L13: cross-validation

Resampling methods

- Cross validation
- Bootstrap

Bias and variance estimation with the Bootstrap

Three-way data partitioning

Introduction

Almost invariably, all the pattern recognition techniques that we have introduced have one or more free parameters

- The number of neighbors in a kNN classifier
- The bandwidth of the kernel function in kernel density estimation
- The number of features to preserve in a subset selection problem

Two issues arise at this point

- Model Selection: How do we select the "optimal" parameter(s) for a given classification problem?
- Validation: Once we have chosen a model, how do we estimate its true error rate?
 - The true error rate is the classifier's error rate when tested on the ENTIRE POPULATION

If we had access to an unlimited number of examples, these questions would have a straightforward answer

- Choose the model that provides the lowest error rate on the entire population
- And, of course, that error rate is the true error rate

However, in real applications only a finite set of examples is available

- This number is usually smaller than we would hope for!
- Why? Data collection is a very expensive process

One may be tempted to use the entire training data to select the "optimal" classifier, then estimate the error rate

This naïve approach has two fundamental problems

- The final model will normally **overfit** the training data: it will not be able to generalize to new data
 - The problem of overfitting is more pronounced with models that have a large number of parameters
- The error rate estimate will be overly optimistic (lower than the true error rate)
 - In fact, it is not uncommon to achieve 100% correct classification on training data

The techniques presented in this lecture will allow you to make the best use of your (limited) data for

- Training
- Model selection and
- Performance estimation

The holdout method

Split dataset into two groups

- Training set: used to train the classifier
- **Test set**: used to estimate the error rate of the trained classifier

The holdout method has two basic drawbacks

- In problems where we have a sparse dataset we may not be able to afford the "luxury" of setting aside a portion of the dataset for testing
- Since it is a single train-and-test experiment, the holdout estimate of error rate will be misleading if we happen to get an "unfortunate" split

These limitations of the holdout can be overcome with a family of resampling methods at the expense of higher computational cost

- Cross validation
 - Random subsampling
 - K-fold cross-validation
 - Leave-one-out cross-validation
- Bootstrap

Random subsampling

Random subsampling performs K data splits of the entire dataset

- Each data split randomly selects a (fixed) number of examples <u>without</u> <u>replacement</u>
- For each data split we retrain the classifier from scratch with the training examples and then estimate E_i with the test examples

- The true error estimate is obtained as the average of the separate estimates E_i
- This estimate is significantly better than the holdout estimate

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

K-fold cross validation

Create a K-fold partition of the dataset

- For each of K experiments, use K 1 folds for training and a different fold for testing
- This procedure is illustrated in the following figure for K = 4

K-Fold cross validation is similar to random subsampling

- The advantage of KFCV is that all the examples in the dataset are eventually used for both training and testing
- As before, the true error is estimated as the average error rate on test examples

$$E = \frac{1}{K} \sum_{i=1}^{K} E_i$$

Leave-one-out cross validation

LOO is the degenerate case of KFCV, where K is chosen as the total number of examples

- For a dataset with N examples, perform N experiments
- For each experiment use N-1 examples for training and the remaining example for testing

 As usual, the true error is estimated as the average error rate on test examples

$$E = \frac{1}{N} \sum_{i=1}^{N} E_i$$

How many folds are needed?

With a large number of folds

- + The bias of the true error rate estimator will be small (the estimator will be very accurate)
- The variance of the true error rate estimator will be large
- The computational time will be very large as well (many experiments)

With a small number of folds

- + The number of experiments and, therefore, computation time are reduced
- + The variance of the estimator will be small
- The bias of the estimator will be large (conservative or larger than the true error rate)

In practice, the choice for K depends on the size of the dataset

- For large datasets, even 3-fold cross validation will be quite accurate
- For very sparse datasets, we may have to use leave-one-out in order to train on as many examples as possible

A common choice for is K=10

The bootstrap

The bootstrap is a resampling technique with replacement

- From a dataset with *N* examples
 - Randomly select (with replacement) N examples and use this set for training
 - The remaining examples that were not selected for training are used for testing
 - This value is likely to change from fold to fold
- Repeat this process for a specified number of folds (K)
- As before, the true error is estimated as the average error rate on test data

Compared to basic CV, the bootstrap increases the variance that can occur in each fold [Efron and Tibshirani, 1993]

 This is a desirable property since it is a more realistic simulation of the real-life experiment from which our dataset was obtained

Consider a classification problem with C classes, a total of N examples and N_i examples for each class ω_i

- The a priori probability of choosing an example from class ω_i is N_i/N
 - Once we choose an example from class ω_i , if we do not replace it for the next selection, then the a priori probabilities will have changed since the probability of choosing an example from class ω_i will now be $(N_i 1)/N$
- Thus, sampling with replacement preserves the a priori probabilities of the classes throughout the random selection process
- An additional benefit is that the bootstrap can provide accurate measures of BOTH the bias and variance of the true error estimate

Bias and variance of a statistical estimate

Problem: estimate parameter α of unknown distribution *G*

- To emphasize the fact that α concerns G, we write $\alpha(G)$

Solution

- We collect N examples $X = \{x_1, x_2, \dots, x_N\}$ from G
 - X defines a discrete distribution G' with mass 1/N at each example
- We compute the statistic $\alpha' = \alpha(G')$ as an estimator of $\alpha(G)$
 - e.g., $\alpha(G')$ may is the estimate of the true error rate for a classifier

How good is this estimator?

- Bias: How much does it deviate from the true value

$$Bias = E_G[\alpha'(G)] - \alpha(G)$$

where $E_G[X] = \int_{-\infty}^{+\infty} xg(x)dx$

- Variance: how much variability does it show for different samples

$$Var = E_G[(\alpha' - E_G[\alpha'])^2]$$

Example: bias and variance of the sample mean

- Bias: The sample mean is known to be an unbiased estimator
- How about its variance?
 - From statistics, the standard deviation of the sample mean is equal to

$$std(\bar{x}) = \sqrt{\frac{1}{N(N-1)}\sum_{i=1}^{N}(x_i - \bar{x})^2}$$

- This term is also known in statistics as the STANDARD ERROR
- Unfortunately, there is no such a neat algebraic formula for almost any estimate other than the sample mean

Bias and variance estimates with the bootstrap

The bootstrap allows us to estimate bias and variance for practically any statistical estimate, be it a scalar or vector (matrix)

- Here we will only describe the estimation procedure
 - For more details refer to "Advanced algorithms for neural networks" [Masters, 1995], which provides an excellent introduction

Approach

- Consider a dataset of N examples $X = \{x_1, x_2, ..., x_N\}$ from distribution G
 - This dataset defines a discrete distribution G'
- Compute $\alpha' = \alpha(G')$ as our initial estimate of $\alpha(G)$
- Let $\{x_1^*, x_2^*, \dots, x_N^*\}$ be a bootstrap dataset drawn from $X = \{x_1, x_2, \dots, x_N\}$
- Estimate parameter α using this bootstrap dataset $\alpha^*(G^*)$
- Generate *K* bootstrap datasets and obtain *K* estimates $\{\alpha^{*1}(G^*), \alpha^{*2}(G^*) \dots, \alpha^{*K}(G^*)\}$
- The bias and variance estimates of α' are

$$Bias(\alpha') = [\alpha^{*\circ} - \alpha'] \text{ where } \alpha^{*\circ} = \frac{1}{K} \sum_{i=1}^{K} \alpha^{*i}$$
$$Var(\alpha') = \frac{1}{K-1} \sum_{i=1}^{K} (\alpha^{*i} - \alpha^{*\circ})^2$$

Rationale

- The effect of generating a bootstrap dataset from the distribution G' is similar to the effect of obtaining the dataset $X = \{x_1, x_2, ..., x_N\}$ from the original distribution G
- In other words, the distribution $\{\alpha^{*1}(G^*), \alpha^{*2}(G^*) \dots, \alpha^{*K}(G^*)\}$ is related to the initial estimate α' in the same fashion that multiple estimates α' are related to the true value α

Example

- Assume a small dataset $x = \{3,5,2,1,7\}$, and we want to compute the bias and variance of the sample mean $\alpha' = 3.6$

We generate a number of bootstrap samples (three in this case)

- Assume that the first bootstrap yields the dataset {7,3,2,3,1}
 - We compute the sample mean $\alpha^{*1} = 3.2$
- The second bootstrap sample yields the dataset {5,1,1,3,7}
 - We compute the sample mean $\alpha^{*2} = 3.4$
- The third bootstrap sample yields the dataset $\{2,2,7,1,3\}$
 - We compute the sample mean $\alpha^{*3} = 3.0$
- We average these estimates and obtain an average of $\alpha^{*\circ} = 3.2$

What are the bias and variance of the sample mean α' ?

- $Bias(\alpha') = 3.2 3.6 = -0.4$
 - We may conclude then that resampling introduced a downward bias on the mean, so we would be inclined to use 3.6 + 0.4 = 4.0 as an unbiased estimate of α
- $Var(\alpha') = 1/2 * [(3.2 3.2)^2 + (3.4 3.2)^2 + (3.0 3.2)^2] = 0.04$

NOTES

- We have done this exercise for the sample mean (so you could trace the computations), but α could be any other statistical operator!
- How many bootstrap samples should we use?
 - As a rule of thumb, several hundred resamples will suffice for most problems

Three-way data splits

If model selection <u>and</u> true error estimates are to be computed simultaneously, the data should be divided into three disjoint sets [Ripley, 1996]

- Training set: used for learning, e.g., to fit the parameters of the classifier
 - In an MLP, we would use the training set to find the "optimal" weights with the back-prop rule
- Validation set: used to select among several trained classifiers
 - In an MLP, we would use the validation set to find the "optimal" number of hidden units or determine a stopping point for the back-propagation algorithm
- Test set: used only to assess the performance of a fully-trained classifier
 - In an MLP, we would use the test to estimate the error rate after we have chosen the final model (MLP size and actual weights)

Why separate test and validation sets?

- The error rate of the final model on validation data will be biased (smaller than the true error rate) since the validation set is used to select the final model
- After assessing the final model on the test set, YOU MUST NOT tune the model any further!

Procedure outline

- 1. Divide the available data into training, validation and test set
- 2. Select architecture and training parameters
- 3. Train the model using the training set
- 4. Evaluate the model using the validation set
- 5. Repeat steps 2 through 4 using different architectures and training parameters
- 6. Select the best model and train it using data from the training and validation sets
- 7. Assess this final model using the test set
- This outline assumes a holdout method
- If CV or bootstrap are used, steps 3 and 4 have to be repeated for each of the K folds

Three-way data splits

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU