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L13: cross-validation 

• Resampling methods 
– Cross validation 

– Bootstrap 

• Bias and variance estimation with the Bootstrap 

• Three-way data partitioning 
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Introduction 
• Almost invariably, all the pattern recognition techniques that we have 

introduced have one or more free parameters 
– The number of neighbors in a kNN classifier 

– The bandwidth of the kernel function in kernel density estimation 

– The number of features to preserve in a subset selection problem 

• Two issues arise at this point 
– Model Selection: How do we select the “optimal” parameter(s) for a given 

classification problem? 

– Validation: Once we have chosen a model, how do we estimate its true error rate? 
• The true error rate is the classifier’s error rate when tested on the ENTIRE POPULATION 

• If we had access to an unlimited number of examples, these questions 
would have a straightforward answer 
– Choose the model that provides the lowest error rate on the entire population 

– And, of course, that error rate is the true error rate 

• However, in real applications only a finite set of examples is available 
– This number is usually smaller than we would hope for! 

– Why? Data collection is a very expensive process 
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• One may be tempted to use the entire training data to select 
the “optimal” classifier, then estimate the error rate 

• This naïve approach has two fundamental problems 
– The final model will normally overfit the training data: it will not be 

able to generalize to new data 
• The problem of overfitting is more pronounced with models that have a 

large number of parameters 

– The error rate estimate will be overly optimistic (lower than the true 
error rate) 
• In fact, it is not uncommon to achieve 100% correct classification on 

training data 

• The techniques presented in this lecture will allow you to 
make the best use of your (limited) data for 
– Training 

– Model selection and 

– Performance estimation 
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The holdout method 
• Split dataset into two groups 

– Training set: used to train the classifier 
– Test set: used to estimate the error rate of the trained classifier 

 
 
 
 

• The holdout method has two basic drawbacks 
– In problems where we have a sparse dataset we may not be able to afford 

the “luxury” of setting aside a portion of the dataset for testing 
– Since it is a single train-and-test experiment, the holdout estimate of error 

rate will be misleading if we happen to get an “unfortunate” split 

• These limitations of the holdout can be overcome with a family of 
resampling methods at the expense of higher computational cost 
– Cross validation 

• Random subsampling 
• K-fold cross-validation 
• Leave-one-out cross-validation 

– Bootstrap 

 

Training Set Test Set 

Total number of examples 
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Random subsampling 
• Random subsampling performs K data splits of the entire dataset 

– Each data split randomly selects a (fixed) number of examples without 
replacement 

– For each data split we retrain the classifier from scratch with the training 
examples and then estimate 𝐸𝑖  with the test examples 

 

 

 

 

 

 
– The true error estimate is obtained as the average of the separate 

estimates 𝐸𝑖 

– This estimate is significantly better than the holdout estimate 

𝐸 =
1

𝐾
 𝐸𝑖
𝐾
𝑖=1   

 

 

Total number of examples 

Experiment 1 

Experiment 2 

Experiment 3 

Test example 
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K-fold cross validation 
• Create a K-fold partition of the dataset 

– For each of 𝐾 experiments, use 𝐾 − 1 folds for training and a different fold 
for testing  

– This procedure is illustrated in the following figure for 𝐾 = 4 

 
 
 
 
 
 
 

• K-Fold cross validation is similar to random subsampling  
– The advantage of KFCV is that all the examples in the dataset are 

eventually used for both training and testing 
– As before, the true error is estimated as the average error rate on test 

examples 

𝐸 =
1

𝐾
 𝐸𝑖
𝐾
𝑖=1   

 

Total number of examples 

Experiment 1 

Experiment 2 

Experiment 3 
Test examples 

Experiment 4 
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Leave-one-out cross validation 
• LOO is the degenerate case of KFCV, where K is chosen as the total 

number of examples 
– For a dataset with 𝑁 examples, perform 𝑁 experiments 
– For each experiment use 𝑁 − 1 examples for training and the remaining 

example for testing 

 
 
 
 
 
 
 
 
 
– As usual, the true error is estimated as the average error rate on test 

examples 

𝐸 =
1

𝑁
 𝐸𝑖
𝑁
𝑖=1   

 

Total number of examples 
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Experiment 2 

Experiment 3 

Experiment N 

Single test example 
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How many folds are needed? 

• With a large number of folds  

+ The bias of the true error rate estimator will be small (the estimator will 
be very accurate) 

– The variance of the true error rate estimator will be large 

– The computational time will be very large as well (many experiments) 

• With a small number of folds  

+ The number of experiments and, therefore, computation time are reduced 

+ The variance of the estimator will be small 

– The bias of the estimator will be large (conservative or larger than the true 
error rate) 

• In practice, the choice for K depends on the size of the dataset 

– For large datasets, even 3-fold cross validation will be quite accurate 

– For very sparse datasets, we may have to use leave-one-out in order to 
train on as many examples as possible 

• A common choice for is K=10 
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The bootstrap  
• The bootstrap is a resampling technique with replacement 

– From a dataset with 𝑁 examples 

• Randomly select (with replacement) 𝑁 examples and use this set for training 

• The remaining examples that were not selected for training are used for testing  

• This value is likely to change from fold to fold 

– Repeat this process for a specified number of folds (𝐾) 

– As before, the true error is estimated as the average error rate on test data 
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• Compared to basic CV, the bootstrap increases the variance 
that can occur in each fold [Efron and Tibshirani, 1993] 
– This is a desirable property since it is a more realistic simulation of the 

real-life experiment from which our dataset was obtained 

• Consider a classification problem with 𝐶 classes, a total of 𝑁 
examples and 𝑁𝑖  examples for each class 𝝎𝑖   
– The a priori probability of choosing an example from class 𝜔𝑖 is 𝑁𝑖/𝑁 

• Once we choose an example from class 𝜔𝑖, if we do not replace it for the 
next selection, then the a priori probabilities will have changed since the 
probability of choosing an example from class 𝜔𝑖 will now be 𝑁𝑖 − 1 /𝑁 

– Thus, sampling with replacement preserves the a priori probabilities of 
the classes throughout the random selection process 

– An additional benefit is that the bootstrap can provide accurate 
measures of BOTH the bias and variance of the true error estimate 
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Bias and variance of a statistical estimate 

• Problem: estimate parameter 𝛼 of unknown distribution 𝐺 
– To emphasize the fact that 𝛼 concerns 𝐺, we write 𝛼(𝐺) 

• Solution 
– We collect 𝑁 examples 𝑋 = {𝑥1 , 𝑥2  … 𝑥𝑁} from 𝐺 

• 𝑋 defines a discrete distribution 𝐺’ with mass 1/𝑁 at each example 

– We compute the statistic 𝛼’ = 𝛼(𝐺’) as an estimator of 𝛼(𝐺) 

• e.g., 𝛼(𝐺’) may is the estimate of the true error rate for a classifier 

• How good is this estimator? 
– Bias: How much does it deviate from the true value 

𝐵𝑖𝑎𝑠 = 𝐸𝐺 𝛼
′ 𝐺 − 𝛼 𝐺   

  𝑤ℎ𝑒𝑟𝑒 𝐸𝐺 𝑋 =  𝑥𝑔 𝑥 𝑑𝑥
+∞

−∞
 

– Variance: how much variability does it show for different samples 

𝑉𝑎𝑟 = 𝐸𝐺 𝛼
′ − 𝐸𝐺 𝛼′  

2  
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• Example: bias and variance of the sample mean 
– Bias: The sample mean is known to be an unbiased estimator 

– How about its variance? 

• From statistics, the standard deviation of the sample mean is equal to 

𝑠𝑡𝑑 𝑥 =
1

𝑁(𝑁−1)
 𝑥𝑖 − 𝑥 

2𝑁
𝑖=1   

• This term is also known in statistics as the STANDARD ERROR 

– Unfortunately, there is no such a neat algebraic formula for almost any 
estimate other than the sample mean 
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Bias and variance estimates with the bootstrap 
• The bootstrap allows us to estimate bias and variance for 

practically any statistical estimate, be it a scalar or vector (matrix) 
– Here we will only describe the estimation procedure 

• For more details refer to “Advanced algorithms for neural networks” [Masters, 
1995], which provides an excellent introduction 

• Approach 
– Consider a dataset of 𝑁 examples 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} from distribution 𝐺 

• This dataset defines a discrete distribution 𝐺’ 

– Compute 𝛼’ = 𝛼(𝐺’) as our initial estimate of 𝛼 𝐺  
– Let {𝑥1

∗, 𝑥2
∗, … , 𝑥𝑁

∗ } be a bootstrap dataset drawn from 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} 
– Estimate parameter 𝛼 using this bootstrap dataset 𝛼∗(𝐺∗) 
– Generate 𝐾 bootstrap datasets and obtain 𝐾 estimates 
{𝛼∗1(𝐺∗), 𝛼∗2(𝐺∗)… , 𝛼∗𝐾(𝐺∗)} 

– The bias and variance estimates of 𝛼′are 

𝐵𝑖𝑎𝑠 𝛼′ = 𝛼∗∘ − 𝛼′  where 𝛼∗∘ =
1

𝐾
 𝛼∗𝑖𝐾
𝑖=1  

𝑉𝑎𝑟 𝛼′ =
1

𝐾 − 1
 𝛼∗𝑖 − 𝛼∗∘

2
𝐾

𝑖=1
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• Rationale 
– The effect of generating a bootstrap dataset from the distribution 𝐺’ is 

similar to the effect of obtaining the dataset 𝑋 = {𝑥1, 𝑥2  … , 𝑥𝑁} from 
the original distribution 𝐺 

– In other words, the distribution {𝛼∗1(𝐺∗), 𝛼∗2(𝐺∗)… , 𝛼∗𝐾(𝐺∗)} is 
related to the initial estimate 𝛼′ in the same fashion that multiple 
estimates 𝛼′ are related to the true value 𝛼 
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• Example 
– Assume a small dataset 𝑥 = {3,5,2,1,7}, and we want to compute the bias and 

variance of the sample mean 𝛼′ = 3.6 

• We generate a number of bootstrap samples (three in this case) 
– Assume that the first bootstrap yields the dataset {7,3,2,3,1} 

• We compute the sample mean 𝛼∗1 = 3.2 

– The second bootstrap sample yields the dataset {5,1,1,3,7} 
• We compute the sample mean 𝛼∗2 = 3.4 

– The third bootstrap sample yields the dataset {2,2,7,1,3} 
• We compute the sample mean 𝛼∗3 = 3.0 

– We average these estimates and obtain an average of 𝛼∗∘ = 3.2 

• What are the bias and variance of the sample mean 𝜶’? 
• 𝑩𝒊𝒂𝒔(𝜶’)  =  𝟑. 𝟐 −  𝟑. 𝟔 =  −𝟎. 𝟒 

– We may conclude then that resampling introduced a downward bias on the mean, so we 
would be inclined to use 3.6 +  0.4 =  4.0 as an unbiased estimate of 𝛼 

• 𝑽𝒂𝒓(𝜶’)  = 𝟏/𝟐 ∗ [ 𝟑. 𝟐 − 𝟑. 𝟐 𝟐 + 𝟑. 𝟒 − 𝟑. 𝟐 𝟐 + 𝟑. 𝟎 − 𝟑. 𝟐 𝟐]  =  𝟎. 𝟎𝟒 

• NOTES 
– We have done this exercise for the sample mean (so you could trace the 

computations), but 𝛼 could be any other statistical operator! 
– How many bootstrap samples should we use?  

• As a rule of thumb, several hundred resamples will suffice for most problems 

 
[Masters,1995] 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 16 

Three-way data splits 
• If model selection and true error estimates are to be computed 

simultaneously, the data should be divided into three disjoint sets 
[Ripley, 1996] 
– Training set: used for learning, e.g., to fit the parameters of the classifier 

• In an MLP, we would use the training set to find the “optimal” weights with the 
back-prop rule 

– Validation set: used to select among several trained classifiers 
• In an MLP, we would use the validation set to find the “optimal” number of 

hidden units or determine a stopping point for the back-propagation algorithm 

– Test set: used only to assess the performance of a fully-trained classifier 
• In an MLP, we would use the test to estimate the error rate after we have 

chosen the final model (MLP size and actual weights) 

 

• Why separate test and validation sets? 
– The error rate of the final model on validation data will be biased (smaller 

than the true error rate) since the validation set is used to select the final 
model 

– After assessing the final model on the test set, YOU MUST NOT tune the 
model any further! 
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– Procedure outline 

 

 

 

 

 
– This outline assumes a holdout method 

– If CV or bootstrap are used, steps 3 and 4 have to be repeated for each 
of the K folds 

 

 

1. Divide the available data into training, validation and test set 
2. Select architecture and training parameters 
3. Train the model using the training set 
4. Evaluate the model using the validation set 
5. Repeat steps 2 through 4 using different architectures and training parameters 
6. Select the best model and train it using data from the training and validation sets 
7. Assess this final model using the test set  
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Three-way data splits 
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