L17: linear discriminant functions

Perceptron learning

Minimum squared error (MSE) solution
Least-mean squares (LMS) rule
Ho-Kashyap procedure

Linear discriminant functions

The objective of this lecture is to present methods for learning linear discriminant functions of the form

$$
g(x)=w^{T} x+w_{0} \Leftrightarrow \begin{cases}g(x)>0 & x \in \omega_{1} \\ g(x)<0 & x \in \omega_{2}\end{cases}
$$

- where w is the weight vector and w_{0} is the threshold weight or bias (not to be confused with that of the bias-variance dilemma)

- Similar discriminant functions were derived in L5 as a special case of the quadratic classifier
- In this lecture, the discriminant functions will be derived in a nonparametric fashion, that is, no assumptions will be made about the underlying densities
- For convenience, we will focus on the binary classification problem
- Extension to the multi-category case can be easily achieved by
- Using $\omega_{i} / \neg \omega_{i}$ dichotomies
- Using ω_{i} / ω_{j} dichotomies

Gradient descent

GD is a general method for function minimization

- Recall that the minimum of a function $J(x)$ is defined by the zeros of the gradient

$$
x^{*}=\operatorname{argmin}_{\forall x}[J(x)] \Rightarrow \nabla_{\mathrm{x}} \mathrm{~J}(x)=0
$$

- Only in special cases this minimization function has a closed form solution
- In some other cases, a closed form solution may exist, but is numerically ill-posed or impractical (e.g., memory requirements)
- Gradient descent finds the minimum in an iterative fashion by moving in the direction of steepest descent

1. Start with an arbitrary solution $x(0)$
2. Compute the gradient $\nabla_{\mathrm{X}} \mathrm{J}(x(k))$
3. Move in the direction of steepest descent

$$
x(k+1)=x(k)-\eta \nabla_{\mathrm{x}} \mathrm{~J}(x(k))
$$

4. Go to 2 (until convergence)

- where η is a learning rate

Perceptron learning

Let's now consider the problem of learning a binary classification problem with a linear discriminant function

- As usual, assume we have a dataset $x=\left\{x^{(1}, x^{(2} \ldots x^{(N}\right\}$ containing examples from the two classes
- For convenience, we will absorb the intercept w_{0} by augmenting the feature vector x with an additional constant dimension

$$
w^{T} x+w_{0}=\left[\begin{array}{ll}
w_{0} & w^{T}
\end{array}\right]\left[\begin{array}{l}
1 \\
x
\end{array}\right]=a^{T} y
$$

- Keep in mind that our objective is to find a vector a such that

$$
g(x)=a^{T} y \begin{cases}>0 & x \in \omega_{1} \\ <0 & x \in \omega_{2}\end{cases}
$$

- To simplify the derivation, we will "normalize" the training set by replacing all examples from class ω_{2} by their negative

$$
y \leftarrow[-y] \quad \forall y \in \omega_{2}
$$

- This allows us to ignore class labels and look for vector a such that

$$
a^{T} y>0 \quad \forall y
$$

To find a solution we must first define an objective function J (a)

- A good choice is what is known as the Perceptron criterion function

$$
J_{P}(a)=\sum_{y \in Y_{M}}\left(-a^{T} y\right)
$$

- where Y_{M} is the set of examples misclassified by a
- Note that $J_{P}(a)$ is non-negative since $a^{T} y<0$ for all misclassified samples

To find the minimum of this function, we use gradient descent

- The gradient is defined by

$$
\nabla_{a} J_{P}(a)=\sum_{y \in Y_{M}}(-y)
$$

- And the gradient descent update rule becomes

$$
a(k+1)=a(k)+\eta \sum_{y \in Y_{M}} y
$$

Perceptron rule

- This is known as the perceptron batch update rule
- The weight vector may also be updated in an "on-line" fashion, this is, after the presentation of each individual example

$$
a(k+1)=a(k)+\eta y^{(i}
$$

- where $y^{(i}$ is an example that has been misclassified by $a(k)$

Perceptron learning

If classes are linearly separable, the perceptron rule is guaranteed to converge to a valid solution

- Some version of the perceptron rule use a variable learning rate $\eta(k)$
- In this case, convergence is guaranteed only under certain conditions (for details refer to [Duda, Hart and Stork, 2001], pp. 232-235)
However, if the two classes are not linearly separable, the perceptron rule will not converge
- Since no weight vector a can correctly classify every sample in a nonseparable dataset, the corrections in the perceptron rule will never cease
- One ad-hoc solution to this problem is to enforce convergence by using variable learning rates $\eta(k)$ that approach zero as $k \rightarrow \infty$

Minimum Squared Error (MSE) solution

The classical MSE criterion provides an alternative to the perceptron rule

- The perceptron rule seeks a weight vector a^{T} such that $a^{T} y^{(i}>0$
- The perceptron rule only considers misclassified samples, since these are the only ones that violate the above inequality
- Instead, the MSE criterion looks for a solution to the equality $a^{T} y^{(i}=b^{(i}$, where $b^{(i}$ are some pre-specified target values (e.g., class labels)
- As a result, the MSE solution uses ALL of the samples in the training set

The system of equations solved by MSE is

$$
\left[\begin{array}{cccc}
y_{0}^{(1} & y_{1}^{(1} & \ldots & y_{D}^{(1} \\
y_{0}^{(2} & y_{1}^{(2} & \ldots & y_{D}^{(2} \\
& & & \\
y_{0}^{(N} & y_{1}^{(N} & \ldots & y_{D}^{(N}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{D}
\end{array}\right]=\left[\begin{array}{l}
b^{(1} \\
b^{(2} \\
\\
b^{(N}
\end{array}\right] \Leftrightarrow Y a=b
$$

- where a is the weight vector, each row in Y is a training example, and each row in b is the corresponding class label
- For consistency, we will continue assuming that examples from class ω_{2} have been replaced by their negative vector, although this is not a requirement for the MSE solution

An exact solution to $Y a=b$ can sometimes be found

- If the number of (independent) equations (N) is equal to the number of unknowns $(D+1)$, the exact solution is defined by

$$
a=Y^{-1} b
$$

- In practice, however, Y will be singular so its inverse does not exist
- Y will commonly have more rows (examples) than columns (unknowns), which yields an over-determined system, for which an exact solution cannot be found
The solution in this case is to minimizes some function of the error between the model ($a Y$) and the desired output (b)
- In particular, MSE seeks to Minimize the sum Squared Error

$$
J_{M S E}(a)=\sum_{i=1}^{N}\left(a^{T} y^{(i}-b^{(i}\right)^{2}=\|Y a-b\|^{2}
$$

- which, as usual, can be found by setting its gradient to zero

The pseudo-inverse solution

The gradient of the objective function is

$$
\nabla_{a} J_{M S E}(a)=\sum_{i=1}^{N} 2\left(a^{T} y^{(i}-b^{(i}\right) y^{(i}=2 Y^{T}(Y a-b)=0
$$

- with zeros defined by

$$
Y^{T} Y a=Y^{T} b
$$

- Notice that $Y^{T} Y$ is now a square matrix!

If $Y^{T} Y$ is nonsingular, the MSE solution becomes

$$
a=\left(Y^{T} Y\right)^{-1} Y^{T} b=Y^{\dagger} b \quad \text { Pseudo-inverse solution }
$$

- where $Y^{\dagger}=\left(Y^{T} Y\right)^{-1} Y^{T}$ is known as the pseudo-inverse of Y since $Y^{\dagger} Y=I$
- Note that, in general, $Y Y^{\dagger} \neq I$

Ridge-regression solution

If the training data is collinear (extremely correlated), the matrix $Y^{T} Y$ becomes near singular

- As a result, the smaller eigenvalues (the noise) dominate the computation of the inverse $\left(Y^{T} Y\right)^{-1}$, which results in numerical problems
The collinearity problem can be solved through regularization
- This is equivalent to adding a small multiple of the identity matrix to the term $Y^{T} Y$, which results in

$$
a=\left[(1-\epsilon) Y^{T} Y+\epsilon \frac{\operatorname{tr}\left(Y^{T} Y\right)}{D} I\right]^{-1} Y^{T} b \quad \text { Ridge regression }
$$

- where $\epsilon(0<\epsilon<1)$ is a regularization parameter that controls the amount of shrinkage to the identity matrix. This is known as the ridge-regression solution
- If the features have significantly different variances, the regularization term may be replaced by a diagonal matrix of the feature variances

Selection of the regularization parameter

- For $\epsilon=0$, ridge-regression solution is equivalent to the pseudo-inverse solution
- For $\epsilon=1$, the ridge-regression solution is a constant function that predicts the average classification rate across the entire dataset
- An appropriate value for ϵ is typically found through cross-validation

Least-mean-squares solution

The objective function $J_{M S E}(a)$ can also be minimize using a gradient descent procedure

- This avoids the problems that arise when $Y^{T} Y$ is singular
- In addition, it also avoids the need for working with large matrices

Looking at the expression of the gradient, the obvious update rule is

$$
a(k+1)=a(k)+\eta(k) Y^{T}(b-Y a(k))
$$

- It can be shown that if $\eta(k)=\eta(1) / k$, where $\eta(1)$ is any positive constant, this rule generates a sequence of vectors that converge to a solution to $Y^{T}(Y a-b)=0$
- The storage requirements of this algorithm can be reduced by considering each sample sequentially

$$
a(k+1)=a(k)+\eta(k)\left(b^{(i}-y^{(i} a(k)\right) y^{(i} \quad \text { LMS rule }
$$

- This is known as the Widrow-Hoff, least-mean-squares (LMS) or delta rule [Mitchell, 1997]

Numerical example

Compute the perceptron and MSE solution for the dataset
$-\quad X 1=[(1,6),(7,2),(8,9),(9,9)]$
$-\quad X 2=[(2,1),(2,2),(2,4),(7,1)]$

Perceptron leaning

- Assume $\eta=0.1$ and an online update rule
- Assume $a(0)=[0.1,0.1,0.1]$
- SOLUTION
- Normalize the dataset
- Iterate through all the examples and update $a(k)$ on the ones that are misclassified
$-\mathrm{Y}(1) \Rightarrow\left[\begin{array}{lll}1 & 1 & 6\end{array}\right]^{*}\left[\begin{array}{lll}0.1 & 0.1 & 0.1\end{array}\right]^{\top}>0 \Rightarrow$ no update
$-\quad Y(2) \Rightarrow\left[\begin{array}{ll}1 & 7\end{array}\right]^{*}[0.10 .10 .1]^{\top}>0 \Rightarrow$ no update

$-\quad \mathrm{Y}(5) \Rightarrow[-1-2-1]^{*}[0.10 .10 .1]^{\top}<0 \Rightarrow$ update $\mathrm{a}(1)=[0.10 .10 .1]+\eta\left[\begin{array}{lll}-1 & -2-1\end{array}\right]=\left[\begin{array}{lll}0 & -0.1 & 0\end{array}\right] \quad \mathbf{x}_{1}$
$-\quad Y(6) \Rightarrow[-1-2-2]^{*}[0-0.10]^{\top}>0 \Rightarrow$ no update
$-\mathrm{Y}(1) \Rightarrow\left[\begin{array}{ll}1 & 1\end{array}\right]^{*}[0-0.10]^{\top}<0 \Rightarrow$ update $\mathrm{a}(2)=\left[\begin{array}{lll}0 & -0.1 & 0\end{array}\right]+\eta\left[\begin{array}{lll}1 & 1 & 6\end{array}\right]=\left[\begin{array}{lll}0.1 & 0 & 0.6\end{array}\right]$
$-Y(2) \Rightarrow\left[\begin{array}{lll}1 & 7 & 2\end{array}\right]^{*}\left[\begin{array}{llll}0.1 & 0 & 0.6\end{array}\right]^{\top}>0 \Rightarrow$ no update
- In this example, the perceptron rule converges after 175 iterations to $a=\left[\begin{array}{lll}-3.5 & 0.3 & 0.7\end{array}\right]$
- To convince yourself this is a solution, compute $Y a$ (you will find out that all terms are non-negative)

MSE

- The MSE solution is found in one shot as $a=\left(Y^{T} Y\right)^{-1} Y^{T} b=\left[\begin{array}{lll}-1.1870 & 0.0746 & 0.1959\end{array}\right]$
- For the choice of targets $b=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]^{\top}$
- As you can see in the figure, the MSE solution misclassifies one of the samples

Summary: perceptron vs. MSE

Perceptron rule

- The perceptron rule always finds a solution if the classes are linearly separable, but does not converge if the classes are non-separable

MSE criterion

- The MSE solution has guaranteed convergence, but it may not find a separating hyperplane if classes are linearly separable
- Notice that MSE tries to minimize the sum of the squares of the distances of the training data to the separating hyperplane, as opposed to finding this hyperplane

The Ho-Kashyap procedure

The main limitation of the MSE criterion is the lack of guarantees that a separating hyperplane will be found in the linearly separable case

- All we can say about the MSE rule is that it minimizes $\|Y a-b\|^{2}$
- Whether MSE finds a separating hyperplane or not depends on how properly the target outputs $b^{(i}$ are selected
Now, if the two classes are linearly separable, there must exist vectors a^{*} and b^{*} such that ${ }^{1} Y a^{*}=b^{*}>0$
- If b^{*} were known, one could simply use the MSE solution $\left(a=Y^{\dagger} b\right)$ to compute the separating hyperplane
- However, since \boldsymbol{b}^{*} is unknown, one must then solve for BOTH \boldsymbol{a} and \boldsymbol{b}

This idea gives rise to an alternative training algorithm for linear discriminant functions known as the Ho-Kashyap procedure

1) Find the target values b through gradient descent
2) Compute the weight vector a from the MSE solution
3) Repeat 1) and 2) until convergence
${ }^{1}$ Here we also assume $y \leftarrow[-y] \forall y \in \omega_{2}$)

Solution

- The gradient $\nabla_{b} J$ is defined by

$$
\nabla_{b} J_{M S E}(a, b)=-2(Y a-b)
$$

- which suggest a possible update rule for b
- Now, since b is subject to the constraint $b>0$, we are not free to follow whichever direction the gradient may point to
- The solution is to start with an initial solution $b>0$, and refuse to reduce any of its components
- This is accomplished by setting to zero all the positive components of $\nabla_{b} J$

$$
\left(\nabla_{b} J\right)^{-}=\frac{1}{2}\left[\nabla_{b} J-\left|\nabla_{b} J\right|\right]
$$

- Once b is updated, the MSE solution $a=Y^{\dagger} b$ provides the zeros of $\nabla_{a} J$
- The resulting iterative procedure is

$$
\begin{gathered}
b(k+1)=b(k)-\eta \frac{1}{2}\left[\nabla_{b} J-\left|\nabla_{b} J\right|\right] \\
a(k+1)=Y^{\dagger} b(k+1)
\end{gathered}
$$

