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L11: sequential feature selection 

• Feature extraction vs. feature selection 

• Search strategy and objective functions 

• Objective functions 
– Filters 

– Wrappers 

• Sequential search strategies 
– Sequential forward selection 

– Sequential backward selection 

– Plus-l minus-r selection 

– Bidirectional search 

– Floating search 
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Feature extraction vs. feature selection 
• As discussed in L9, there are two general approaches to dim. reduction 

– Feature extraction: Transform the existing features into a lower dimensional space 

– Feature selection: Select a subset of the existing features without a transformation 
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• Feature extraction was covered in L9-10 
– We derived the “optimal” linear features for two objective functions 

• Signal representation: PCA 

• Signal classification: LDA 

• Feature selection, also called feature subset selection (FSS) in the 
literature, will be the subject of the last two lectures 
– Although FSS can be thought of as a special case of feature extraction (think of a 

sparse projection matrix with a few ones), in practice it is a quite different problem 

– FSS looks at the issue of dimensionality reduction from a different perspective  

– FSS has a unique set of methodologies 
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Feature subset selection 
• Definition 

– Given a feature set 𝑋 = {𝑥𝑖  | 𝑖 = 1…𝑁}, find a subset 𝑌𝑀, with 𝑀 < 𝑁, 
that maximizes an objective function 𝐽(𝑌), ideally 𝑃 𝑐𝑜𝑟𝑟𝑒𝑐𝑡  

𝑌𝑀 = 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑀 = arg ma𝑥
𝑀,𝑖𝑀

 𝐽 𝑥𝑖| 𝑖 = 1. . 𝑁  

• Why feature subset selection? 
– Why not use the more general feature extraction methods, and simply 

project a high-dimensional feature vector onto a low-dimensional space? 

• Feature subset selection is necessary in a number of situations 
– Features may be expensive to obtain 

• You evaluate a large number of features (sensors) in the test bed and select 
only a few for the final implementation 

– You may want to extract meaningful rules from your classifier 
• When you project, the measurement units of your features (length, weight, 

etc.) are lost 

– Features may not be numeric, a typical situation in machine learning 

• In addition, fewer features means fewer model parameters 
– Improved the generalization capabilities  
– Reduced complexity and run-time 
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Search strategy and objective function 
• FSS requires  

– A search strategy to select candidate subsets  

– An objective function to evaluate these candidates 

• Search strategy 

– Exhaustive evaluation of feature subsets involves 𝑁
𝑀

 
combinations for a fixed value of 𝑀, and 
2𝑁 combinations if 𝑀 must be optimized as well 
• This number of combinations is unfeasible, even for 

moderate values of 𝑀 and 𝑁, so a search procedure must 
be used in practice 

• For example, exhaustive evaluation of 10 out of 20 features 
involves 184,756 feature subsets; exhaustive evaluation of 
10 out of 100 involves more than 1013 feature subsets 
[Devijver and Kittler, 1982] 

– A search strategy is therefore needed to direct the FSS 
process as it explores the space of all possible 
combination of features 

• Objective function 
– The objective function evaluates candidate subsets and 

returns a measure of their “goodness”, a feedback signal 
used by the search strategy to select new candidates 

 

Feature Subset Selection 
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Objective function 

• Objective functions are divided in two groups 
– Filters: evaluate subsets by their information content, e.g., interclass 

distance, statistical dependence or information-theoretic measures 

– Wrappers: use a classifier to evaluate subsets by their predictive 
accuracy (on test data) by statistical resampling or cross-validation 
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Filter types 

• Distance or separability measures 
– These methods measure class separability using metrics such as 

• Distance between classes: Euclidean, Mahalanobis, etc. 

• Determinant of 𝑆𝑊
−1𝑆𝐵 (LDA eigenvalues) 

• Correlation and information-theoretic measures 
– These methods are based on the rationale that good feature subsets 

contain features highly correlated with (predictive of) the class, yet 
uncorrelated with (not predictive of) each other 

– Linear relation measures 

• Linear relationship between variables can be measured using the 
correlation coefficient  

𝐽 𝑌𝑀 =
 𝜌𝑖𝑐 
𝑀
𝑖=1

  𝜌𝑖𝑗 
𝑀
𝑗=𝑖+1

𝑀
𝑖=1

 

• Where 𝜌𝑖𝑐 is the correlation coefficient between feature 𝑖 and the class 
label and 𝜌𝑖𝑗 is the correlation coefficient between features 𝑖 and 𝑗 
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– Non-linear relation measures 

• Correlation is only capable of measuring linear dependence 

• A more powerful measure is the mutual information 𝐼(𝑌𝑘; 𝐶) 

𝐽 𝑌𝑀 = 𝐼 𝑌𝑀; 𝐶 = 𝐻 𝐶 − 𝐻 𝐶|𝑌𝑀 =  𝑝 𝑌𝑀, 𝜔𝑐 𝑙𝑜𝑔
𝑝 𝑌𝑀, 𝜔𝑐
𝑝 𝑌𝑀 𝑃 𝜔𝑐

𝑑𝑥
𝑌𝑀

𝐶

𝑐=1

 

• The mutual information between the feature vector and the class label 
𝐼(𝑌𝑀; 𝐶) measures the amount by which the uncertainty in the class 𝐻(𝐶) 
is decreased by knowledge of the feature vector 𝐻(𝐶|𝑌𝑀), where 𝐻(·) is 
the entropy function 

• Note that mutual information requires the computation of the 
multivariate densities 𝑝(𝑌𝑀) and 𝑝 𝑌𝑀, 𝜔𝑐 , which is ill-posed for high-
dimensional spaces 

• In practice [Battiti, 1994], mutual information is replaced by a heuristic 
such as  

𝐽 𝑌𝑀 =  𝐼 𝑥𝑖𝑚; 𝐶

𝑀

𝑚=1

− 𝛽   𝐼 𝑥𝑖𝑚; 𝑥𝑖𝑛

𝑀

𝑛=𝑚+1

𝑀

𝑚=1
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Filters vs. wrappers 
• Filters 

– Fast execution (+): Filters generally involve a non-iterative computation on the 
dataset, which can execute much faster than a classifier training session 

– Generality (+): Since filters evaluate the intrinsic properties of the data, rather than 
their interactions with a particular classifier, their results exhibit more generality: 
the solution will be “good” for a larger family of classifiers 

– Tendency to select large subsets (-): Since the filter objective functions are 
generally monotonic, the filter tends to select the full feature set as the optimal 
solution. This forces the user to select an arbitrary cutoff on the number of 
features to be selected 

• Wrappers 
– Accuracy (+): wrappers generally achieve better recognition rates than filters since 

they are tuned to the specific interactions between the classifier and the dataset 

– Ability to generalize (+): wrappers have a mechanism to avoid overfitting, since 
they typically use cross-validation measures of predictive accuracy  

– Slow execution (-): since the wrapper must train a classifier for each feature subset 
(or several classifiers if cross-validation is used), the method can become 
unfeasible for computationally intensive methods 

– Lack of generality (-): the solution lacks generality since it is tied to the bias of the 
classifier used in the evaluation function. The “optimal” feature subset will be 
specific to the classifier under consideration 
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Search strategies 
• Exponential algorithms (Lecture 12) 

– Evaluate a number of subsets that grows exponentially with the dimensionality of 
the search space 
• Exhaustive Search (already discussed) 

• Branch and Bound 

• Approximate Monotonicity with Branch and Bound 

• Beam Search 

• Sequential algorithms (Lecture 11) 
– Add or remove features sequentially, but have a tendency to become trapped in 

local minima 
• Sequential Forward Selection 

• Sequential Backward Selection 

• Plus-l Minus-r Selection 

• Bidirectional Search 

• Sequential Floating Selection 

• Randomized algorithms (Lecture 12) 
– Incorporate randomness into their search procedure to escape local minima 

• Random Generation plus Sequential Selection 

• Simulated Annealing 

• Genetic Algorithms 
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Naïve sequential feature selection 
• One may be tempted to evaluate each individual 

feature separately and select the best M features 
– Unfortunately, this strategy RARELY works since it does not 

account for feature dependence 

• Example 
– The figures show a 4D problem with 5 classes 

– Any reasonable objective function will rank features 
according to this sequence: 𝐽(𝑥1) > 𝐽(𝑥2) ≈ 𝐽(𝑥3) > 𝐽(𝑥4) 
• 𝑥1 is the best feature: it separates 𝜔1, 𝜔2, 𝜔3 and 𝜔4, 𝜔5  

• 𝑥2 and 𝑥3 are equivalent, and separate classes in three groups 

• 𝑥4 is the worst feature: it can only separate 𝜔4 from 𝜔5 

– The optimal feature subset turns out to be {𝑥1, 𝑥4}, because 
𝑥4 provides the only information that 𝑥1 needs: 
discrimination between classes 𝜔4 and 𝜔5 

– However, if we were to choose features according to the 
individual scores 𝐽(𝑥𝑘), we would certainly pick 𝑥1 and either 
𝑥2 or 𝑥3, leaving classes 𝜔4  and 𝜔5 non separable 
• This naïve strategy fails because it does not consider features 

with complementary information 
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Sequential forward selection (SFS) 
• SFS is the simplest greedy search algorithm 

– Starting from the empty set, sequentially add the feature 𝑥+  
that maximizes 𝐽(𝑌𝑘 + 𝑥

+) when combined with the  
features 𝑌𝑘  that have already been selected 

 
 
 
 

• Notes 
– SFS performs best when the optimal subset is small 

• When the search is near the empty set, a large  
number of states can be potentially evaluated 

• Towards the full set, the region examined by SFS  
is narrower since most features have already been selected 

– The search space is drawn like an ellipse to  
emphasize the fact that there are fewer states  
towards the full or empty sets 
• The main disadvantage of SFS is that it is unable  

to remove features that become obsolete after  
the addition of other features 

 
 
 
 
 
 

1. Start with the empty set 𝑌0 = {∅} 
2. Select the next best feature 𝑥+ = arg max

𝑥∉𝑌𝑘

𝐽 𝑌𝑘 + 𝑥  

3. Update 𝑌𝑘+1 = 𝑌𝑘 + 𝑥
+;  𝑘 = 𝑘 + 1 

4. Go to 2 

Empty feature set 

Full feature set 

0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1

1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1

1 1 1 1
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Example 

• Run SFS to completion for the following objective function 
 𝐽 𝑋 = −2𝑥1𝑥2 + 3𝑥1 + 5𝑥2 − 2𝑥1𝑥2𝑥3 + 7𝑥3 + 4𝑥4 − 2𝑥1𝑥2𝑥3𝑥4 

• where 𝑥𝑘 are indicator variables, which indicate whether the 𝑘𝑡ℎ feature 
has been selected 𝑥𝑘 = 1  or not 𝑥𝑘 = 0  

• Solution 

 
J(x1)=3 J(x2)=5 J(x3)=7 J(x4)=4 

J(x3x1)=10 J(x3x2)=12 J(x3x4)=11 

J(x3x2x1)=11 J(x3x2x4)=16 

J(x3x2x4x1)=13 
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Sequential backward selection (SBS) 

• SBS works in the opposite direction of SFS 
– Starting from the full set, sequentially remove the feature 𝑥− that 

least reduces the value of the objective function 𝐽(𝑌 − 𝑥−) 

• Removing a feature may actually increase the objective function 
𝐽(𝑌𝑘 − 𝑥

−) >  𝐽(𝑌𝑘); such functions are said to be non-monotonic (more 
on this when we cover Branch and Bound) 

 

 

 

 

• Notes 
– SBS works best when the optimal feature subset  

is large, since SBS spends most of its time visiting  
large subsets 

– The main limitation of SBS is its inability to  
reevaluate the usefulness of a feature after it has been discarded 

 

 

 

 

 

1. Start with the full set 𝑌0 = 𝑋 
2. Remove the worst feature 𝑥− = arg max

𝑥∈𝑌𝑘

𝐽 𝑌𝑘 − 𝑥  

3. Update 𝑌𝑘+1 = 𝑌𝑘 − 𝑥
−;  𝑘 = 𝑘 + 1 

4. Go to 2 

Empty feature set 

Full feature set 
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Plus-L minus-R selection (LRS) 

• A generalization of SFS and SBS 
– If L>R, LRS starts from the empty set  

and repeatedly adds L features and  
removes R features 

– If L<R, LRS starts from the full set and  
repeatedly removes R features  
followed by L additions 

 

• Notes 
– LRS attempts to compensate for the  

weaknesses of SFS and SBS with some  
backtracking capabilities 

– Its main limitation is the lack of a  
theory to help predict the  
optimal values of L and R 

 

 

 

 

 

 

1. If L>R  then 𝑌0 = ∅  
 else 𝑌0 = 𝑋; go to step 3 

2. Repeat L times 
 𝑥+ = arg max

𝑥∉𝑌𝑘

𝐽 𝑌𝑘 + 𝑥  

 𝑌𝑘+1 = 𝑌𝑘 + 𝑥
+;  𝑘 = 𝑘 + 1 

3. Repeat R times 
 𝑥− = arg max

𝑥∈𝑌𝑘

𝐽 𝑌𝑘 − 𝑥  

 𝑌𝑘+1 = 𝑌𝑘 − 𝑥
−;  𝑘 = 𝑘 + 1 

4. Go to 2  

Empty feature set 

Full feature set 
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Bidirectional Search (BDS) 

• BDS is a parallel implementation of SFS and SBS 
– SFS is performed from the empty set 

– SBS is performed from the full set 

– To guarantee that SFS and SBS converge to the same solution 

• Features already selected by SFS are not removed by SBS 

• Features already removed by SBS are not selected by SFS 

 

 

 

Empty feature set 

Full feature set 

1. Start SFS with 𝑌𝐹 = ∅  
2. Start SBS with 𝑌𝐵 = 𝑋 
3. Select the best feature 

𝑥+ = arg max
𝑥∉𝑌𝐹𝑘  

𝑥∈F𝐵𝑘

𝐽 𝑌𝐹𝑘 + 𝑥  

𝑌𝐹𝑘+1 = 𝑌𝐹𝑘 + 𝑥
+ 

4. Remove the worst feature 

𝑥− = arg max
𝑥∈𝑌𝐵𝑘
𝑥∉𝑌𝐹𝑘+1

𝐽 𝑌𝐵𝑘 − 𝑥  

 𝑌𝐵𝑘+1 = 𝑌𝐵𝑘 − 𝑥
−;  𝑘 = 𝑘 + 1 

5. Go to 2 
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Sequential floating selection (SFFS and SFBS) 

• An extension to LRS with flexible backtracking capabilities 
– Rather than fixing the values of L and R, these floating methods allow 

those values to be determined from the data:  

– The dimensionality of the subset during the search can be thought to 
be “floating” up and down 

• There are two floating methods 
– Sequential floating forward selection (SFFS) starts from the empty set 

• After each forward step, SFFS performs backward steps as long as the 
objective function increases 

– Sequential floating backward selection (SFBS) starts from the full set 

• After each backward step, SFBS performs forward steps as long as the 
objective function increases 
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• SFFS Algorithm (SFBS is analogous) 

 
Empty feature set 

Full feature set 

1. 𝑌 = ∅  
2. Select the best feature 
𝑥+ = arg max

𝑥∉𝑌𝑘

𝐽 𝑌𝑘 + 𝑥  

𝑌𝑘 = 𝑌𝑘 + 𝑥
+; 𝑘 = 𝑘 + 1 

3. Select the worst feature* 
𝑥− = arg max

𝑥∈𝑌𝑘

𝐽 𝑌𝑘 − 𝑥  

4.  If 𝐽 𝑌𝑘 − 𝑥
− > 𝐽 𝑌𝑘  then 

 𝑌𝑘+1 = 𝑌𝑘 − 𝑥
−;  𝑘 = 𝑘 + 1 

 Go to step 3 
 Else 
 Go to step 2 

*Notice that you’ll need to do  
book-keeping to avoid infinite loops 




