## **L17: linear discriminant functions**

**Perceptron learning** 

- Minimum squared error (MSE) solution
- Least-mean squares (LMS) rule
- Ho-Kashyap procedure

### **Linear discriminant functions**

The objective of this lecture is to present methods for learning linear discriminant functions of the form

$$g(x) = w^T x + w_0 \Leftrightarrow \begin{cases} g(x) > 0 & x \in \omega_1 \\ g(x) < 0 & x \in \omega_2 \end{cases}$$

- where w is the weight vector and  $w_0$  is the threshold weight or bias (not to be confused with that of the bias-variance dilemma)



- Similar discriminant functions were derived in L5 as a special case of the quadratic classifier
  - In this lecture, the discriminant functions will be derived in a nonparametric fashion, that is, no assumptions will be made about the underlying densities
- For convenience, we will focus on the binary classification problem
- Extension to the multi-category case can be easily achieved by
  - Using  $\omega_i / \neg \omega_i$  dichotomies
  - Using  $\omega_i / \omega_j$  dichotomies





CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

## **Gradient descent**

#### GD is a general method for function minimization

- Recall that the minimum of a function J(x) is defined by the zeros of the gradient

 $x^* = argmin_{\forall x}[J(x)] \Rightarrow \nabla_x J(x) = 0$ 

- Only in special cases this minimization function has a closed form solution
- In some other cases, a closed form solution may exist, but is numerically ill-posed or impractical (e.g., memory requirements)
- Gradient descent finds the minimum in an iterative fashion by moving in the direction of steepest descent
  - Start with an arbitrary solution x(0)
    Compute the gradient \(\nabla\_x J(x(k))\)
    Move in the direction of steepest descent
    - $x(k+1) = x(k) \eta \nabla_{x} J(x(k))$
  - 4. Go to 2 (until convergence)
  - where  $\eta$  is a learning rate



### **Perceptron learning**

# Let's now consider the problem of learning a binary classification problem with a linear discriminant function

- As usual, assume we have a dataset  $x = \{x^{(1)}, x^{(2)} \dots x^{(N)}\}$  containing examples from the two classes
- For convenience, we will absorb the intercept  $w_0$  by augmenting the feature vector x with an additional constant dimension

$$w^T x + w_0 = \begin{bmatrix} w_0 & w^T \end{bmatrix} \begin{bmatrix} 1 \\ \chi \end{bmatrix} = a^T y$$

- Keep in mind that our objective is to find a vector a such that

$$g(x) = a^T y \begin{cases} > 0 & x \in \omega_1 \\ < 0 & x \in \omega_2 \end{cases}$$

- To simplify the derivation, we will "normalize" the training set by replacing all examples from class  $\omega_2$  by their negative

$$y \leftarrow [-y] \quad \forall y \in \omega_2$$

- This allows us to ignore class labels and look for vector a such that  $a^T y > 0 \quad \forall y$ 

#### To find a solution we must first define an objective function J(a)

A good choice is what is known as the **Perceptron** criterion function

$$J_P(a) = \sum_{y \in Y_M} (-a^T y)$$

- where  $Y_M$  is the set of examples misclassified by a
- Note that  $J_P(a)$  is non-negative since  $a^T y < 0$  for all misclassified samples

#### To find the minimum of this function, we use gradient descent

- The gradient is defined by

$$\nabla_a J_P(a) = \sum_{y \in Y_M} (-y)$$

And the gradient descent update rule becomes

$$a(k+1) = a(k) + \eta \sum_{y \in Y_M} y$$
 Pere

Perceptron rule

- This is known as the **perceptron batch update rule** 
  - The weight vector may also be updated in an "on-line" fashion, this is, after the presentation of each individual example  $a(k + 1) = a(k) + nv^{(i)}$
  - where  $y^{(i)}$  is an example that has been misclassified by a(k)

### **Perceptron learning**

# If classes are linearly separable, the perceptron rule is guaranteed to converge to a valid solution

- Some version of the perceptron rule use a variable learning rate  $\eta(k)$
- In this case, convergence is guaranteed only under certain conditions (for details refer to [Duda, Hart and Stork, 2001], pp. 232-235)

# However, if the two classes are not linearly separable, the perceptron rule will not converge

- Since no weight vector a can correctly classify every sample in a nonseparable dataset, the corrections in the perceptron rule will never cease
- One ad-hoc solution to this problem is to enforce convergence by using variable learning rates  $\eta(k)$  that approach zero as  $k \to \infty$

## **Minimum Squared Error (MSE) solution**

## The classical MSE criterion provides an alternative to the perceptron rule

- The perceptron rule seeks a weight vector  $a^T$  such that  $a^T y^{(i)} > 0$ 
  - The perceptron rule only considers misclassified samples, since these are the only ones that violate the above inequality
- Instead, the MSE criterion looks for a solution to the equality  $a^T y^{(i)} = b^{(i)}$ , where  $b^{(i)}$  are some pre-specified target values (e.g., class labels)
  - As a result, the MSE solution uses ALL of the samples in the training set

The system of equations solved by MSE is

- where a is the weight vector, each row in Y is a training example, and each row in b is the corresponding class label
  - For consistency, we will continue assuming that examples from class  $\omega_2$ have been replaced by their negative vector, although this is not a requirement for the MSE solution

#### An exact solution to Ya = b can sometimes be found

- If the number of (independent) equations (N) is equal to the number of unknowns (D + 1), the exact solution is defined by  $a = Y^{-1}h$
- In practice, however, Y will be singular so its inverse does not exist
  - Y will commonly have more rows (examples) than columns (unknowns), which yields an over-determined system, for which an exact solution cannot be found

## The solution in this case is to minimizes some function of the error between the model (aY) and the desired output (b)

In particular, MSE seeks to <u>Minimize the sum Squared Error</u>

$$J_{MSE}(a) = \sum_{i=1}^{N} \left( a^{T} y^{(i)} - b^{(i)} \right)^{2} = \|Ya - b\|^{2}$$

- which, as usual, can be found by setting its gradient to zero

## The pseudo-inverse solution

#### The gradient of the objective function is

 $\nabla_{a}J_{MSE}(a) = \sum_{i=1}^{N} 2(a^{T}y^{(i)} - b^{(i)})y^{(i)} = 2Y^{T}(Ya - b) = 0$ 

- with zeros defined by

$$Y^T Y a = Y^T b$$

- Notice that  $Y^T Y$  is now a square matrix!

If  $Y^T Y$  is nonsingular, the MSE solution becomes

 $a = (Y^T Y)^{-1} Y^T b = Y^{\dagger} b$  Pseudo-inverse solution

- where  $Y^{\dagger} = (Y^T Y)^{-1} Y^T$  is known as the <u>pseudo-inverse</u> of Y since  $Y^{\dagger}Y = I$ 
  - Note that, in general,  $YY^{\dagger} \neq I$

## **Ridge-regression solution**

## If the training data is collinear (extremely correlated), the matrix $Y^T Y$ becomes near singular

- As a result, the smaller eigenvalues (the noise) dominate the computation of the inverse  $(Y^TY)^{-1}$ , which results in numerical problems

#### The collinearity problem can be solved through regularization

- This is equivalent to adding a small multiple of the identity matrix to the term  $Y^T Y$ , which results in

$$a = \left[ (1 - \epsilon)Y^T Y + \epsilon \frac{tr(Y^T Y)}{D}I \right]^{-1} Y^T b$$
 Ridge regression

- where  $\epsilon$  ( $0 < \epsilon < 1$ ) is a regularization parameter that controls the amount of shrinkage to the identity matrix. This is known as the <u>ridge-regression</u> solution
  - If the features have significantly different variances, the regularization term may be replaced by a diagonal matrix of the feature variances

#### Selection of the regularization parameter

- For  $\epsilon = 0$ , ridge-regression solution is equivalent to the pseudo-inverse solution
- For  $\epsilon = 1$ , the ridge-regression solution is a constant function that predicts the average classification rate across the entire dataset
- An appropriate value for  $\epsilon$  is typically found through cross-validation

### Least-mean-squares solution

# The objective function $J_{MSE}(a)$ can also be minimize using a gradient descent procedure

- This avoids the problems that arise when  $Y^T Y$  is singular
- In addition, it also avoids the need for working with large matrices

# Looking at the expression of the gradient, the obvious update rule is

 $a(k+1) = a(k) + \eta(k)Y^T(b - Ya(k))$ 

- It can be shown that if  $\eta(k) = \eta(1)/k$ , where  $\eta(1)$  is any positive constant, this rule generates a sequence of vectors that converge to a solution to  $Y^T(Ya b) = 0$
- The storage requirements of this algorithm can be reduced by considering each sample sequentially

 $a(k+1) = a(k) + \eta(k) (b^{(i} - y^{(i}a(k)))y^{(i)}$  LMS rule

 This is known as the Widrow-Hoff, least-mean-squares (LMS) or delta rule [Mitchell, 1997]

## **Numerical example**

#### Compute the perceptron and MSE solution for the dataset



- − Y(1)  $\Rightarrow$  [1 1 6]\*[0 -0.1 0]<sup>T</sup><0  $\Rightarrow$  update a(2) = [0 -0.1 0] + η[1 1 6] = [0.1 0 0.6]
- Y(2)  $\Rightarrow$  [1 7 2]\*[0.1 0 0.6]<sup>T</sup>>0  $\Rightarrow$  no update
- In this example, the perceptron rule converges after 175 iterations to  $a = [-3.5 \ 0.3 \ 0.7]$
- To convince yourself this is a solution, compute Ya (you will find out that all terms are non-negative)

#### MSE

- The MSE solution is found in one shot as  $a = (Y^T Y)^{-1} Y^T b = [-1.1870 \ 0.0746 \ 0.1959]$ 
  - For the choice of targets  $b = [1 1 1 1 1 1 1 1]^T$
  - As you can see in the figure, the MSE solution misclassifies one of the samples

....

## Summary: perceptron vs. MSE

#### **Perceptron rule**

 The perceptron rule always finds a solution if the classes are linearly separable, but does not converge if the classes are non-separable

#### **MSE criterion**

- The MSE solution has guaranteed convergence, but it may not find a separating hyperplane if classes are linearly separable
  - Notice that MSE tries to minimize the sum of the squares of the distances of the training data to the separating hyperplane, as opposed to finding this hyperplane



## The Ho-Kashyap procedure

#### The main limitation of the MSE criterion is the lack of guarantees that a separating hyperplane will be found in the linearly separable case

- All we can say about the MSE rule is that it minimizes  $||Ya b||^2$
- Whether MSE finds a separating hyperplane or not depends on how properly the target outputs  $b^{(i)}$  are selected

## Now, if the two classes are linearly separable, there must exist vectors $a^*$ and $b^*$ such that $Ya^* = b^* > 0$

- If  $b^*$  were known, one could simply use the MSE solution  $(a = Y^{\dagger}b)$  to compute the separating hyperplane
- However, since  $b^*$  is unknown, one must then solve for BOTH a and b

## This idea gives rise to an alternative training algorithm for linear discriminant functions known as the Ho-Kashyap procedure

- 1) Find the target values b through gradient descent
- 2) Compute the weight vector a from the MSE solution
- 3) Repeat 1) and 2) until convergence

<sup>1</sup> Here we also assume  $y \leftarrow [-y] \forall y \in \omega_2$ )

#### **Solution**

– The gradient  $\nabla_b J$  is defined by

 $\nabla_b J_{MSE}(a,b) = -2(Ya-b)$ 

- which suggest a possible update rule for b
- Now, since b is subject to the constraint b > 0, we are not free to follow whichever direction the gradient may point to
  - The solution is to start with an initial solution b > 0, and refuse to reduce any of its components
  - This is accomplished by setting to zero all the positive components of  $\nabla_b J$

$$(\nabla_b J)^- = \frac{1}{2} \left[ \nabla_b J - |\nabla_b J| \right]$$

- Once *b* is updated, the MSE solution  $a = Y^{\dagger}b$  provides the zeros of  $\nabla_a J$
- The resulting iterative procedure is

$$b(k+1) = b(k) - \eta \frac{1}{2} [\nabla_b J - |\nabla_b J|]$$
  
$$a(k+1) = Y^{\dagger} b(k+1)$$

**Ho-Kashyap procedure**