L2: Review of probability and statistics

Probability

- Definition of probability
- Axioms and properties
- Conditional probability
- Bayes theorem

Random variables

- Definition of a random variable
- Cumulative distribution function
- Probability density function
- Statistical characterization of random variables

Random vectors

- Mean vector
- Covariance matrix

The Gaussian random variable

Review of probability theory

Definitions (informal)

- Probabilities are numbers assigned to events that indicate "how likely" it is that the event will occur when a random experiment is performed
- A probability law for a random experiment is a rule that assigns probabilities to the events in the experiment
- The sample space S of a random experiment is the set of all possible outcomes

Axioms of probability

- Axiom I: $\quad P\left[A_{i}\right] \geq 0$
- Axiom II: $\quad P[S]=1$

Sample space

|
Probability
law
\downarrow

- Axiom III: $\quad A_{i} \cap A_{j}=\emptyset \Rightarrow P\left[A_{i} \cup A_{j}\right]=P\left[A_{i}\right]+P\left[A_{j}\right]$

Warm-up exercise

- I show you three colored cards
- One BLUE on both sides
- One RED on both sides
- One BLUE on one side, RED on the other

- I shuffle the three cards, then pick one and show you one side only. The side visible to you is RED
- Obviously, the card has to be either A or C, right?
- I am willing to bet $\$ 1$ that the other side of the card has the same color, and need someone in class to bet another $\$ 1$ that it is the other color
- On the average we will end up even, right?
- Let's try it!

More properties of probability

$-P\left[A^{C}\right]=1-P[A]$
$-P[A] \leq 1$
$-P[\varnothing]=0$

- given $\left\{A_{1} \ldots A_{N}\right\},\left\{A_{i} \cap A_{j}=\emptyset, \forall i j\right\} \Rightarrow P\left[\bigcup_{k=1}^{N} A_{k}\right]=\sum_{k=1}^{N} P\left[A_{k}\right]$
$-P\left[A_{1} \cup A_{2}\right]=P\left[A_{1}\right]+P\left[A_{2}\right]-P\left[A_{1} \cap A_{2}\right]$
$-P\left[\mathrm{U}_{k=1}^{N} A_{k}\right]=$
$\sum_{k=1}^{N} P\left[A_{k}\right]-\sum_{j<k}^{N} P\left[A_{j} \cap A_{k}\right]+\cdots+(-1)^{N+1} P\left[A_{1} \cap A_{2} \ldots \cap A_{N}\right]$
$-A_{1} \subset A_{2} \Rightarrow P\left[A_{1}\right] \leq P\left[A_{2}\right]$

Conditional probability

- If A and B are two events, the probability of event A when we already know that event B has occurred is

$$
P[A \mid B]=\frac{P[A \cap B]}{P[B]} \text { if } P[B]>0
$$

- This conditional probability $\mathrm{P}[\mathrm{A} \mid \mathrm{B}]$ is read:
- the "conditional probability of A conditioned on B", or simply
- the "probability of A given B"
- Interpretation
- The new evidence "B has occurred" has the following effects
- The original sample space S (the square) becomes B (the rightmost circle)
- The event A becomes $\mathrm{A} \cap \mathrm{B}$
- $P[B]$ simply re-normalizes the probability of events that occur jointly with B

Theorem of total probability

- Let $B_{1}, B_{2} \ldots B_{N}$ be a partition of S (mutually exclusive that add to S)
- Any event A can be represented as
$A=A \cap S=A \cap\left(B_{1} \cup B_{2} \ldots B_{N}\right)=\left(A \cap B_{1}\right) \cup\left(A \cap B_{2}\right) \ldots\left(A \cap B_{N}\right)$
- Since $B_{1}, B_{2} \ldots B_{N}$ are mutually exclusive, then

$$
P[A]=P\left[A \cap B_{1}\right]+P\left[A \cap B_{2}\right]+\cdots+P\left[A \cap B_{N}\right]
$$

- and, therefore
$P[A]=P\left[A \mid B_{1}\right] P\left[B_{1}\right]+\cdots P\left[A \mid B_{N}\right] P\left[B_{N}\right]=\sum_{k=1}^{N} P\left[A \mid B_{k}\right] P\left[B_{k}\right]$

Bayes theorem

- Assume $\left\{B_{1}, B_{2} \ldots B_{N}\right\}$ is a partition of S
- Suppose that event A occurs
- What is the probability of event B_{j} ?
- Using the definition of conditional probability and the Theorem of total probability we obtain

$$
P\left[B_{j} \mid A\right]=\frac{P\left[A \cap B_{j}\right]}{P[A]}=\frac{P\left[A \mid B_{j}\right] P\left[B_{j}\right]}{\sum_{k=1}^{N} P\left[A \mid B_{k}\right] P\left[B_{k}\right]}
$$

- This is known as Bayes Theorem or Bayes Rule, and is (one of) the most useful relations in probability and statistics

Bayes theorem and statistical pattern recognition

- When used for pattern classification, BT is generally expressed as

$$
P\left[\omega_{j} \mid x\right]=\frac{p\left[x \mid \omega_{j}\right] P\left[\omega_{j}\right]}{\sum_{k=1}^{N} p\left[x \mid \omega_{k}\right] P\left[\omega_{k}\right]}=\frac{p\left[x \mid \omega_{j}\right] P\left[\omega_{j}\right]}{p[x]}
$$

- where ω_{j} is the j-th class (e.g., phoneme) and x is the feature/observation vector (e.g., vector of MFCCs)
- A typical decision rule is to choose class ω_{j} with highest $\mathrm{P}\left[\omega_{j} \mid x\right]$
- Intuitively, we choose the class that is more "likely" given observation x
- Each term in the Bayes Theorem has a special name
- $P\left[\omega_{j}\right] \quad$ prior probability (of class ω_{j})
- $P\left[\omega_{j} \mid x\right]$ posterior probability (of class ω_{j} given the observation x)
- $p\left[x \mid \omega_{j}\right] \quad$ likelihood (probability of observation x given class ω_{j})
- $p[x]$ normalization constant (does not affect the decision)

Example

- Consider a clinical problem where we need to decide if a patient has a particular medical condition on the basis of an imperfect test
- Someone with the condition may go undetected (false-negative)
- Someone free of the condition may yield a positive result (false-positive)
- Nomenclature
- The true-negative rate $P(N E G \mid \neg C O N D)$ of a test is called its SPECIFICITY
- The true-positive rate $\mathrm{P}(\mathrm{POS} \mid C O N D)$ of a test is called its SENSITIVITY
- Problem
- Assume a population of 10,000 with a 1% prevalence for the condition
- Assume that we design a test with 98% specificity and 90% sensitivity
- Assume you take the test, and the result comes out POSITIVE
- What is the probability that you have the condition?
- Solution
- Fill in the joint frequency table next slide, or
- Apply Bayes rule

	TEST IS POSITIVE	TEST IS NEGATIVE	ROW TOTAL
HAS CONDITION	True-positive $P(P O S / C O N D)$	False-negative $P(N E G / C O N D)$	
FREE OF CONDITION	False-positive $P(P O S /-C O N D)$	True-negative $P(N E G /-C O N D)$	
COLUMN TOTAL			

	TEST IS POSITIVE	TEST IS NEGATIVE	ROW TOTAL
HAS CONDITION	True-positive	False-negative	
	$P(P O S / C O N D)$		
100×0.90	PEG/COND) $100 \times(1-0.90)$	100	
FREE OF	False-positive	True-negative	
CONDITION	$P(P O S /-C O N D)$	$P(N E G /-C O N D)$	
COLUMN TOTAL	$\mathbf{9 , 9 0 0 \times (1 - 0 . 9 8)}$	$9,900 \times 0.98$	9,900

- Applying Bayes rule

$$
\begin{gathered}
P[\text { cond } \mid+]= \\
=\frac{P[+\mid \text { cond }] P[\text { cond }]}{P[+]}= \\
=\frac{P[+\mid \text { cond }] P[\text { cond }]}{P[+\mid \text { cond }] P[\text { cond }]+P[+\mid \neg \text { cond }] P[\neg \text { cond }]}= \\
=\frac{0.90 \times 0.01}{0.90 \times 0.01+(1-0.98) \times 0.99}= \\
=0.3125
\end{gathered}
$$

Random variables

- When we perform a random experiment we are usually interested in some measurement or numerical attribute of the outcome
- e.g., weights in a population of subjects, execution times when benchmarking CPUs, shape parameters when performing ATR
- These examples lead to the concept of random variable
- A random variable X is a function that assigns a real number $X(\xi)$ to each outcome ξ in the sample space of a random experiment
- $X(\xi)$ maps from all possible outcomes in sample space onto the real line
- The function that assigns values to each outcome is fixed and deterministic, i.e., as in the rule "count the number of heads in three coin tosses"
- Randomness in X is due to the underlying randomness of the outcome ξ of the experiment
- Random variables can be
- Discrete, e.g., the resulting number after rolling a dice
- Continuous, e.g., the weight of a sampled individual

Cumulative distribution function (cdf)

- The cumulative distribution function $F_{X}(x)$ of a random variable X is defined as the probability of the event $\{X \leq x\}$

$$
F_{X}(x)=P[X \leq x] \quad-\infty<x<\infty
$$

- Intuitively, $F_{X}(b)$ is the long-term proportion of times when $X(\xi) \leq b$

$100 \quad 200 \quad 300 \quad 400 \quad 500$ X(lb) cdf for a person's weight
- Properties of the cdf
- $0 \leq F_{X}(x) \leq 1$
- $\lim _{x \rightarrow \infty} F_{X}(x)=1$
- $\lim _{x \rightarrow-\infty} F_{X}(x)=0$
- $F_{X}(a) \leq F_{X}(b)$ if $a \leq b$
- $\mathrm{F}_{\mathrm{X}}(b)=\lim _{h \rightarrow 0} F_{X}(b+h)=F_{X}\left(b^{+}\right)$

Probability density function (pdf)

- The probability density function $f_{X}(x)$ of a continuous random variable X, if it exists, is defined as the derivative of $F_{X}(x)$

$$
f_{X}(x)=\frac{d F_{X}(x)}{d x}
$$

- For discrete random variables, the equivalent to
 pdf for a person's weight the pdf is the probability mass function

$$
f_{X}(x)=\frac{\Delta F_{X}(x)}{\Delta x}
$$

- Properties
- $f_{X}(x)>0$
- $P[a<x<b]=\int_{a}^{b} f_{X}(x) d x$
- $F_{X}(x)=\int_{-\infty}^{x} f_{X}(x) d x$

pmf for rolling a (fair) dice
- $1=\int_{-\infty}^{\infty} f_{X}(x) d x$
- $f_{X}(x \mid A)=\frac{d}{d x} F_{X}(x \mid A)$ where $F_{X}(x \mid A)=\frac{P[\{X<x\} \cap A]}{P[A]}$ if $P[A]>0$
- What is the probability of somebody weighting $\mathbf{2 0 0} \mathbf{~ l b}$?
- According to the pdf, this is about 0.62
- This number seems reasonable, right?
- Now, what is the probability of somebody weighting 124.876 lb ?
- According to the pdf, this is about 0.43
- But, intuitively, we know that the probability should be zero (or very, very small)
- How do we explain this paradox?
- The pdf DOES NOT define a probability, but a probability DENSITY!
- To obtain the actual probability we must integrate the pdf in an interval
- So we should have asked the question: what is the probability of somebody weighting 124.876 lb plus or minus 2 lb ?

- The probability mass function is a 'true' probability (reason why we call it a 'mass' as opposed to a 'density')
- The pmf is indicating that the probability of any number when rolling a fair dice is the same for all numbers, and equal to $1 / 6$, a very legitimate answer
- The pmf DOES NOT need to be integrated to obtain the probability (it cannot be integrated in the first place)

Statistical characterization of random variables

- The cdf or the pdf are SUFFICIENT to fully characterize a r.v.
- However, a r.v. can be PARTIALLY characterized with other measures
- Expectation (center of mass of a density)

$$
E[X]=\mu=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- Variance (spread about the mean)

$$
\operatorname{var}[X]=\sigma^{2}=E\left[(X-E[X])^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f_{X}(x) d x
$$

- Standard deviation

$$
\operatorname{std}[X]=\sigma=\operatorname{var}[X]^{1 / 2}
$$

- N -th moment

$$
E\left[X^{N}\right]=\int_{-\infty}^{\infty} x^{N} f_{X}(x) d x
$$

Random vectors

- An extension of the concept of a random variable
- A random vector \underline{X} is a function that assigns a vector of real numbers to each outcome ξ in sample space S
- We generally denote a random vector by a column vector
- The notions of cdf and pdf are replaced by 'joint cdf' and 'joint pdf'
- Given random vector $\underline{X}=\left[x_{1}, x_{2} \ldots x_{N}\right]^{T}$ we define the joint cdf as

$$
F_{\underline{X}}(\underline{x})=P_{\underline{X}}\left[\left\{X_{1} \leq x_{1}\right\} \cap\left\{X_{2} \leq x_{2}\right\} \ldots\left\{X_{N} \leq x_{N}\right\}\right]
$$

- and the joint pdf as

$$
f_{\underline{X}}(\underline{x})=\frac{\partial^{N} F_{\underline{X}}(\underline{x})}{\partial x_{1} \partial x_{2} \ldots \partial x_{N}}
$$

- The term marginal pdf is used to represent the pdf of a subset of all the random vector dimensions
- A marginal pdf is obtained by integrating out variables that are of no interest
- e.g., for a 2D random vector $\underline{X}=\left[x_{1}, x_{2}\right]^{T}$, the marginal pdf of x_{1} is

$$
f_{X_{1}}\left(x_{1}\right)=\int_{x_{2}=-\infty}^{x_{2}=+\infty} f_{X_{1} X_{2}}\left(x_{1} x_{2}\right) d x_{2}
$$

Statistical characterization of random vectors

- A random vector is also fully characterized by its joint cdf or joint pdf
- Alternatively, we can (partially) describe a random vector with measures similar to those defined for scalar random variables
- Mean vector

$$
E[X]=\underline{\mu}=\left[E\left[X_{1}\right], E\left[X_{2}\right] \ldots E\left[X_{N}\right]\right]^{T}=\left[\mu_{1}, \mu_{2}, \ldots \mu_{N}\right]^{T}
$$

- Covariance matrix

$$
\begin{gathered}
\operatorname{cov}[X]=\Sigma=E\left[(\underline{X}-\underline{\mu})(\underline{X}-\underline{\mu})^{T}\right]= \\
=\left[\begin{array}{crc}
E\left[\left(x_{1}-\mu_{1}\right)^{2}\right] & \ldots & E\left[\left(x_{1}-\mu_{1}\right)\left(x_{N}-\mu_{N}\right)\right] \\
\vdots & \ddots & \vdots \\
E\left[\left(x_{1}-\mu_{1}\right)\left(x_{N}-\mu_{N}\right)\right] & \ldots & E\left[\left(x_{N}-\mu_{N}\right)^{2}\right]
\end{array}\right]= \\
=\left[\begin{array}{ccc}
\sigma_{1}^{2} & \ldots & c_{1 N} \\
\vdots & \ddots & \vdots \\
c_{1 N} & \ldots & \sigma_{N}^{2}
\end{array}\right]
\end{gathered}
$$

- The covariance matrix indicates the tendency of each pair of features (dimensions in a random vector) to vary together, i.e., to co-vary*
- The covariance has several important properties
- If x_{i} and x_{k} tend to increase together, then $c_{i k}>0$
- If x_{i} tends to decrease when x_{k} increases, then $c_{i k}<0$
- If x_{i} and x_{k} are uncorrelated, then $c_{i k}=0$
- $\left|c_{i k}\right| \leq \sigma_{1} \sigma_{k}$, where σ_{i} is the standard deviation of x_{i}
$-c_{i i}=\sigma_{i}^{2}=\operatorname{var}\left[x_{i}\right]$
- The covariance terms can be expressed as $c_{i i}=\sigma_{i}^{2}$ and $c_{i k}=\rho_{i k} \sigma_{i} \sigma_{k}$
- where $\rho_{i k}$ is called the correlation coefficient

$\mathrm{C}_{\mathrm{ik}}=-\sigma_{\mathrm{i}} \sigma_{\mathrm{k}}$
$\rho_{\mathrm{ik}}=-1$

$C_{i k}=-1 / 2 \sigma_{i} \sigma_{k}$
$\rho_{\mathrm{ik}}=-1 / 2$

$\mathrm{C}_{\mathrm{ik}}=0$
$\rho_{i k}=0$

$\mathrm{C}_{\mathrm{ik}}=+1 / 2 \sigma_{\mathrm{i}} \sigma_{\mathrm{k}}$
$\rho_{\mathrm{ik}}=+1 / 2$

$\mathrm{C}_{\mathrm{ik}}=\sigma_{\mathrm{i}} \sigma_{\mathrm{k}}$ $\rho_{i k}=+1$

A numerical example

Given the following samples from a

 3D distribution- Compute the covariance matrix
- Generate scatter plots for every pair of vars.

	Variables (or features)		
Examples	x_{1}	x_{2}	x_{3}
$\mathbf{1}$	2	2	4
2	3	4	6
3	5	4	2
4	6	6	4

- Can you observe any relationships between the covariance and the scatter plots?
- You may work your solution in the templates below

$\begin{aligned} & \frac{0}{O} \\ & \underset{K}{E} \\ & \underset{\sim}{\widetilde{x}} \end{aligned}$	${ }^{-1}$	${ }^{\text {x }}$	x^{m}	$\frac{\underset{1}{1}}{\substack{1 \\ x}}$	$\frac{{\underset{1}{1}}_{1}^{1}}{x^{\prime}}$	$\frac{{\underset{1}{n}}_{1}^{1_{x}^{\prime}}}{}$	$\frac{\cdots}{\frac{1}{1}}$	$\frac{\sim}{\frac{N}{1}}$	$\frac{\frac{v}{m}}{\frac{\underbrace{\prime}_{1}}{x^{n}}}$			
1												
2												
3												
4												
Average												

The Normal or Gaussian distribution

- The multivariate Normal distribution $N(\mu, \Sigma)$ is defined as

$$
f_{X}(x)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

- For a single dimension, this expression is reduced to

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Gaussian distributions are very popular since

- Parameters (μ, Σ) uniquely characterize the normal distribution
- If all variables x_{i} are uncorrelated $\left(E\left[x_{i} x_{k}\right]=E\left[x_{i}\right] E\left[x_{k}\right]\right)$, then
- Variables are also independent $\left(P\left[x_{i} x_{k}\right]=P\left[x_{i}\right] P\left[x_{k}\right]\right)$, and
$-\Sigma$ is diagonal, with the individual variances in the main diagonal
- Central Limit Theorem (next slide)
- The marginal and conditional densities are also Gaussian
- Any linear transformation of any N jointly Gaussian rv’s results in N rv's that are also Gaussian
- For $X=\left[\begin{array}{lll}X_{1} X_{2} & \ldots X_{N}\end{array}\right]^{T}$ jointly Gaussian, and $A_{N \times N}$ invertible, then $Y=A X$ is also jointly Gaussian

$$
f_{Y}(y)=\frac{f_{X}\left(A^{-1} y\right)}{|A|}
$$

Central Limit Theorem

- Given any distribution with a mean μ and variance σ^{2}, the sampling distribution of the mean approaches a normal distribution with mean μ and variance σ^{2} / N as the sample size N increases
- No matter what the shape of the original distribution is, the sampling distribution of the mean approaches a normal distribution
- N is the sample size used to compute the mean, not the overall number of samples in the data
- Example: 500 experiments are performed using a uniform distribution
- $N=1$
- One sample is drawn from the distribution and its mean is recorded (500 times)
- The histogram resembles a uniform distribution, as one would expect
- $N=4$
- Four samples are drawn and the mean of the four samples is recorded (500 times)
- The histogram starts to look more Gaussian
- As N grows, the shape of the histograms resembles a Normal distribution more closely

