Gaussian random variable 
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Review of probability theory 

• Definitions (informal) 
– Probabilities are numbers assigned to events that  

indicate “how likely” it is that the event will occur  
when a random experiment is performed 

– A probability law for a random experiment is a rule  
that assigns probabilities to the events in the  
experiment 

– The sample space S of a random experiment is the  
set of all possible outcomes 

• Axioms of probability 
– Axiom I:  𝑃 𝐴𝑖 ≥ 0 

– Axiom II: 𝑃 𝑆 = 1 

– Axiom III: 𝐴𝑖 ∩ 𝐴𝑗 = ∅ ⇒ 𝑃 𝐴𝑖⋃𝐴𝑗 = 𝑃 𝐴𝑖 + 𝑃 𝐴𝑗  
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• Warm-up exercise 
– I show you three colored cards 

• One BLUE on both sides 
• One RED on both sides 
• One BLUE on one side, RED on the other 

 
 
 
 
 

– I shuffle the three cards, then pick one and show you one side only. 
The side visible to you is RED 
• Obviously, the card has to be either A or C, right? 

– I am willing to bet $1 that the other side of the card has the same 
color, and need someone in class to bet another $1 that it is the other 
color 
• On the average we will end up even, right? 
• Let’s try it! 

 

A B C 
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• More properties of probability  
 

– 𝑃 𝐴𝐶 = 1 − 𝑃 𝐴  
 

– 𝑃 𝐴 ≤ 1 
 

– 𝑃 ∅ = 0 
 

– 𝑔𝑖𝑣𝑒𝑛 𝐴1…𝐴𝑁 , 𝐴𝑖 ∩ 𝐴𝑗 = ∅,∀𝑖𝑗 ⇒ 𝑃 ⋃ 𝐴𝑘
𝑁
𝑘=1 =  𝑃 𝐴𝑘

𝑁
𝑘=1  

 

– 𝑃 𝐴1⋃𝐴2 = 𝑃 𝐴1 + 𝑃 𝐴2 − 𝑃 𝐴1 ∩ 𝐴2  
 

– 𝑃 ⋃ 𝐴𝑘
𝑁
𝑘=1 =

 𝑃 𝐴𝑘 −  𝑃 𝐴𝑗 ∩ 𝐴𝑘 +⋯+ −1 𝑁+1𝑃 𝐴1 ∩ 𝐴2 …∩ 𝐴𝑁
𝑁
𝑗<𝑘

𝑁
𝑘=1  

 

– 𝐴1 ⊂ 𝐴2 ⇒ 𝑃 𝐴1 ≤ 𝑃 𝐴2  
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• Conditional probability 
– If A and B are two events, the probability of event A when we already 

know that event B has occurred is 

𝑃 𝐴|𝐵 =
𝑃 𝐴⋂𝐵

𝑃 𝐵
   𝑖𝑓  𝑃 𝐵 > 0 

• This conditional probability P[A|B] is read: 
– the “conditional probability of A conditioned on B”, or simply  

– the “probability of A given B” 

– Interpretation 
• The new evidence “B has occurred” has the following effects  

• The original sample space S (the square) becomes B (the rightmost circle) 

• The event A becomes AB 

• P[B] simply re-normalizes the probability of events that occur jointly with B 

S S 

A AB B A AB B 
B has  

occurred 
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• Theorem of total probability 
– Let 𝐵1, 𝐵2…𝐵𝑁 be a partition of 𝑆 (mutually exclusive that add to 𝑆) 

– Any event 𝐴 can be represented as 

𝐴 = 𝐴 ∩ 𝑆 = 𝐴 ∩ 𝐵1 ∪ 𝐵2…𝐵𝑁 = 𝐴 ∩ 𝐵1 ∪ 𝐴 ∩ 𝐵2 … 𝐴 ∩ 𝐵𝑁  

– Since 𝐵1, 𝐵2…𝐵𝑁 are mutually exclusive, then 

𝑃 𝐴 = 𝑃 𝐴 ∩ 𝐵1 + 𝑃 𝐴 ∩ 𝐵2 +⋯+ 𝑃 𝐴 ∩ 𝐵𝑁  

– and, therefore 

𝑃 𝐴 = 𝑃 𝐴|𝐵1 𝑃 𝐵1 +⋯𝑃 𝐴|𝐵𝑁 𝑃 𝐵𝑁 =  𝑃 𝐴|𝐵𝑘 𝑃 𝐵𝑘
𝑁
𝑘=1   
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BN 
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• Bayes theorem 
– Assume 𝐵1, 𝐵2…𝐵𝑁  is a partition of S 

– Suppose that event 𝐴 occurs 

– What is the probability of event 𝐵𝑗? 

 

– Using the definition of conditional probability and the Theorem of 
total probability we obtain 

𝑃 𝐵𝑗|𝐴 =
𝑃 𝐴 ∩ 𝐵𝑗

𝑃 𝐴
=

𝑃 𝐴|𝐵𝑗 𝑃 𝐵𝑗

 𝑃 𝐴|𝐵𝑘 𝑃 𝐵𝑘
𝑁
𝑘=1

 

 

– This is known as Bayes Theorem or Bayes Rule, and is (one of) the 
most useful relations in probability and statistics 
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• Bayes theorem and statistical pattern recognition 
– When used for pattern classification, BT is generally expressed as 

𝑃 𝜔𝑗|𝑥 =
𝑝 𝑥|𝜔𝑗 𝑃 𝜔𝑗

 𝑝 𝑥|𝜔𝑘 𝑃 𝜔𝑘
𝑁
𝑘=1

=
𝑝 𝑥|𝜔𝑗 𝑃 𝜔𝑗

𝑝 𝑥
 

• where 𝜔𝑗 is the 𝑗-th class (e.g., phoneme) and 𝑥 is the 

feature/observation vector (e.g., vector of MFCCs)  

– A typical decision rule is to choose class 𝜔𝑗 with highest P 𝜔𝑗|𝑥  

• Intuitively, we choose the class that is more “likely” given observation 𝑥 

– Each term in the Bayes Theorem has a special name 

• 𝑃 𝜔𝑗   prior probability (of class 𝜔𝑗) 

• 𝑃 𝜔𝑗|𝑥   posterior probability (of class 𝜔𝑗 given the observation 𝑥) 

• 𝑝 𝑥|𝜔𝑗   likelihood (probability of observation 𝑥 given class 𝜔𝑗) 

• 𝑝 𝑥   normalization constant (does not affect the decision) 
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• Example 
– Consider a clinical problem where we need to decide if a patient has a 

particular medical condition on the basis of an imperfect test 

• Someone with the condition may go undetected (false-negative) 

• Someone free of the condition may yield a positive result (false-positive) 

– Nomenclature 

• The true-negative rate P(NEG|¬COND) of a test is called its SPECIFICITY 

• The true-positive rate P(POS|COND) of a test is called its SENSITIVITY 

– Problem 

• Assume a population of 10,000 with a 1% prevalence for the condition 

• Assume that we design a test with 98% specificity and 90% sensitivity 

• Assume you take the test, and the result comes out POSITIVE 

• What is the probability that you have the condition? 

– Solution 
• Fill in the joint frequency table next slide, or 

• Apply Bayes rule 
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 TEST IS 
POSITIVE 

TEST IS 
NEGATIVE 

ROW TOTAL 

HAS CONDITION 
True-positive 
P(POS|COND) 

100×0.90 

False-negative 
P(NEG|COND) 
100×(1-0.90) 

 
 

100 

FREE OF 
CONDITION 

False-positive 
P(POS|¬COND) 
9,900×(1-0.98) 

True-negative 
P(NEG|¬COND) 

9,900×0.98 

 
 

9,900 
COLUMN TOTAL 288 9,712 10,000 
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 TEST IS 
POSITIVE 

TEST IS 
NEGATIVE 

ROW TOTAL 

HAS CONDITION 
True-positive 
P(POS|COND) 

100×0.90 

False-negative 
P(NEG|COND) 
100×(1-0.90) 

 
 

100 

FREE OF 
CONDITION 

False-positive 
P(POS|¬COND) 
9,900×(1-0.98) 
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P(NEG|¬COND) 
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9,900 
COLUMN TOTAL 288 9,712 10,000 
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– Applying Bayes rule 

 
𝑃 𝑐𝑜𝑛𝑑| + = 

 

=
𝑃 +|𝑐𝑜𝑛𝑑 𝑃 𝑐𝑜𝑛𝑑

𝑃 +
= 

 

=
𝑃 +|𝑐𝑜𝑛𝑑 𝑃 𝑐𝑜𝑛𝑑

𝑃 +|𝑐𝑜𝑛𝑑 𝑃 𝑐𝑜𝑛𝑑 + 𝑃 +|¬𝑐𝑜𝑛𝑑 𝑃 ¬𝑐𝑜𝑛𝑑
= 

 

=
0.90 × 0.01

0.90 × 0.01 + 1 − 0.98 × 0.99
= 

 
= 0.3125 
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• Random variables 
– When we perform a random experiment we are usually interested in 

some measurement or numerical attribute of the outcome 
• e.g., weights in a population of subjects, execution times when 

benchmarking CPUs, shape parameters when performing ATR 

– These examples lead to the concept of random variable 
• A random variable 𝑋 is a function that assigns a real number 𝑋 𝜉  to each 

outcome 𝜉 in the sample space of a random experiment 

• 𝑋 𝜉  maps from all possible outcomes in sample space onto the real line 

– The function that assigns values to each outcome is  
fixed and deterministic, i.e., as in the rule “count the  
number of heads in three coin tosses” 
• Randomness in 𝑋 is due to the underlying randomness  

of the outcome 𝜉 of the experiment 

– Random variables can be 
• Discrete, e.g., the resulting number after rolling a dice 

• Continuous, e.g., the weight of a sampled individual 

 

 

 

 

𝝃 

𝑥 = 𝑋 𝜉  

𝑥 

 𝑆𝑥 

real line 

 𝑆 
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• Cumulative distribution function (cdf) 
– The cumulative distribution function 𝐹𝑋 𝑥   

of a random variable 𝑋 is defined as the  
probability of the event 𝑋 ≤ 𝑥  

𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥     − ∞ < 𝑥 < ∞ 

– Intuitively, 𝐹𝑋 𝑏  is the long-term proportion  
of times when 𝑋 𝜉 ≤ 𝑏 

 

– Properties of the cdf 

• 0 ≤ 𝐹𝑋 𝑥 ≤ 1 

• lim
𝑥→∞  

𝐹𝑋 𝑥 = 1 

• lim
𝑥→−∞

𝐹𝑋 𝑥 = 0 

• 𝐹𝑋 𝑎 ≤ 𝐹𝑋 𝑏  𝑖𝑓 𝑎 ≤ 𝑏 

• FX 𝑏 = lim
ℎ→0

𝐹𝑋 𝑏 + ℎ = 𝐹𝑋 𝑏
+  

 

1 2 3 4 5 6

P
(X

<
x
)

x

cdf for rolling a dice

1

5/6

4/6

3/6

2/6

1/6

P
(X

<
x
)

100 200 300 400 500 x(lb)

cdf for a person’s weight

1
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• Probability density function (pdf) 

– The probability density function 𝑓𝑋 𝑥  of a  
continuous random variable 𝑋, if it exists,  
is defined as the derivative of 𝐹𝑋 𝑥  

𝑓𝑋 𝑥 =
𝑑𝐹𝑋 𝑥

𝑑𝑥
 

– For discrete random variables, the equivalent to  
the pdf is the probability mass function 

𝑓𝑋 𝑥 =
Δ𝐹𝑋 𝑥

Δ𝑥
 

– Properties 

• 𝑓𝑋 𝑥 > 0 

• 𝑃 𝑎 < 𝑥 < 𝑏 =  𝑓𝑋 𝑥 𝑑𝑥
𝑏

𝑎
 

• 𝐹𝑋 𝑥 =  𝑓𝑋 𝑥 𝑑𝑥
𝑥

−∞
 

• 1 =  𝑓𝑋 𝑥 𝑑𝑥
∞

−∞
 

• 𝑓𝑋 𝑥|𝐴 =
𝑑

𝑑𝑥
𝐹𝑋 𝑥|𝐴    𝑤ℎ𝑒𝑟𝑒   𝐹𝑋 𝑥|𝐴 =

𝑃 𝑋<𝑥 ∩𝐴

𝑃 𝐴
   𝑖𝑓   𝑃 𝐴 > 0 

 

 

 

100 200 300 400 500

p
d

f

x(lb)

pdf for a person’s weight

1

1 2 3 4 5 6

p
m

f

x

pmf for rolling a (fair) dice

1

5/6

4/6

3/6

2/6

1/6



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 16 

 

 

• What is the probability of somebody weighting 200 lb? 
• According to the pdf, this is about 0.62  
• This number seems reasonable, right? 

 
• Now, what is the probability of somebody weighting 124.876 lb?  

• According to the pdf, this is about 0.43 
• But, intuitively, we know that the probability should be zero (or very, 

very small) 
 

• How do we explain this paradox? 
• The pdf DOES NOT define a probability, but a probability DENSITY! 
• To obtain the actual probability we must integrate the pdf in an interval 
• So we should have asked the question: what is the probability of 

somebody weighting 124.876 lb plus or minus 2 lb? 
 

1 2 3 4 5 6

p
m

f

x

pmf for rolling a (fair) dice

1

5/6

4/6

3/6

2/6

1/6

100 200 300 400 500

p
d

f

x(lb)

pdf for a person’s weight

1

• The probability mass function is a ‘true’ probability (reason why we call 
it a ‘mass’ as opposed to a ‘density’) 

• The pmf is indicating that the probability of any number when rolling a 
fair dice is the same for all numbers, and equal to 1/6, a very 
legitimate answer 

• The pmf DOES NOT need to be integrated to obtain the probability (it 
cannot be integrated in the first place) 
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• Statistical characterization of random variables 
– The cdf or the pdf are SUFFICIENT to fully characterize a r.v. 

– However, a r.v. can be PARTIALLY characterized with other measures 

– Expectation (center of mass of a density) 

𝐸 𝑋 = 𝜇 =  𝑥𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

 

– Variance (spread about the mean)  

𝑣𝑎𝑟 𝑋 = 𝜎2 = 𝐸 𝑋 − 𝐸 𝑋 2 =  𝑥 − 𝜇 2𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

 

– Standard deviation 
𝑠𝑡𝑑 𝑋 = 𝜎 = 𝑣𝑎𝑟 𝑋 1/2 

– N-th moment 

𝐸 𝑋𝑁 =  𝑥𝑁𝑓𝑋 𝑥 𝑑𝑥
∞

−∞
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• Random vectors 

– An extension of the concept of a random variable 

• A random vector 𝑋 is a function that assigns a vector of real numbers to each 
outcome 𝜉 in sample space 𝑆 

• We generally denote a random vector by a column vector 

– The notions of cdf and pdf are replaced by ‘joint cdf’ and ‘joint pdf’ 

• Given random vector 𝑋 = 𝑥1, 𝑥2…𝑥𝑁
𝑇we define the joint cdf as  

𝐹𝑋 𝑥 = 𝑃𝑋 𝑋1 ≤ 𝑥1 ∩ 𝑋2 ≤ 𝑥2 … 𝑋𝑁 ≤ 𝑥𝑁  

• and the joint pdf as 

𝑓𝑋 𝑥 =
𝜕𝑁𝐹𝑋 𝑥

𝜕𝑥1𝜕𝑥2…𝜕𝑥𝑁
 

– The term marginal pdf is used to represent the pdf of a subset of all the 
random vector dimensions 

• A marginal pdf is obtained by integrating out variables that are of no interest 

• e.g., for a 2D random vector 𝑋 = 𝑥1, 𝑥2
𝑇, the marginal pdf of 𝑥1 is  

𝑓𝑋1 𝑥1 =  𝑓𝑋1𝑋2 𝑥1𝑥2 𝑑𝑥2

𝑥2=+∞

𝑥2=−∞
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• Statistical characterization of random vectors 
– A random vector is also fully characterized by its joint cdf or joint pdf 

– Alternatively, we can (partially) describe a random vector with 
measures similar to those defined for scalar random variables 

– Mean vector 

𝐸 𝑋 = 𝜇 = 𝐸 𝑋1 , 𝐸 𝑋2 …𝐸 𝑋𝑁
𝑇
= 𝜇1, 𝜇2, … 𝜇𝑁

𝑇 

– Covariance matrix 

𝑐𝑜𝑣 𝑋 = Σ = 𝐸 𝑋 − 𝜇 𝑋 − 𝜇
𝑇
=

=
𝐸 𝑥1 − 𝜇1

2 … 𝐸 𝑥1 − 𝜇1 𝑥𝑁 − 𝜇𝑁
⋮ ⋱ ⋮

𝐸 𝑥1 − 𝜇1 𝑥𝑁 − 𝜇𝑁 … 𝐸 𝑥𝑁 − 𝜇𝑁
2

=

=
𝜎1
2 … 𝑐1𝑁
⋮ ⋱ ⋮
𝑐1𝑁 … 𝜎𝑁

2
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– The covariance matrix indicates the tendency of each pair of features 
(dimensions in a random vector) to vary together, i.e., to co-vary* 

• The covariance has several important properties 

– If 𝑥𝑖 and 𝑥𝑘 tend to increase together, then 𝑐𝑖𝑘 > 0 

– If 𝑥𝑖  tends to decrease when 𝑥𝑘 increases, then 𝑐𝑖𝑘 < 0 

– If 𝑥𝑖  and 𝑥𝑘  are uncorrelated, then 𝑐𝑖𝑘 = 0 

– 𝑐𝑖𝑘 ≤ 𝜎1𝜎𝑘, where 𝜎𝑖 is the standard deviation of 𝑥𝑖 

– 𝑐𝑖𝑖 = 𝜎𝑖
2 = 𝑣𝑎𝑟 𝑥𝑖  

• The covariance terms can be expressed as 𝑐𝑖𝑖 = 𝜎𝑖
2 and  𝑐𝑖𝑘 = 𝜌𝑖𝑘𝜎𝑖𝜎𝑘  

– where 𝜌𝑖𝑘 is called the correlation coefficient 

 

Xi

Xk

Cik=-sisk

rik=-1

Xi

Xk

Cik=-½sisk

rik=-½

Xi

Xk

Cik=0

rik=0

Xi

Xk

Cik=+½sisk

rik=+½

Xi

Xk

Cik=sisk

rik=+1
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A  numerical example 

• Given the following samples from a  
3D distribution 
– Compute the covariance matrix 

– Generate scatter plots for every pair of vars. 

– Can you observe any relationships between  
the covariance and the scatter plots? 

– You may work your solution in the templates below 
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Average                         

  Variables  
(or features) 

Examples x1 x2 x3 

1 2 2 4 

2 3 4 6 

3 5 4 2 

4 6 6 4 

x1 

x2 

x3 

x2 

x3 

x1 
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• The Normal or Gaussian distribution 
– The multivariate Normal distribution 𝑁 𝜇, Σ  is defined as 

𝑓𝑋 𝑥 =
1

2𝜋 𝑛/2 Σ 1/2
𝑒−
1
2 𝑥−𝜇

𝑇Σ−1 𝑥−𝜇  

– For a single dimension, this expression is reduced to 

𝑓𝑋 𝑥 =
1

2𝜋𝜎
𝑒
−
𝑥−𝜇 2

2𝜎2  
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– Gaussian distributions are very popular since 

• Parameters 𝜇, Σ  uniquely characterize the normal distribution 

• If all variables 𝑥𝑖 are uncorrelated 𝐸 𝑥𝑖𝑥𝑘 = 𝐸 𝑥𝑖 𝐸 𝑥𝑘 , then  

– Variables are also independent 𝑃 𝑥𝑖𝑥𝑘 = 𝑃 𝑥𝑖 𝑃 𝑥𝑘 , and  

– Σ is diagonal, with the individual variances in the main diagonal 

• Central Limit Theorem (next slide) 

• The marginal and conditional densities are also Gaussian 

• Any linear transformation of any 𝑁 jointly Gaussian rv’s results in 𝑁 rv’s 
that are also Gaussian 

– For 𝑋 = 𝑋1𝑋2…𝑋𝑁
𝑇jointly Gaussian, and 𝐴𝑁×𝑁 invertible, then 𝑌 = 𝐴𝑋 is 

also jointly Gaussian 

𝑓𝑌 𝑦 =
𝑓𝑋 𝐴

−1𝑦

𝐴
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• Central Limit Theorem 
– Given any distribution with a mean 𝜇 and variance 𝜎2, the sampling 

distribution of the mean approaches a normal distribution with mean 𝜇 
and variance 𝜎2/𝑁 as the sample size 𝑁 increases 
• No matter what the shape of the original distribution is, the sampling 

distribution of the mean approaches a normal distribution  

• 𝑁 is the sample size used to compute the mean, not the overall number of 
samples in the data 

– Example: 500 experiments are performed using a uniform distribution 

• 𝑁 = 1 
– One sample is drawn from the distribution  

and its mean is recorded (500 times) 

– The histogram resembles a uniform distribution,  
as one would expect 

• 𝑁 = 4 
– Four samples are drawn and the mean of the  

four samples is recorded (500 times)  

– The histogram starts to look more Gaussian 

• As 𝑁 grows, the shape of the histograms  
resembles a Normal distribution more closely 


