
CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 1

L17: linear discriminant functions

• Perceptron learning

• Minimum squared error (MSE) solution

• Least-mean squares (LMS) rule

• Ho-Kashyap procedure

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 2

Linear discriminant functions

• The objective of this lecture is to present methods for
learning linear discriminant functions of the form

𝑔 𝑥 = 𝑤𝑇𝑥 + 𝑤0 ⟺
𝑔 𝑥 > 0 𝑥 ∈ 𝜔1

𝑔 𝑥 < 0 𝑥 ∈ 𝜔2

– where 𝑤 is the weight vector and 𝑤0 is the threshold weight or bias
(not to be confused with that of the bias-variance dilemma)

x
1

x
2

w

x

w T x + w
0
> 0

w T x + w
0
< 0

x (1

x (2
d

x
1

x
2

w

x

w T x + w
0
> 0

w T x + w
0
< 0

x (1

x (2
d

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 3

– Similar discriminant functions were derived in L5 as a special case of
the quadratic classifier

• In this lecture, the discriminant functions will be derived in a non-
parametric fashion, that is, no assumptions will be made about the
underlying densities

– For convenience, we will focus on the binary classification problem

– Extension to the multi-category case can be easily achieved by

• Using 𝜔𝑖/¬𝜔𝑖 dichotomies

• Using 𝜔𝑖/𝜔𝑗 dichotomies

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 4

Gradient descent

• GD is a general method for function minimization
– Recall that the minimum of a function 𝐽(𝑥) is defined by the zeros of

the gradient

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∀𝑥 𝐽 𝑥 ⇒ 𝛻xJ 𝑥 = 0

• Only in special cases this minimization function has a closed form solution

• In some other cases, a closed form solution may exist, but is numerically
ill-posed or impractical (e.g., memory requirements)

– Gradient descent finds the minimum in an iterative fashion by moving
in the direction of steepest descent

• where 𝜂 is a learning rate

-2 0 2

-2

0

2

x
1

x
2

In it ia l

g u e s s
G lo b a l

m in im u m

L o c a l

m in im u m

-2 0 2
-2

0

2

x
1

x
2

In it ia l

g u e s s
G lo b a l

m in im u m

L o c a l

m in im u m

1. Start with an arbitrary solution 𝑥 0

2. Compute the gradient 𝛻xJ 𝑥 𝑘

3. Move in the direction of steepest descent

𝑥 𝑘 + 1 = 𝑥 𝑘 − 𝜂𝛻xJ 𝑥 𝑘

4. Go to 2 (until convergence)

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 5

Perceptron learning

• Let’s now consider the problem of learning a binary
classification problem with a linear discriminant function

– As usual, assume we have a dataset 𝑥 = 𝑥(1, 𝑥(2 …𝑥(𝑁 containing
examples from the two classes

– For convenience, we will absorb the intercept 𝑤0 by augmenting the
feature vector 𝑥 with an additional constant dimension

𝑤𝑇𝑥 + 𝑤0 = 𝑤0 𝑤
𝑇 1

𝑥
= 𝑎𝑇𝑦

– Keep in mind that our objective is to find a vector a such that

𝑔 𝑥 = 𝑎𝑇𝑦
> 0 𝑥 ∈ 𝜔1

< 0 𝑥 ∈ 𝜔2

– To simplify the derivation, we will “normalize” the training set by
replacing all examples from class 𝜔2 by their negative

𝑦 ← −𝑦 ∀𝑦 ∈ 𝜔2

– This allows us to ignore class labels and look for vector 𝑎 such that
𝑎𝑇𝑦 > 0 ∀𝑦

 [Duda, Hart and Stork, 2001]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 6

• To find a solution we must first define an objective function 𝐽(𝑎)

– A good choice is what is known as the Perceptron criterion function

𝐽𝑃 𝑎 = −𝑎𝑇𝑦𝑦∈𝑌𝑀

• where 𝑌𝑀 is the set of examples misclassified by 𝑎

• Note that 𝐽𝑃(𝑎) is non-negative since 𝑎𝑇𝑦 < 0 for all misclassified samples

• To find the minimum of this function, we use gradient descent

– The gradient is defined by

𝛻𝑎𝐽𝑃 𝑎 = −𝑦𝑦∈𝑌𝑀

– And the gradient descent update rule becomes

𝑎 𝑘 + 1 = 𝑎 𝑘 + 𝜂 𝑦𝑦∈𝑌𝑀

– This is known as the perceptron batch update rule

• The weight vector may also be updated in an “on-line” fashion, this is, after
the presentation of each individual example

𝑎 𝑘 + 1 = 𝑎 𝑘 + 𝜂𝑦(𝑖

• where 𝑦(𝑖 is an example that has been misclassified by 𝑎(𝑘)

Perceptron rule

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 7

Perceptron learning

• If classes are linearly separable, the perceptron rule is
guaranteed to converge to a valid solution

– Some version of the perceptron rule use a variable learning rate 𝜂(𝑘)

– In this case, convergence is guaranteed only under certain conditions
(for details refer to [Duda, Hart and Stork, 2001], pp. 232-235)

• However, if the two classes are not linearly separable, the
perceptron rule will not converge
– Since no weight vector a can correctly classify every sample in a non-

separable dataset, the corrections in the perceptron rule will never
cease

– One ad-hoc solution to this problem is to enforce convergence by
using variable learning rates 𝜂(𝑘) that approach zero as 𝑘 → ∞

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 8

Minimum Squared Error (MSE) solution

• The classical MSE criterion provides an alternative to the
perceptron rule

– The perceptron rule seeks a weight vector 𝑎𝑇 such that 𝑎𝑇𝑦(𝑖 > 0

• The perceptron rule only considers misclassified samples, since these are
the only ones that violate the above inequality

– Instead, the MSE criterion looks for a solution to the equality

𝑎𝑇𝑦(𝑖 = 𝑏(𝑖, where 𝑏(𝑖 are some pre-specified target values (e.g., class
labels)

• As a result, the MSE solution uses ALL of the samples in the training set

[Duda, Hart and Stork, 2001]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 9

• The system of equations solved by MSE is

𝑦0
(1

𝑦1
(1

… 𝑦𝐷
(1

𝑦0
(2

𝑦1
(2

… 𝑦𝐷
(2

𝑦0
(𝑁

𝑦1
(𝑁

… 𝑦𝐷
(𝑁

𝑎0

𝑎1

𝑎𝐷

=

𝑏(1

𝑏(2

𝑏(𝑁

⟺ 𝑌𝑎 = 𝑏

– where 𝑎 is the weight vector, each row in 𝑌 is a training example, and
each row in b is the corresponding class label

• For consistency, we will continue assuming that examples from class 𝜔2
have been replaced by their negative vector, although this is not a
requirement for the MSE solution

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 10

• An exact solution to 𝑌𝑎 = 𝑏 can sometimes be found
– If the number of (independent) equations (𝑁) is equal to the number

of unknowns (𝐷 + 1), the exact solution is defined by
𝑎 = 𝑌−1𝑏

– In practice, however, 𝑌 will be singular so its inverse does not exist

• Y will commonly have more rows (examples) than columns (unknowns),
which yields an over-determined system, for which an exact solution
cannot be found

• The solution in this case is to minimizes some function of the
error between the model (𝑎𝑌) and the desired output (𝑏)
– In particular, MSE seeks to Minimize the sum Squared Error

𝐽𝑀𝑆𝐸 𝑎 = 𝑎𝑇𝑦(𝑖 − 𝑏(𝑖 2𝑁
𝑖=1 = 𝑌𝑎 − 𝑏 2

– which, as usual, can be found by setting its gradient to zero

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 11

The pseudo-inverse solution

• The gradient of the objective function is

𝛻𝑎𝐽𝑀𝑆𝐸 𝑎 = 2 𝑎𝑇𝑦(𝑖 − 𝑏(𝑖 𝑦(𝑖 = 2𝑌𝑇 𝑌𝑎 − 𝑏 = 0𝑁
𝑖=1

– with zeros defined by
𝑌𝑇𝑌𝑎 = 𝑌𝑇𝑏

– Notice that 𝑌𝑇𝑌 is now a square matrix!

• If 𝑌𝑇𝑌 is nonsingular, the MSE solution becomes

𝑎 = 𝑌𝑇𝑌 −1𝑌𝑇𝑏 = 𝑌†𝑏

– where 𝑌† = 𝑌𝑇𝑌 −1𝑌𝑇 is known as the pseudo-inverse of 𝑌 since
𝑌†𝑌 = 𝐼

• Note that, in general, 𝑌𝑌† ≠ 𝐼

Pseudo-inverse solution

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 12

Ridge-regression solution
• If the training data is collinear (extremely correlated), the matrix

𝑌𝑇𝑌 becomes near singular
– As a result, the smaller eigenvalues (the noise) dominate the computation of the

inverse 𝑌𝑇𝑌 −1, which results in numerical problems

• The collinearity problem can be solved through regularization
– This is equivalent to adding a small multiple of the identity matrix to the term 𝑌𝑇𝑌,

which results in

𝑎 = 1 − 𝜖 𝑌𝑇𝑌 + 𝜖
𝑡𝑟 𝑌𝑇𝑌

𝐷
𝐼

−1

𝑌𝑇𝑏

– where 𝜖 (0 < 𝜖 < 1) is a regularization parameter that controls the amount of
shrinkage to the identity matrix. This is known as the ridge-regression solution
• If the features have significantly different variances, the regularization term may be

replaced by a diagonal matrix of the feature variances

• Selection of the regularization parameter
– For 𝜖 = 0, ridge-regression solution is equivalent to the pseudo-inverse solution

– For 𝜖 = 1, the ridge-regression solution is a constant function that predicts the
average classification rate across the entire dataset

– An appropriate value for 𝜖 is typically found through cross-validation

Ridge regression

[Gutierrez-Osuna, 2002]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 13

Least-mean-squares solution

• The objective function 𝐽𝑀𝑆𝐸(𝑎) can also be minimize using a
gradient descent procedure

– This avoids the problems that arise when 𝑌𝑇𝑌 is singular

– In addition, it also avoids the need for working with large matrices

• Looking at the expression of the gradient, the obvious
update rule is

𝑎 𝑘 + 1 = 𝑎 𝑘 + 𝜂 𝑘 𝑌𝑇 𝑏 − 𝑌𝑎 𝑘

– It can be shown that if 𝜂 𝑘 = 𝜂 1 /𝑘, where 𝜂 1 is any positive
constant, this rule generates a sequence of vectors that converge to a
solution to 𝑌𝑇(𝑌𝑎 − 𝑏) = 0

– The storage requirements of this algorithm can be reduced by
considering each sample sequentially

𝑎 𝑘 + 1 = 𝑎 𝑘 + 𝜂 𝑘 𝑏(𝑖 − 𝑦(𝑖𝑎 𝑘 𝑦(𝑖

– This is known as the Widrow-Hoff, least-mean-squares (LMS) or delta
rule [Mitchell, 1997]

LMS rule

[Duda, Hart and Stork, 2001]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 14

Numerical example
• Compute the perceptron and MSE solution for the dataset

– 𝑋1 = [(1,6), (7,2), (8,9), (9,9)]

– 𝑋2 = [(2,1), (2,2), (2,4), (7,1)]

• Perceptron leaning
– Assume 𝜂 = 0.1 and an online update rule
– Assume 𝑎(0) = [0.1, 0.1, 0.1]
– SOLUTION

• Normalize the dataset
• Iterate through all the examples and update 𝑎(𝑘)

on the ones that are misclassified
– Y(1) [1 1 6]*[0.1 0.1 0.1]T>0 no update
– Y(2) [1 7 2]*[0.1 0.1 0.1] T>0 no update
 …
– Y(5) [-1 -2 -1]*[0.1 0.1 0.1] T<0 update a(1) = [0.1 0.1 0.1] + 𝜂[-1 -2 -1] = [0 -0.1 0]
– Y(6) [-1 -2 -2]*[0 -0.1 0] T>0 no update
 ….
– Y(1) [1 1 6]*[0 -0.1 0] T<0 update a(2) = [0 -0.1 0] + 𝜂[1 1 6] = [0.1 0 0.6]
– Y(2) [1 7 2]*[0.1 0 0.6] T>0 no update

 …
• In this example, the perceptron rule converges after 175 iterations to 𝑎 = [−3.5 0.3 0.7]
• To convince yourself this is a solution, compute 𝑌𝑎 (you will find out that all terms are non-negative)

• MSE
– The MSE solution is found in one shot as 𝑎 = 𝑌𝑇𝑌 −1𝑌𝑇𝑏 = [−1.1870 0.0746 0.1959]

• For the choice of targets b = [1 1 1 1 1 1 1 1]T
• As you can see in the figure, the MSE solution misclassifies one of the samples

171

421

221

121

991

981

271

611

Y

0 2 4 6 8 1 0

0

2

4

6

8

1 0

x
1

x
2

P e rc e p tro n

M S E

0 2 4 6 8 1 0

0

2

4

6

8

1 0

x
1

x
2

P e rc e p tro n

M S E

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 15

Summary: perceptron vs. MSE

• Perceptron rule
– The perceptron rule always finds a solution if the classes are linearly

separable, but does not converge if the classes are non-separable

• MSE criterion
– The MSE solution has guaranteed convergence, but it may not find a

separating hyperplane if classes are linearly separable

• Notice that MSE tries to minimize the sum of the squares of the distances
of the training data to the separating hyperplane, as opposed to finding
this hyperplane

x1

x2

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 16

The Ho-Kashyap procedure
• The main limitation of the MSE criterion is the lack of guarantees

that a separating hyperplane will be found in the linearly
separable case
– All we can say about the MSE rule is that it minimizes 𝑌𝑎 − 𝑏 2

– Whether MSE finds a separating hyperplane or not depends on how
properly the target outputs 𝑏(𝑖 are selected

• Now, if the two classes are linearly separable, there must exist
vectors 𝑎∗ and 𝑏∗ such that1 𝑌𝑎∗ = 𝑏∗ > 0
– If 𝑏∗ were known, one could simply use the MSE solution (𝑎 = 𝑌†𝑏) to

compute the separating hyperplane

– However, since 𝒃∗ is unknown, one must then solve for BOTH 𝒂 and 𝒃

• This idea gives rise to an alternative training algorithm for linear
discriminant functions known as the Ho-Kashyap procedure

1) Find the target values b through gradient descent

2) Compute the weight vector a from the MSE solution

3) Repeat 1) and 2) until convergence

1 Here we also assume 𝑦[𝑦] 𝑦2)

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 17

• Solution
– The gradient 𝛻𝑏𝐽 is defined by

𝛻𝑏𝐽𝑀𝑆𝐸 𝑎, 𝑏 = −2 𝑌𝑎 − 𝑏

• which suggest a possible update rule for 𝑏

– Now, since 𝑏 is subject to the constraint 𝑏 > 0, we are not free to
follow whichever direction the gradient may point to

• The solution is to start with an initial solution 𝑏 > 0, and refuse to reduce
any of its components

• This is accomplished by setting to zero all the positive components of 𝛻𝑏𝐽

𝛻𝑏𝐽
− =

1

2
𝛻𝑏𝐽 − 𝛻𝑏𝐽

• Once 𝑏 is updated, the MSE solution 𝑎 = 𝑌†𝑏 provides the zeros of 𝛻𝑎𝐽

– The resulting iterative procedure is

𝑏 𝑘 + 1 = 𝑏 𝑘 − 𝜂
1

2
𝛻𝑏𝐽 − 𝛻𝑏𝐽

𝑎 𝑘 + 1 = 𝑌†𝑏 𝑘 + 1
Ho-Kashyap procedure

