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L17: linear discriminant functions 

• Perceptron learning 

• Minimum squared error (MSE) solution 

• Least-mean squares (LMS) rule 

• Ho-Kashyap procedure 
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Linear discriminant functions 

• The objective of this lecture is to present methods for 
learning linear discriminant functions of the form 

𝑔 𝑥 = 𝑤𝑇𝑥 + 𝑤0 ⟺  
𝑔 𝑥 > 0    𝑥 ∈ 𝜔1

𝑔 𝑥 < 0    𝑥 ∈ 𝜔2
 

– where 𝑤 is the weight vector and 𝑤0 is the threshold weight or bias 
(not to be confused with that of the bias-variance dilemma) 
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– Similar discriminant functions were derived in L5 as a special case of 
the quadratic classifier 

• In this lecture, the discriminant functions will be derived in a non- 
parametric fashion, that is, no assumptions will be made about the 
underlying densities 

– For convenience, we will focus on the binary classification problem 

– Extension to the multi-category case can be easily achieved by 

• Using 𝜔𝑖/¬𝜔𝑖 dichotomies 

• Using 𝜔𝑖/𝜔𝑗 dichotomies 
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Gradient descent 

• GD is a general method for function minimization  
– Recall that the minimum of a function 𝐽(𝑥) is defined by the zeros of 

the gradient 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛∀𝑥 𝐽 𝑥 ⇒ 𝛻xJ 𝑥 = 0  

• Only in special cases this minimization function has a closed form solution 

• In some other cases, a closed form solution may exist, but is numerically 
ill-posed or impractical (e.g., memory requirements) 

– Gradient descent finds the minimum in an iterative fashion by moving 
in the direction of steepest descent  

 

 

 

 

 

• where 𝜂 is a learning rate  
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1. Start with an arbitrary solution 𝑥 0  

2. Compute the gradient 𝛻xJ 𝑥 𝑘  

3. Move in the direction of steepest descent 

𝑥 𝑘 + 1 = 𝑥 𝑘 − 𝜂𝛻xJ 𝑥 𝑘  

4. Go to 2 (until convergence) 
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Perceptron learning  

• Let’s now consider the problem of learning a binary 
classification problem with a linear discriminant function 

– As usual, assume we have a dataset 𝑥 = 𝑥(1, 𝑥(2 …𝑥(𝑁  containing 
examples from the two classes 

– For convenience, we will absorb the intercept 𝑤0 by augmenting the 
feature vector 𝑥 with an additional constant dimension 

𝑤𝑇𝑥 + 𝑤0 = 𝑤0   𝑤
𝑇 1

𝑥
= 𝑎𝑇𝑦 

– Keep in mind that our objective is to find a vector a such that 

𝑔 𝑥 = 𝑎𝑇𝑦  
> 0    𝑥 ∈ 𝜔1

< 0    𝑥 ∈ 𝜔2
 

– To simplify the derivation, we will “normalize” the training set by 
replacing all examples from class 𝜔2 by their negative  

𝑦 ← −𝑦    ∀𝑦 ∈ 𝜔2 

– This allows us to ignore class labels and look for vector 𝑎 such that  
𝑎𝑇𝑦 > 0   ∀𝑦  

 [Duda, Hart and Stork, 2001] 
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• To find a solution we must first define an objective function 𝐽(𝑎) 

– A good choice is what is known as the Perceptron criterion function 

𝐽𝑃 𝑎 =  −𝑎𝑇𝑦𝑦∈𝑌𝑀
  

• where 𝑌𝑀 is the set of examples misclassified by 𝑎  

• Note that 𝐽𝑃(𝑎) is non-negative since 𝑎𝑇𝑦 < 0 for all misclassified samples 

• To find the minimum of this function, we use gradient descent 

– The gradient is defined by 

𝛻𝑎𝐽𝑃 𝑎 =  −𝑦𝑦∈𝑌𝑀
  

– And the gradient descent update rule becomes 

𝑎 𝑘 + 1 = 𝑎 𝑘 + 𝜂  𝑦𝑦∈𝑌𝑀
  

– This is known as the perceptron batch update rule 

• The weight vector may also be updated in an “on-line” fashion, this is, after 
the presentation of each individual example 

𝑎 𝑘 + 1 = 𝑎 𝑘 + 𝜂𝑦(𝑖 

• where 𝑦(𝑖 is an example that has been misclassified by 𝑎(𝑘) 

 

 

Perceptron rule 
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Perceptron learning  

• If classes are linearly separable, the perceptron rule is 
guaranteed to converge to a valid solution 

– Some version of the perceptron rule use a variable learning rate 𝜂(𝑘) 

– In this case, convergence is guaranteed only under certain conditions 
(for details refer to [Duda, Hart and Stork, 2001], pp. 232-235) 

• However, if the two classes are not linearly separable, the 
perceptron rule will not converge 
– Since no weight vector a can correctly classify every sample in a non-

separable dataset, the corrections in the perceptron rule will never 
cease 

– One ad-hoc solution to this problem is to enforce convergence by 
using variable learning rates 𝜂(𝑘) that approach zero as 𝑘 → ∞ 
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Minimum Squared Error (MSE) solution 

• The classical MSE criterion provides an alternative to the 
perceptron rule 

– The perceptron rule seeks a weight vector 𝑎𝑇 such that 𝑎𝑇𝑦(𝑖 > 0 

• The perceptron rule only considers misclassified samples, since these are 
the only ones that violate the above inequality 

– Instead, the MSE criterion looks for a solution to the equality 

𝑎𝑇𝑦(𝑖 = 𝑏(𝑖, where 𝑏(𝑖 are some pre-specified target values (e.g., class 
labels) 

• As a result, the MSE solution uses ALL of the samples in the training set 

 

[Duda, Hart and Stork, 2001] 
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• The system of equations solved by MSE is 
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⟺ 𝑌𝑎 = 𝑏 

– where 𝑎 is the weight vector, each row in 𝑌 is a training example, and 
each row in b is the corresponding class label 

• For consistency, we will continue assuming that examples from class 𝜔2 
have been replaced by their negative vector, although this is not a 
requirement for the MSE solution 
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• An exact solution to 𝑌𝑎 = 𝑏 can sometimes be found  
– If the number of (independent) equations (𝑁) is equal to the number 

of unknowns (𝐷 + 1), the exact solution is defined by 
𝑎 = 𝑌−1𝑏 

– In practice, however, 𝑌 will be singular so its inverse does not exist 

• Y will commonly have more rows (examples) than columns (unknowns), 
which yields an over-determined system, for which an exact solution 
cannot be found 

• The solution in this case is to minimizes some function of the 
error between the model (𝑎𝑌) and the desired output (𝑏) 
– In particular, MSE seeks to Minimize the sum Squared Error 

𝐽𝑀𝑆𝐸 𝑎 =  𝑎𝑇𝑦(𝑖 − 𝑏(𝑖 2𝑁
𝑖=1 = 𝑌𝑎 − 𝑏 2  

– which, as usual, can be found by setting its gradient to zero 
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The pseudo-inverse solution 

• The gradient of the objective function is 

𝛻𝑎𝐽𝑀𝑆𝐸 𝑎 =  2 𝑎𝑇𝑦(𝑖 − 𝑏(𝑖 𝑦(𝑖 = 2𝑌𝑇 𝑌𝑎 − 𝑏 = 0𝑁
𝑖=1   

– with zeros defined by 
𝑌𝑇𝑌𝑎 = 𝑌𝑇𝑏 

– Notice that 𝑌𝑇𝑌 is now a square matrix! 

• If  𝑌𝑇𝑌 is nonsingular, the MSE solution becomes 

𝑎 = 𝑌𝑇𝑌 −1𝑌𝑇𝑏 = 𝑌†𝑏 

– where 𝑌† = 𝑌𝑇𝑌 −1𝑌𝑇  is known as the pseudo-inverse of 𝑌 since 
𝑌†𝑌 = 𝐼 

• Note that, in general, 𝑌𝑌† ≠ 𝐼 

 

 

 

 

 

Pseudo-inverse solution 
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Ridge-regression solution 
• If the training data is collinear (extremely correlated), the matrix 

𝑌𝑇𝑌 becomes near singular 
– As a result, the smaller eigenvalues (the noise) dominate the computation of the 

inverse 𝑌𝑇𝑌 −1, which results in numerical problems 

• The collinearity problem can be solved through regularization 
– This is equivalent to adding a small multiple of the identity matrix to the term 𝑌𝑇𝑌, 

which results in  

𝑎 = 1 − 𝜖 𝑌𝑇𝑌 + 𝜖
𝑡𝑟 𝑌𝑇𝑌

𝐷
𝐼

−1

𝑌𝑇𝑏 

– where 𝜖 (0 < 𝜖 < 1) is a regularization parameter that controls the amount of 
shrinkage to the identity matrix.  This is known as the ridge-regression solution 
• If the features have significantly different variances, the regularization term may be 

replaced by a diagonal matrix of the feature variances 

• Selection of the regularization parameter 
– For 𝜖 = 0, ridge-regression solution is equivalent to the pseudo-inverse solution 

– For 𝜖 = 1, the ridge-regression solution is a constant function that predicts the 
average classification rate across the entire dataset 

– An appropriate value for 𝜖 is typically found through cross-validation 

 

Ridge regression 

[Gutierrez-Osuna, 2002] 
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Least-mean-squares solution 

• The objective function 𝐽𝑀𝑆𝐸(𝑎) can also be minimize using a 
gradient descent procedure 

– This avoids the problems that arise when 𝑌𝑇𝑌 is singular 

– In addition, it also avoids the need for working with large matrices 

• Looking at the expression of the gradient, the obvious 
update rule is 

𝑎 𝑘 + 1 = 𝑎 𝑘 + 𝜂 𝑘 𝑌𝑇 𝑏 − 𝑌𝑎 𝑘  

– It can be shown that if 𝜂 𝑘 = 𝜂 1 /𝑘, where 𝜂 1  is any positive 
constant, this rule generates a sequence of vectors that converge to a 
solution to 𝑌𝑇(𝑌𝑎 − 𝑏) = 0 

– The storage requirements of this algorithm can be reduced by 
considering each sample sequentially 

𝑎 𝑘 + 1 = 𝑎 𝑘 + 𝜂 𝑘 𝑏(𝑖 − 𝑦(𝑖𝑎 𝑘 𝑦(𝑖 

– This is known as the Widrow-Hoff, least-mean-squares (LMS) or delta 
rule [Mitchell, 1997] 

 

LMS rule 

[Duda, Hart and Stork, 2001] 
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Numerical example 
• Compute the perceptron and MSE solution for the dataset 

– 𝑋1 =  [ (1,6), (7,2), (8,9), (9,9)] 

– 𝑋2 =  [ (2,1), (2,2), (2,4), (7,1)] 

• Perceptron leaning 
– Assume 𝜂 = 0.1 and an online update rule 
– Assume 𝑎(0) = [0.1, 0.1, 0.1] 
– SOLUTION 

• Normalize the dataset  
• Iterate through all the examples and update 𝑎(𝑘)  

on the ones that are misclassified  
– Y(1)  [1 1 6]*[0.1 0.1 0.1]T>0  no update 
– Y(2)  [1 7 2]*[0.1 0.1 0.1] T>0  no update 
 … 
– Y(5)  [-1 -2 -1]*[0.1 0.1 0.1] T<0  update a(1) = [0.1 0.1 0.1] + 𝜂[-1 -2 -1] = [0 -0.1 0] 
– Y(6)  [-1 -2 -2]*[0 -0.1 0] T>0  no update  
 …. 
– Y(1)  [1 1 6]*[0 -0.1 0] T<0  update a(2) = [0 -0.1 0] + 𝜂[1 1 6] = [0.1 0 0.6] 
– Y(2)  [1 7 2]*[0.1 0 0.6] T>0  no update  

 … 
• In this example, the perceptron rule converges after 175 iterations to 𝑎 = [−3.5 0.3 0.7] 
• To convince yourself this is a solution, compute 𝑌𝑎 (you will find out that all terms are non-negative) 

• MSE 
– The MSE solution is found in one shot as 𝑎 = 𝑌𝑇𝑌 −1𝑌𝑇𝑏 = [−1.1870  0.0746 0.1959] 

• For the choice of targets b = [1 1 1 1 1 1 1 1]T  
• As you can see in the figure, the MSE solution misclassifies one of the samples 
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Summary: perceptron vs. MSE 

• Perceptron rule 
– The perceptron rule always finds a solution if the classes are linearly 

separable, but does not converge if the classes are non-separable 

• MSE criterion 
– The MSE solution has guaranteed convergence, but it may not find a 

separating hyperplane if classes are linearly separable 

• Notice that MSE tries to minimize the sum of the squares of the distances 
of the training data to the separating hyperplane, as opposed to finding 
this hyperplane 

 

x1

x2
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The Ho-Kashyap procedure 
• The main limitation of the MSE criterion is the lack of guarantees 

that a separating hyperplane will be found in the linearly 
separable case 
– All we can say about the MSE rule is that it minimizes 𝑌𝑎 − 𝑏 2 

– Whether MSE finds a separating hyperplane or not depends on how 
properly the target outputs 𝑏(𝑖  are selected 

• Now, if the two classes are linearly separable, there must exist 
vectors 𝑎∗ and 𝑏∗  such that1 𝑌𝑎∗ = 𝑏∗ > 0  
– If 𝑏∗ were known, one could simply use the MSE solution (𝑎 = 𝑌†𝑏) to 

compute the separating hyperplane 

– However, since 𝒃∗ is unknown, one must then solve for BOTH 𝒂 and 𝒃 

• This idea gives rise to an alternative training algorithm for linear 
discriminant functions known as the Ho-Kashyap procedure 

1) Find the target values b through gradient descent 

2) Compute the weight vector a from the MSE solution 

3) Repeat 1) and 2) until convergence 

 

 
1 Here we also assume 𝑦[𝑦] 𝑦2) 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 17 

• Solution 
– The gradient 𝛻𝑏𝐽 is defined by  

𝛻𝑏𝐽𝑀𝑆𝐸 𝑎, 𝑏 = −2 𝑌𝑎 − 𝑏  

• which suggest a possible update rule for 𝑏 

– Now, since 𝑏 is subject to the constraint 𝑏 > 0, we are not free to 
follow whichever direction the gradient may point to 

• The solution is to start with an initial solution 𝑏 > 0, and refuse to reduce 
any of its components 

• This is accomplished by setting to zero all the positive components of 𝛻𝑏𝐽 

𝛻𝑏𝐽
− =

1

2
𝛻𝑏𝐽 − 𝛻𝑏𝐽   

• Once 𝑏 is updated, the MSE solution 𝑎 = 𝑌†𝑏 provides the zeros of 𝛻𝑎𝐽 

– The resulting iterative procedure is 

𝑏 𝑘 + 1 = 𝑏 𝑘 − 𝜂
1

2
𝛻𝑏𝐽 − 𝛻𝑏𝐽  

𝑎 𝑘 + 1 = 𝑌†𝑏 𝑘 + 1  
Ho-Kashyap procedure 




