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A Unified Account of the Effects of
Distinctiveness, Inversion, and Race in Face
Recognition

Tim Valentine
University of Manchester, U K.

A framework is outlined in which individual faces are assumed to be encoded as
a point in a multidimensional space, defined by dimensions that serve to
discriminate faces. It is proposed that such a framework can account for the
effects of distinctiveness, inversion, and race on recognition of faces. Two
specific models within this framework are identified: a norm-based coding
model, in which faces are encoded as vectors from a population norm or
prototype; and a purely exemplar-based model.. Both models make similar
predictions, albeit in different ways, concerning the interactions between the
effects of distinctiveness, inversion and race. These predictions were supported
in five experiments in which photographs of faces served as stimuli. The norm-
based coding version and the exemplar-based version of the framework cannot
be distinguished on the basis of the experiments reported, but it is argued thata
multidimensional space provides a useful heuristic framework to investigate
recognition of faces. Finally, the relationship between the specific models is
considered and an implementation in terms of parallel distributed processing is
briefly discussed.

The rated distinctiveness of a face, the orientation in which it is seen, and the

race of a face are all factors known to influence the ability of an observer to
subsequently recognize the face. There has been a tendency for each of these
factors to be investigated in isolation largely appealing to different theoreti-
cal explanations. In the present paper it is proposed that similarity between
faces can account for the effects of all three factors. First the current

~ literature on the effects of distinctiveness and inversion is reviewed briefly. In
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162  VALENTINE

the second section a general framework is proposed in which it is assumeq
that faces can be represented by a point in a multidimensional space. Within
this framework, two models can be identified. One model assumes a norm or
prototype is abstracted, the other model is purely exemplar-based. Predic.
tions based on these models concerning the interaction between the effects of
distinctiveness and inversion in face processing tasks are tested in Experi.
ments 1-4. The multidimensional space framework is then extended tq
account for the effect of race. Experiment 5 tests a prediction derived from
the framework concerning the interaction between the effects of race and
inversion. In the General Discussion the relationship between the norm-
based and purely exemplar-based versions of the framework and other
models of race recognition are discussed.

Any model of visual object recognition must specify how stored knowl-
edge is used to facilitate recognition of visual stimuli (Palmer, 1975). Palmer
cited faces as an example of a perceptual category that would include in its
representation information about the prototypical values (or central tend-
ency) of the relevant dimensions. Such information would be specific to face
processing. Fodor (1983) proposes a similar view of face processing in his
suggestion that faces are “favourite candidates” for an eccentric stimulus
domain—that is, a domain ‘“whose perceptual analysis requires information
that is highly specific to the domain in question.” (Fodor, 1983, pp. 51-52).

The effect of distinctiveness on the recognition of faces provides some
indication that category-specific knowledge, presumably acquired through
experience of the population of faces previously seen, is used to facilitate
recognition of faces encountered subsequently. Generally, previously unfa-
miliar faces that are rated as distinctive or unusual are more accurately
recognized in a recognition memory paradigm. Conversely, typical faces are
more likely to be incorrectly identified as having been seen before (Going &
Read, 1974; Cohen & Carr, 1975; Light, Kayra-Stuart, & Hollander, 1979;
Winograd, 1981; Bartlett, Hurry, & Thorley, 1984). An effect of distinctive-
ness has been found in three measures of recognition memory performance—
hit rate, false positive rate, and combined measures of sensitivity based on
signal detection theory. The exact nature of the effect varies slightly from
study to study, but generally the advantage found for distinctive faces in false
positive rate and sensitivity measures is robust. The effect on hit rate seems to
be dependent upon the procedure and is found most often when the initial
encoding conditions are good, involving trait judgement encoding activities
and/or relatively long exposure times of 8 sec (Light et al., 1979).

Light et al. (1979) proposed a two-component theory of memory based on
inter-stimulus similarity in order to account for the effect of distinctiveness.
They suggested that a distinctive face is more likely to access a specific
memory because it s less similar to specific memories of other faces. Thus

FACE RECOGNITION 163

ccess to specific memory gives rise to an advantage in hi'.c rate for distinctive
2 However, in the absence of a specific memory, Light and colleague.s
faocse.:sted that subjects base their recognition judgement on schematic
suegriory of category structure (e.g. similarity to a prototype): Use of
::;hematic memory gives rise to the greater false positive rate .to'typ‘lcal face.s.
In contrast, Bartlett et al. (1984) interpreted the effect of distinctiveness in
terms of familiarity information alone (cf. M.an.dlef, 1980). Bartlett .and
colleagues suggested that presentation of a dls.tmctwe face result_ed in a
greater increment in familiarity than that resu.ltmg from pFesent.atlon of a
typical face. Valentine and Bruce (1986}'{) e)‘(am‘med the rt?latIOI.lshlp betwgen
the effects of distinctiveness and famlharm{ in processing hlgl}ly tjamlllar
faces. It was found that both the rated distinctiveness z.mq famll?a.rlty of a
face affected the RT to decide it was familiar in a familiarity dec1s19n task.
The more distinctive or the more familiar a face was rated, the fgster it could
be recognized. However, the two effects were found to be. independent,
suggesting that familiarity information does not fom the‘ basis of the eﬁ'ect
of distinctiveness. (See Valentine, 1990, for further discussion of the relation-
ship between distinctiveness and familiarity.) o

Valentine and Bruce (1986c) argued that if the effect of distinctiveness on
the latency to recognize familiar faces arises from the rc_>le of a facial
prototype, then distinctive faces should take longer than typlcal .faoes to be
classified as a face in a task in which faces must be distlngulshed from
jumbled faces. This prediction was confirmed. Thus di.stinctlve faces are
recognized faster in a familiarity decision task but classified as faces more
slowly than are typical faces. Valentine and Bruce suggest that a ge.ner.al' face
prototype is extracted from faces previously encountered and that individual
faces are stored as a set of transformations required to match the face to the
prototype. This proposal was termed ““the prototype hypot.h.esis”.

Further evidence of prototype abstraction in face recognition comes fr-om
the study of caricature in recognizing faces. Perkins (1975) dess:ril?es.) carica-
ture as a process of exaggerating the distinctive features that md1v1dua-1t.e a
particular face. Rhodes, Brennan, and Carey (1987) stud.ied the recognition
of computer-generated caricatures. Veridical line dra“{mgs of faces were
generated by joining the co-ordinates of 169 specified points on ea.ch face by
lines. A norm was generated by averaging the pgsition of these points across
several faces. Caricatures were then generated by increasing the distance
between the location at each point in an individual’s face and the norm by a
fixed proportion. An anti-caricature could be generated by reducing the
differences between a face and a norm. Rhodes and colleagues found that
caricatures were recognized faster than veridical line drawings, which in turn
were recognized faster than anti-caricatures; however, there were no dif-
ferences in accuracy in recognizing the three classes of faces. They interpret
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their result as evidence of norm-based coding, a holistic encoding process ip
which the distinctive aspects of faces are encoded by comparison to a norm
or average face.

Both Valentine and Bruce (1986b, 1986¢c) and Rhodes et al. (1987) have,
quite independently, proposed very similar accounts of the role of a
prototype or norm in face recognition. There are clear parallels between
these hypotheses and Goldstein and Chance’s (1980) proposal that the role of
a face schema can account for the development of the effect of race and
inversion in face recognition. Adults recognize other-race faces less accur-
ately than own-race faces. However, young children recognize other-race
faces and own-race faces with equal accuracy (Goldstein & Chance, 1980;
Chance, Turner, & Goldstein, 1982). Analogous results are also found for the
effect of inversion on face recognition. Adults show a large effect of stimulus
inversion on their ability to recognize faces. Indeed, the effect of inversion on
face recognition is disproportionately large compared to the effect of
inversion on recognition of other stimulus classes (Yin, 1969). However,
young children show little effect of inversion upon recognition memory for
faces (Goldstein, 1975). Goldstein and Chance account for the development
of the effects of race and inversion by arguing that with increasing age
children become more efficient in their use of a face schema, leading to better
face recognition performance. However, this increase in efficiency is accom-
panied by an increase in “schema rigidity”, so that as the schema develops, it
becomes relatively less efficient at processing unusual stimuli such as inverted
or other-race faces.

Goldstein and Chance’s (1980) face schema theory has the basic idea that
knowledge of the population of faces is acquired and used in face processing
in common with the prototype hypothesis. However the evidence, from the
development of the effects of race and inversion on face recognition, used to
support schema theory is equivocal. Goldstein and Chance (1980) found
considerable improvement in face recognition ability across the age range 6
12 years but did not find an interaction between the effect of race and age in
this range. In a later study Chance et al. (1982) did find an Age of
Subject x Race of Stimulus Face interaction in this age range. However,
other studies (Cross, Cross, & Daley, 1971; Kagan & Klein, 1973; Feinman &
Entwisle, 1976) have failed to find an increase in the effect of race with age.
Recent work on the development of the effect of inversion on face recogni-
tion has also shown that earlier work has overstated the effect. Although the
ability to recognize upright faces improves faster than the ability to recognize
inverted faces, young children do show an effect of inversion, and the ability
to recognize inverted faces does improve with age (Flin, 1985; see Valentine,
1988, for a review of the effect of inversion on face recognition).
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piamond and Carey (1986) have demonstrated that .recognit'ion of
nother stimulus class is as adversely affected by inversion as is face
2 ognition. It was found that dog experts showed a similarly large effect of
ir:f,ersion on their ability to recognize individual dggs. Diamond and Carey
argue that a large effect of inversion will be found if: (1) tht", exemplar's ofh a
stimulus class have a common configuration but subtle dlﬁ'ere.nces in the
spatial relations between the features (term;d second-c?rder rel.atl'onal. infor-
mation); and (2) the observers have sufficient experflse to d1§t1ngulsh the ,
exemplars of the stimulus class on the basis of the.se dlﬁ‘f:ren.ccs in conﬁgural
information. Thus the disproportionate effect of inversion is 1.10t specxﬁc to
faces but likely to be found for recognition of any highly familiar and highly
eneous stimulus class.
horlrxl)osgummary, the prototype hypothesis (Valentine & Bruce, 1986b, 1986c¢),
the norm-based coding model (Rhodes et al., 1987), schema theo.ry (Ggld-
stein & Chance, 1980), and Diamond and Carey’s (1?86) st}ldy of inversion,
together, suggest that the effects of distinctiveness, inversion, and race on
face recognition could all be explained by the rqle of knowledge of the
population of faces previously encountered. Valentine and Bruce, Rhodes et
al., and Goldstein and Chance have all proposed that a prototype, norm, or
schema is abstracted. However, alternative accounts can also be forml'llated,
which are based on inter-stimulus similarity but do not assume the .ex1stence
of a stored face prototype. For instance, this would be in keeping with recent
models in the concept learning literature (e.g. Medin & Schaffer, 1978;
Nosofsky, 1986).

In the next section a framework is proposed in which faces are assumed to
be encoded as points in a multidimensional space. Two specific models are
identified. In one model faces are encoded by reference to an a.bstracted norm
or prototype. In order to avoid possible confusion with the dlﬁ”e'rent ways in
which the term “prototype” has been used in the concept learning and face
recognition literature, I will adopt the term used by Rhodes and colleagues
and refer to this model as the “norm-based coding model”. The other model
identified assumes that a norm is not abstracted and that only specific faces
(or category exemplars) are stored. This will be referred to as the “‘exemplar-
based model”. The term “multidimensional space framework™ will be used
as a generic term to refer to both the norm-based and exemplar-based
models.

The experiments reported do not aim to distinguish between the norm-
based and exemplar-based models. Indeed, the two models make‘ sm_'nlar
predictions, although based on some different assumptions. The aim is to
show that knowledge of the population of faces can provide a parsimonious
account of the effects of distinctiveness, inversion, and race.
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A Framework for Coding Processes
in Face Recognition

The main assumption of the proposed framework is that a location in 3
Euclidean multidimensional space provides an appropriate metaphor for the
mental representation of a face.! The dimensions of the space represent the
physiognomic features that are used to encode faces. No attempt will be
made to identify the aspects of a face that the dimensions represent.
However, previous work using multidimensional scaling techniques suggest
that the principal dimensions needed would represent hair colour and length,
face shape, and age (at least for the caucasian faces, which are “own-race”
for the subjects in the experiments reported here: see Shepherd & Dere-
gowski, 1981). It is assumed that the number of dimensions could be large

enough to represent any aspect of a face that could serve to discriminate -
between faces. At this stage in the discussion it will be assumed that the :
overwhelming majority of faces encountered are own-race faces. Although -

the model to be described will be discussed in terms of dimensions rather
than features, this does not mean to exclude the possibility that the processes

involved may be based on frequency information of discrete feature values, :
However, dimensions appear to cope more naturally with discrimination .
within a stimulus class of which all exemplars share a common structure, -
such as faces. This view is in line with Garner’s (1978) definition of a .

dimension as “‘an attribute that exists for each stimulus in the relevant set at
some positive, mutually exclusive value” (p. 104).

The origin of the multidimensional space is defined as the central tendency .

of the dimensions. It is assumed that the values of the feature dimensions of
the population of faces experienced will vary normally around the central

tendency (at least for own-race faces). Therefore by definition, typical faces .
(close to the central tendency) will be seen more often than distinctive faces .

(distant from the central tendency). Thus the density of points (i.e. the
number of previously seen faces) will decrease as the distance from the
central tendency increases. The population of points will include familiar
faces in addition to many points representing faces that have been seen
previously, but would not necessarily be “familiar” in the sense that they
could be identified. Thus, an implicit knowledge derived from a lifetime’s
experience with faces contributes to the normal distribution of faces within
the multidimensional space.

The implicit kihowledge of faces is something a subject brings to an
experiment, and it is assumed that the effect of the set of faces used within an
experiment will have an insignificant influence compared to a lifetime’s

'The assumption of a Euclidean metric is only made for simplicity in the absence of any
evidence of the most appropriate metric. As the dimensions are not identified, the metric of the
space is not an issue addressed in the current paper.

i
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experience of faces. Therefore, the propo.sed. fram;work is funfiarpentally
different from the theoretical basis of studies in which sets of artificial faces
have been manipulated within an experimental context (e.g. Reed, 1972;
Goldman & Homa, 1977; Neumann, 1977; Das-Smaal &_Df’ Swart, 19.84?;
Malpass & Hughes, 1986). As the distribution of faces within the .mu.ltldr-
mensional space is assumed to emerge as a consequence of a lifetime’s
experience, it is important to use photographs of real faces in order to
investigate the influence of such implicit knowledge. Phqtographs of faces are
stimuli that vary along the same dimensions and \&flth the same centra}l
tendencies as the population of faces previously experienced. Of course th.lS
would not be true of an artificially constructed set of faces (e.g. schex‘na.tlc
faces, photo-fit faces), therefore performance in tasks based upon artificial
stimulus sets might be unaffected by knowledge of the population of real
faces. It is impossible to distinguish distance-based and. frequency-based
models because the exemplars that contribute to the implicit knowledge of
faces cannot be controlled experimentally. '

At this point, two specific models based on the multidimensional space
framework need to be distinguished. A norm-based coding model will b.e
described first, in which it is assumed that faces are encoded in terms of tbe}r
deviation from a single general face norm or prototype located at the origin
of the space (i.e. representing the central tendency). I.t i§ assgmed. that there is
only a single norm (Valentine & Bruce, 1986c). This is quite dllfferent from
the notion of a different prototype to represent each type or “fan}lly” qf facejs
(cf. Ellis & Christie cited in Ellis, 1981). If the number (.)f' dlmensmns. is
denoted by n, an n-dimensional vector from the norm (or onglq) to the pox.nt
representing the dimension values of a particular face can un'lqu‘cly specify
that face. Figure 1 illustrates the norm-based coding model using just a two-
dimensional rather than a multidimensional space for the purposes of
illustration only. .

The recognition process can be viewed as involving two stages. First, a
stimulus face is encoded as an n-dimensional vector. Second, some form of
decision process is required to determine whether or not the stimulus matches
a vector for a known face. The encoding process is assumed to have some
associated error or noise, which will depend upon the encoding conditions.
Therefore, under difficult viewing conditions, the vector derived will have.a
relatively large associated error estimate, which could be represeqted in
Figure 1 as a region of uncertainty around the co-ordinates of t_he stimulus
vector. It is assumed that the confidence signalled by the decision process
depends on: (1) the error associated with the vector derived .from the
stimulus face; (2) a measure of similarity between the vector derived from
the stimulus and the vector corresponding to the nearest known face; and
(3) the similarity between the stimulus vector and the vector of the next
nearest neighbour. The measure of similarity used is assumed to be some
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FIG. 1. A A two-dimensional representation of a norm-based coding model of face recognition.
Ea.clil point plotted represents a previously seen face located in an n-dimensional space. The
origin represents a general face norm. Two dimensions are used in this figure for the purposes of

illus.tralion only. The axes are unlabelled but could represent any dimension that could be used
to discriminate faces.

function of a vector similarity measure such as the dot product between two
v‘ectors. (See Micko, 1970, for a discussion of vector-based measures of
similarity in multidimensional scaling.)

The exemplar-based model assumes that there is no extracted norm or
prf)totype. The model is similar to the norm-based coding model, except that
1t 1s more appropriate to consider faces as being encoded as points rather
than \"ectors. The origin of the multidimensional space plays no part in
encoding stimuli, it merely indicates the point of maximum exemplar density.
The exemplar-based model assumes that similarity between two faces is a
monotonic function of the distance separating the representations of the
faces in the multidimensional space. The decision process is assumed to
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depend on: (1) the estimate of error associated with encoding the stimulus;
(2) the distance between the location of the stimulus and the nearest known
face; and (3) the distance between the stimulus and the next nearest
neighbour.

It should be noted that though both the norm-based coding and the
exemplar-based models are nearest neighbour exemplar models, they differ in
the role of an abstracted norm in coding and the use of a vector- or distance-
based measure of similarity. (See Valentine, 1990, for further discussion of

this point.)

Predictions Derived from the Framework

Both the norm-based coding model and the exemplar-based model account
for the effects of distinctiveness found in recognition of faces by appealing to
exemplar display. Distinctive faces are located in regions where the density of
points is low. Therefore, when a distinctive familiar face is encountered in a
recognition task, the location encoded in the multidimensional space will be
much closer to the representation of the “target” face stored in memory than
to the location of another face. (By definition, few faces will resemble a
distinctive face.) In addition, the error associated with the encoded location
is likely to be small compared to the distance to the nearest neighbour,
especially under good encoding conditions. Therefore, the face can be
identified accurately and rapidly. If the face presented is a typical familiar
face, the location derived from this face is close to the central tendency, so it
will fall in a region in which there is a high density of points. Although the
location of the stimulus will be close to the location of the target face, it will
also probably be close to other previously seen but “unfamiliar” faces.
Therefore the decision as to whether the stimulus is closer to the location of
the familiar face than to a nearby “unfamiliar” face will be more difficult,
rendering it slower and more error-prone. The multidimensional space
framework therefore predicts that distinctive familiar faces will be recognized
more accurately or more quickly than typical familiar faces.

Consider the case of a face that has not been seen before being encoun-
tered. Of course there is no stored description for the face in memory. If the
stimulus face is distinctive, the density of points around it will be low.
Therefore, it is unlikely that the location of a.previously seen face will be
close enough to the stimulus with its associated error to give a false positive.
If the stimulus face is a typical unfamiliar face, its derived location will be in a
region of a high density of points. Therefore, it is more likely to be close to
the representation of a previously seen face. If the similarity between the
encoded face and a previously seen face is sufficiently high, a false positive
will result. Thus the framework predicts that distinctive unfamiliar faces can
be rejected more accurately or more quickly than typical unfamiliar faces.
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Both the norm-based coding model and the exemplar-based model clearly
predict an effect of distinctiveness in correctly rejecting unfamiliar faces in g
familiarity decision task. However, Valentine and Bruce (1986c¢) found g
trend in the opposite direction that did not reach statistical significance. It js
possible that the failure to find the expected effect in rejecting unfamiliar
faces was the result of an artifact of the stimulus sets used. This prediction of
the framework is examined in Experiment 3.

The norm-based coding model and the exemplar-based model both
account for the effect of distinctiveness on recognition in terms of exemplar
density. However, the role of a vector similarity measure in the norm-based
coding model produces an effect that works against the effect of distinctive-
ness. In the norm-based coding model the similarity between two faces that
are equi-distant in the space is dependent on the distance of the points from
the norm. Consider two pairs of points (A, B and C, D) located such that the
distance between A and B is equal to the distance between C and D. [A
possible arrangement is shown in Figure 2. In this figure A and B are
equidistant from the origin (O), as are C and D.] If a similarity measure that
is based on the distance between exemplars is used (as in the exemplar-based
model), A and B are as equally similar to each other as are C and D.
However, the angle between the vectors OA and OB is greater than the angle
between the vectors OC and OD, and so the faces represented by OA and OB
will be more dissimilar than the faces represented by OC and OD. Thus in the
norm-based coding model, faces separated by a given distance will be more
difficult to discriminate, the further they are from the norm. The norm-based

0 <

FIG. 2. Anillustration of the effect of distance from the norm on similarity in the norm-based
coding model. The distance between A and B is the same as the distance between C and D, but
the angle between vectors OA and OB is greater than the angle OC and OD. See text for
explanation.
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coding model can still support the prediction that distinctive faces can be
more accurately recognized than typical faces because distinctive faces are
jess densely clustered (i.e. further apart from each other) than typical faces.
However, it is necessary to assume that the effect due to the difference in
exemplar density is greater than the opposite effect due to distance from the
norm on the vector similarity measure.

It was noted above that the effect of distinctiveness found in a face
classification task (in which faces must be distinguished from jumbled faces)
was the opposite to that found in a recognition task. The classification task
can be regarded as a judgement of how closely a stimulus resembles the
central tendency of the population of faces. In terms of the norm-based
coding model, the RT in this task will depend upon the length of the vector
derived from the stimulus face (i.e. its distance from the norm in the n-
dimensional space). The density of points in a region will be irrelevant to the
task, because there is no requirement to distinguish between faces. Therefore
typical faces should be correctly classified as a face faster than distinctive
faces, because typical faces are closer to the norm. Thus the norm-based
coding model successfully predicts the reversal of the effect of distinctiveness
between a recognition and classification task.

According to the exemplar-based model, both recognition and classifica-
tion of faces will be affected by exemplar density but in quite different ways.
In a recognition task high exemplar density makes the nearest neighbour
likely to be close to a “target” face, thus impeding the recognition decision.
The classification task has no requirement to distinguish between individual
faces. In this task exemplar-density in the region around the stimulus is used
to judge category membership, the greater the density of faces in this region,
the faster the stimulus can be classified as a face. Thus in a classification task
it is assumed that RT is determined by the exemplar density in the
multidimensional space around the location of the stimulus (Krumhansl,
1978). As distinctive faces are located in areas of lower exemplar density,
typical faces will be classified faster than distinctive faces. Both the norm-
based coding and the exemplar-based models make the same prediction of
the effect of distinctiveness on classification as a face, but the norm-based
coding model appeals to distance from the norm and the exemplar-based
model appeals to exemplar density.

Some researchers have suggested that inversion disrupts the normal face
recognition process to such an extent that different features are used to
recognize upright and inverted faces (e.g. Carey & Diamond, 1977; Diamond
& Carey, 1986). This view arose from the observation that recognition of
faces is more disrupted by inversion than recognition of other stimulus
classes (Yin, 1969). Inversion makes face recognition slower and less
accurate, but there is no compelling evidence that upright and inverted faces
are processed qualitatively differently (see Valentine, 1988, for a review). One
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aim of the multidimensional space framework is to account for the effects of
inversion on face recognition and classification. It is assumed that the |
magnitude of the error in deriving the location of a stimulus face is dependen; °
upon the encoding conditions. Presenting a face upside-down is an example 3
of one experimental manipulation that would make the encoding conditiong
difficult, leading to a large error associated with the location in the multidj. 3

mensional space derived from a stimulus face. The effect of inversion will be

represented in the framework in this way. Any experimental manipulatiop 4
that impairs recognition could be represented by assuming an increase in the
error associated with the location of the stimulus face. Thus the multidimen. ¥

sional space framework makes the strong prediction that other manipula-

tions (e.g. adding visual noise or blurring faces) should interact with
distinctiveness in the same way as inversion. However, in this paper the
concern is to account for the effect of inversion because the inversion #
paradigm has had a considerable impact on the face recognition literature, 4

Representing inversion in this way, the norm-based coding and the ¥
exemplar-based models make similar predictions concerning the interaction
between the effects of inversion and distinctiveness in a recognition task. A 1
typical unfamiliar face seen inverted will be more likely to be mis-identified a; 2eF
familiar than the same face seen upright. The high density of nearby points 3
and the relatively large error associated with the stimulus location derived 4
from an inverted face means that it is more likely to be sufficiently close to a
neighbouring point corresponding to a previously seen face to give a false 4

positive. If a typical familiar face is seen inverted, it is more likely to be

missed than when seen upright, because the increased error in deriving the |
location from the stimulus face means it is likely to be further from the ;
location that forms its representation in memory. A miss is more likely §
because there is a greater chance that a previously seen but “unfamiliar’ face
will be closer than the “target”. Of course the same arguments apply to 4l
inverted distinctive faces. Therefore, inversion should impair recognition of 4
both typical and distinctive faces. However, because the locations derived :
from distinctive faces will be in regions with a low density of points, a larger 4
error can be tolerated in recognition of distinctive faces than in recognition 48
of typical faces. Therefore, inversion should cause greater disruption to ;
recognition of typical faces than of distinctive faces. This prediction of an 2
interaction between the effects of distinctiveness and inversion was tested %

using a recognition memory paradigm in Experiment 1.

There are a number of important and as yet unanswered issues raised by
the application of a multidimensional space framework to face recognition. 3
Most notably, the dimensions of the space have not been identified, nor has ;
the dimensionality of the space required. The determinants of similarity have
also not been precisely specified —for example, the metric of the space has not 1
been determined. In view of our currently imprecise knowledge of the
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dimensions underlying face perception, and therefore our impoverished

understanding of similarity between faces, it would be premature to precisely

specify the parameters of the framework. The aim is to demonstrate that the

mu]tidimensional space framework has predictive utility and can be used to
ide future research.

A number of predictions can be derived from the multidimensional space
framework. In Experiments 1-3, the prediction Fh.at recog'ni.tion‘ of typlcz_ll
faces is more impaired by inversion than recognition of dlStlnCtIVC. faces is
tested. Experiment 4 demonstrates that this interaction is not found in a task
that does not require recognition of individual faces (an intact/jumbled face
classification task). The effect of race on face recognition is then considered
in relation to the multidimensional space framework. It is predicted that the
effect of race will interact with the effects of inversion and task demands in
the same way as distinctiveness. This analysis is consistent with data reported
by Valentine and Bruce (1986a), in which an interaction between the effects
of inversion and race on recognition memory for faces was found. In
Experiment 5 it was demonstrated that the effect of race is additive with that
of inversion in a face classification task.

EXPERIMENT 1
Method

The experiment was in two parts. First, faces were rated for distinctiveness.
Different subjects then carried out a recognition memory task.

Distinctiveness Ratings

Subjects.  Sixteen (2 male and 14 female) members of the Applied

- Psychology Unit subject panel made the distinctiveness ratings; their mean

age was 44.9 years.

Materials. The stimuli were slides of 64 faces. All were male, photo-
graphed in a full-face pose with a neutral expression. Faces with a beard,
moustache and/or glasses were included. All clothing was masked.

Apparatus. The slides were projected onto a wall using a Kodak
Carousel projector. The subject was given a remote advance button. The
faces subtended a visual angle of approximately 10° (horizontally) by 13°
(vertically).

Procedure. The procedure for rating the faces was that used by Valen-
tine and Bruce (1986c). Subjects were asked to rate each face on a 1-7 scale.
They were instructed to imagine that they had to meet each person at a
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railway station and to rate each face for how easy it would be to spot in g
crowd. A face that was very distinctive (or unusual) and so would be
relatively easy to spot in a crowd should be rated 7, a typical face that would

be difficult to identify in a crowd should be rated 1. Subjects were allowed to ¥)

proceed through the list of slides at their own pace. Four different random *
orders of the slides were used. Based on the ratings, two sets of 16 distinctive
faces (mean rating 4.86 and 4.87) were selected to serve as distinctive targets -

and distractors, respectively, in a recognition memory task. Similarly, two 7 )

sets of 16 typical faces (mean rating 3.12 and 3.13) were selected to serve ag :
typical targets and distractors, respectively. A t-test confirmed that the
distinctive and typical faces differed significantly in their distinctiveness
(#(30)=14.39, p <0.005).

Recognition Memory Task

Subjects. Twenty (5 male and 15 female) members of the APU subject :
panel acted as subjects; their mean age was 39.6 years.

Materials.  The stimuli included two full-face photographs of each target
face, one with a neutral expression (which had been used for the ratings) plus
one smiling. Only one photograph of each distractor was required, but for
half of the faces the photograph with a neutral expression used for the ratings
was substituted for one with a smiling expression.

Apparatus. The slides were projected onto a wall using a Kodak
Carousel projector. A paddle fitted to the projector was controlled auto-
matically to give a set presentation and interval time. When a slide was
projected, a timer was started automatically; it was stopped by the subject
pressing a button on the response box. The subject’s response and response
latency were recorded manually. The approximate visual angle subtended by
the faces was the same as that quoted above.

Design. There were two within-subjects factors: the distinctiveness of
the faces and the orientation of the faces at test. The experiment consisted of
two separate recognition memory tasks, one comprising typical faces and the
other distinctive faces. In order to avoid the possibility of ceiling and floor
effects due to better recognition memory for distinctive faces, a difference in
exposure time was used to equate performance on upright typical and
distinctive faces. The difference in exposure time used was based on pilot
work. Two study lists of 16 slides each were constructed, one of typical and
one of distinctive faces. In both lists half of the faces were smiling and half
had a neutral expression. Two test lists were constructed, one of 32 typical
and one of 32 distinctive faces, each consisting of 16 target and 16 distractor
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items. Different pictures (involving a change of expression) of .the target faces
were shown in the test lists. Half of both the targets ?nd dlstrgctors were
smiling, half had a neutral expression. The targets and cﬁs?rac‘tors in both test
jists were divided into two sets of 8 faces, matched on distinctiveness. One set
was presented upright, and one set was presented inverted.

Procedure.  All subjects were tested individually. They were told that
they would be shown two lists of slides of faces, and that t‘here wguld be a
recognition test immediately after each list. In the study lists typical faces
were presented for 6 sec, and distinctive faces were presented for 3 sec. There
was an interval of 2 sec between all slides. A different random or<_ier of the
study list was constructed for every two subjects. At test all slides were
presented for 5sec, with a 2-sec interval. A quasi-random order was
constructed for the test lists, with the constraint that no more than three
target or distractor faces were presented in sequence, and no more than three
consecutive faces were presented in the same orientation. A second order was
made by reversing the order in which the halves of the list were presented.
Slide order at test, the assignment of set of slides to orientation, and the order
in which typical and distinctive faces were presented were counter-balanced
across subjects. Subjects were warned that target faces would have a different
facial expression at test. They were also warned that half of the faces would
be presented upside-down and instructed to keep their heads upright when
looking at these items. Subjects were instructed to respond as quickly and as
accurately as possible.

Results

For each subject hit and false positive rates in each condition were calculated
and combined in A’ scores (Rae, 1976). A’ scores were calculated from hit
and false positives to either upright or inverted stimuli alone. The maximum
number of hits or false positives was 8. Mean A’ scores, mean number of hits
and false positives, and the mean latency of hits and correct rejections are
shown in Table 1.

An F, test was carried out on the raw data before conducting all of the
analyses reported in this paper. If F, . indicated that the assumption of
homogeneity of variance was violated, an apprapriate transformation was
made and the transformed data subjected to another F_,, test. In all analyses
reported in which a transformation has been carried out, the raw data
violated the assumption of homogeneity of variance and the transformed
data did not. When an analysis of untransformed data is reported, the raw
data did not violate the assumption of homogeneity of variance.

A’ scores were subjected to a sin'</A’ transformation prior to being
subjected to an analysis of variance (McNicol, 1972, p. 117). A within-
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TABLE 1
Mean A’ Scores, Hits,* False Positives® and Mean RT of Hits® and Correct Rejections® as 3
Function of Orientation and Distinctiveness (Experiment 1)

Upright Inverted
Distinctive Typical Distinctive Typical
A'. 0.905 0.919 0.802 0.699
Hits 6.50 6.55 5.35 4.85
F.P. ‘ 1.00 0.70 1.75 2.70
RT of hits 1356 1595 1770 2050
RT of C.R. 1418 1723 C 1767 2208

* Maximum 8.
® In msec.

subjects ANOVA gave a significant main effect of orientation, F(1, 19)=43.07
P<0.001. Upright faces were recognized more accurately than were inverte(i
faces. The main effect of distinctiveness was not significant. The interaction
between orientation and distinctiveness was significant, F(1,19)=12.32,
p<0.0025. Inversion caused a greater impairment to recognition of typical
faces than of distinctive faces. Tukey HSD tests revealed that there was a
significant effect of inversion on recognition of both distinctive and typical
faces (p<0.05), and that distinctive faces were recognized more accurately
than were typical faces only when tested upside-down (p<0.05).

A within-subjects ANOVA of hit rate data showed only a significant main
effect of orientation, F(1, 19)=25.19, p<0.001. More hits were made to
upright faces than to inverted faces. (Both other F ratios were less than 1.)
The false positive data were subjected to a sin™ / (x+3)/(n+3) transforma-
tion as many of the data points were, or were close to, zero (Johnson &
Leone, 1964). An ANOVA of the transformed false positive scores revealed a
significant main effect of orientation, F(1, 19)=17.63, p<0.001. Fewer
false positives were made to upright faces than to inverted faces. The main
effect of distinctiveness was not significant [F(1, 19)=1.22, p=0.28]. There
was a significant interaction between orientation and distinctiveness,
F(l,. 19)=8.73, p<0.01. Inverted presentation caused a greater rise in false
positive rate to typical faces than to distinctive faces. Tukey HSD tests
revealed a significant effect of orientation for typical faces (p <0.05), but not
for distinctive faces. The effect of distinctiveness was significant when stimuli
were tested inverted (p<0.05) but not when tested upright.

Mean reaction times of correct responses were also analysed. RTs of hits
and correct rejections were subjected to separate within-subjects ANOVAs.
The RT of hits were subjected to a log transformation (Winer, 1962) before
an ANOVA was carried out. Analysis of transformed RT of hits revealed a
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significant main effect of distinctiveness, F(1, 19)=7.86, p<0.02. Distinctive
faces were recognized faster than typical faces. There was also a main effect
of inversion, F(1,19)=23.74, p<0.001. Upright faces were recognized faster
than inverted faces. The interaction between these factors was not significant
(F<1). An ANOVA of the mean RTs to reject distractor faces correctly
revealed a significant main effect of distinctiveness, F(1, 19)=18.68,
p<0.001. Distinctive distractor faces were rejected more rapidly than typical
distractors. There was a significant main effect of orientation, F(1,
19)=17.72, p<0.001, but the interaction between distinctiveness and orien-
tation was not significant (F=1.33).

Discussion

The use of different exposure times was successful in approximately equating
performance in recognition of upright typical and distinctive faces. Of
course, the lack of a main effect of distinctiveness under these conditions does
not represent a failure to replicate the effect of distinctiveness on recognition
memory. Indeed, an advantage for distinctive faces was found in the latency
of both hits and correct rejections.

The accuracy data supported the predictions of the multidimensional
space framework; an interaction between distinctiveness and orientation was
found in the analysis of the 4’ and false positive data. As predicted, inversion
was more disruptive to recognition of typical than of distinctive faces.
Although the predicted interaction was not found in the analysis of hits, this
pattern of results is consistent with the results of Light et al. (1979). They
found a significant effect of distinctiveness in the analysis of d' and false
positives, but not hits in several experiments.

No interaction between the effects of distinctiveness and orientation was
found in the analyses of RT of hits and correct rejections. The lack of an
interaction in the RT of hits is consistent with the analysis of accuracy in
which no interaction was found in the hit rate. The RT of correct rejections
showed a trend in the direction of the predicted interaction that was not
significant, possibly due to the high variability of the RT data in a
recognition memory paradigm.

In order to avoid the possibility that any interaction obtained in Experi-
ment 1 may be explicable in terms of ceiling or floor effects, exposure time
was manipulated to equate performance. However, this procedure raises the
possibility that the difference in exposure time rather than the distinctiveness
of the faces can account for the interaction with orientation. The aim of
Experiment 2 was to eliminate this possible account of the Distinctiveness %
Inversion interaction by using a different method to attempt to equate
performance in recognition of distinctive and typical upright faces.
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EXPERIMENT 2

Experiment 2 was a replication of Experiment 1, except that in the initial lists
the same exposure time was used for all stimuli. In order to equate
performance, the number of faces included in the study list of distinctive

faces was increased. The number of stimuli included in the test list was
unchanged.

Method

Subjects. Twenty-eight (23 female and 5 male) members of the APU
subject panel acted as subjects. Their mean age was 31 years.

Design and Procedure. ~ All aspects of the design and procedure were the
same as Experiment 1, except for the following details. All stimuli in both the
§tudy and test lists were presented for 5sec, with a 2-sec interstimulus
interval. The study list of distinctive faces consisted of 24 faces: 16 were the
samc? faces as used in Experiment 1, and 8 new faces were included to make
t}ae list longer. The extra 8 faces were not included in the test list. The initial
list of typical faces was unchanged, consisting of 16 faces all of which were

incl}lded in the test list. Each of the four stimulus orders was used for seven
subjects.

Results

The l}it raFe and false positive rate were calculated for each subject and
combined in A’ scores. Mean A’ scores, mean number of hits and false

r[;oiiltivzes, and mean latency of hits and correct rejections are shown in
able 2.

TABLE 2
Mean A’ Scores, Hits.,' False Positives® and Mean RT of Hits® and Correct Rejections® as a
Function of Orientation and Distinctiveness (Experiment 2)

Upright Inverted
Distinctive Typical Distinctive Typical
At 0915 0.894 0.824 0.693
Hits 6.75 6.3 5.75 4.82
F.P. . 1.0 1.14 1.93 2.75
RT of hits 1242 1471 1626 1851
RT of C.R. 1382 1647 1830 1910

¢ Maximum 8.
* In msec.
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Transformed A’ scores (sin~'v/A’) were subjected to a 2 X 2 within-subjects
ANOVA. There was a significant main effect of orientation, F(1, 27)=
127.49, p<0.001. Upright faces were recognized more accurately than
inverted faces. There was also a significant main effect of distinctiveness,
F(1,27)=11.92, p<0.005. Distinctive faces were recognized more accurately
than typical faces. The interaction between inversion and distinctiveness was
significant, F(1, 27)=4.41, p<0.05. Inversion was more disruptive to recog-
nition of typical faces than to recognition of distinctive faces. Tukey HSD
tests did not reveal a significant effect of distinctiveness for either upright or
inverted faces alone. The effect of inversion was significant for both
distinctive and typical faces (p <0.05).

Hit rate data were subjected to a 2 x 2 within-subjects ANOVA. There was
a significant main effect of inversion, F(1, 27)=18.73, p<0.001. More hits
were made to upright faces than to inverted faces. The main effect of
distinctiveness was also significant, F(1, 27)=4.85, p<0.05. More hits were
made to distinctive faces than to typical faces. The interaction was not
significant [F(1, 27)=1.44, p>0.2].

A similar analysis of the false positive data was carried out. There were
significant main effects of inversion, F(1, 27)=28.43, p<0.001, and distinc-
tiveness, F(1, 27)=8.27, p<0.01. More false positives were made to inverted
than to upright faces and to typical than distinctive faces. The interaction
between inversion and distinctiveness just failed to reach the conventional
level of statistical significance [F(1, 27) = 3.28, p=0.08]. There was a trend for
the increase in false positive rate caused by inversion to be greater for typical
than for distinctive faces. Using Tukey HSD tests, the effect of inversion was
significant for both distinctive and typical faces (p<0.05). The effect of
distinctiveness was significant for faces tested inverted (p <0.05) but was not
significant for faces tested upright.

An ANOVA on the latency of hits was carried out. There was a main
effect of inversion, F(1, 27)=28.79, p<0.001. Upright faces were correctly
recognized faster than inverted faces. There was a main effect of distinctive-
ness, F(1, 27)=16.52, p<0.001. Distinctive faces were correctly recognized
faster than typical faces. There was no interaction between distinctiveness
and inversion (F<1).

The latency data for correct rejections were subjected to an ANOVA.
There was a main effect of inversion, F(1, 27)=48.19, p<0.001. Upright
faces were correctly rejected faster than inverted faces. There was a main
effect of distinctiveness, F(1, 27)=13.75, p=0.001. Distinctive faces were
correctly rejected faster than typical faces. The Inversion X Distinctiveness
interaction approached significance [F(1, 27)=3.61, p=0.07]. There was a
trend for inversion to slow correct rejections of distinctive faces more than
correct rejections of typical faces. Tukey HSD tests showed that the effect of
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inversion was significant for upright and inverted faces (»<0.05), and tha¢
the effect of distinctiveness was significant for upright faces (p <0.05) but not
for inverted faces.

Discussion

The use of a different number of faces in the study lists of distinctive and
typical faces failed to equate recognition memory performance for distinctive
and typical faces. An advantage for distinctive faces over typical faces wag
found in all five measures of performance. Although the intention was to
control for the effect of distinctiveness, this result replicates the effect of
distinctiveness on recognition memory for unfamiliar faces (e.g. Light et al.,
1979) and demonstrates that the effect is found for the stimulus set used in
Experiment 1. The critical prediction of a Distinctiveness x Inversion inter-
action in the A4’ data was supported. Inversion was more disruptive to
recognition of typical faces than of distinctive faces. This replicates the result
of Experiment 1 in a task in which exposure duration was not manipulated,
therefore the source of the interaction cannot be attributed to the use of
differential exposure duration. The interaction between distinctiveness and
inversion was not found in the analysis of hits, but it approached statistical
significance in the analysis of false positives. This pattern is similar to
Experiment 1 in which there was no interaction in the hits data but a
significant interaction in the analysis of false positives. The interaction
between distinctiveness and inversion appears weaker in Experiment 2, but
this could be due to floor and ceiling effects reducing the interaction due to
the failure to match performance on upright faces.

The analysis of the latency data showed essentially the same results as
Experiment 1. Responses were slower to typical faces than to distinctive
faces, and were slower to inverted faces than to upright faces. The Distinc-
tiveness X Inversion interaction approached significance in the analysis of RT
of correct rejections, but this was in the opposite direction to the expected
interaction. Inversion slowed responses to distinctive faces more than
responses to typical faces. There is no clear theoretical interpretation of this
trend, and there was no evidence of such a trend in Experiment 1.

EXPERIMENT 3

Experiments 1 and 2 have demonstrated that an interaction between the
effects of inversion and distinctiveness was obtained in a task requiring
recognition memory for previously unfamiliar faces. If the proposed multidi-
mensional space framework is an effective model for the representation of
information about faces in memory, the same interaction should be obtained
in a task that requires recognition of previously familiar faces. This predic-
tion was tested in Experiment 3 using a familiarity decision task. This task

PR A

WMW

FACE RECOGNITION 181

has been used extensively in recent face recognition research. The subjt.ec_t is
: wn a series of faces, some of which are of famous (or personally famnhar)
;h:es others are unfamiliar faces. The dependent variable is the subject’s RT
t?) de,cide whether each face is familiar or unfamiliar. A problem .found. in
pilot work using a familiarity decision task .to explo.re the effect of inversion
was the range of performance found for upright and mvertc‘ed faces. Accuracy
for inverted faces was too low to allow RT to be rellably. used as the
dependent variable, but accuracy was effectively 100% for upngl_lt faces, so
accuracy was also an unreliable measure. In o‘rder to overcome this problem,
accuracy was enhanced by giving subjects a list of the names of the famous
ople who appeared in the experiment and using RT as the. d;pendent
variable. Reading a familiar person’s name does not produce a priming effecf
on the subsequent RT in a familiarity decision task (Bruce & Valentine, 1985;
Ellis, Young, Flude, & Hay, 1987). . .

An additional aim of Experiment 3 was to investigate t'hc‘: eﬁe(;t of
distinctiveness upon the RT to reject unfamiliar faces. The mu}tldlmeqs1opal
space framework predicts that subjects should. be faster to reject filstlnctlve
unfamiliar faces than to reject typical unfamiliar faces. In a previous study
this effect was not found in a familiarity decision task, but the d1§t1nct1veness
of familiar and unfamiliar faces had not been matched (Yalentme & Brp_ce,
1986¢). Therefore, in Experiment 3 distinctiveness of familiar and unfamiliar

faces was matched.

Method

The experiment was in two parts. First faces were rated for distinr‘:tiveness
and familiarity. Different subjects then carried out a familiarity decision task.

Distinctiveness and Familiarity Ratings

Subjects. Eighteen (14 female and 4 male) members of tl.le APU.subject
panel rated the stimulus faces for distinctiveness and familiarity. Their mean
age was 42.4 years.

Materials. Pictures of 54 famous faces and 39 unfamiliar faces were
rated. All of the pictures were of males. Pictures of,the famous faces had bc?en
collected from a variety of sources (picture libraries, political parties,
magazines, etc.). The poses varied from full-face to three-quarto?rs profile. All
pictures were copied onto monochrome slides through a circular mask,
which excluded the majority of the background. The photographs gf
unfamiliar faces were either copied from a directory of actors or were studio
portraits of academics. They were prepared in an identical format to the
famous faces and included a similar range of poses. It was known from
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previous work that all the actors were likely to be unfamiliar to the subjects.
The academics lived in another part of the country and so were very unlikely
to be familiar. Some pictures of faces with beards and glasses were included
in the stimulus sets.

Apparatus.  As for the distinctiveness ratings collected in Experiment |

Procedure.  Subjects rated the unfamiliar faces first. The procedure for
these ratings was identical to that described for Experiment 1. The subjects
then rated the famous faces. When making distinctiveness ratings of famous
faces, subjects were instructed to treat the faces as if they were unfamiliar—
that is, to base their judgement entirely on the information available in the
picture shown and to ignore any distinctive feature which they knew the
celebrity had, but which could not be seen in the photograph (e.g. a
distinctive hair colour). The subjects also rated the famous faces for
familiarity on a 1-7 scale. In all other aspects the procedure was the same as
that described above.

The stimulus sets to be used in the second phase of the experiment were
selected on the basis of these ratings. These consisted of 16 typical unfamiliar
faces (mean distinctiveness rating=3.21) and 16 distinctive unfamiliar faces
(mean distinctiveness rating=>5.05). A r-test for independent samples con-
firmed that there was a significant difference in distinctiveness between these
two sets, #(30)=9.41, p<0.005. Sets of famous faces that matched the group
mean ratings of unfamiliar faces as closely as possible were selected. The 16
typical famous faces had a mean distinctiveness rating of 3.33, and the 16
distinctive famous faces had a mean rating of 5.07. Again a r-test confirmed
there was a significant difference in distinctiveness between these two groups,
1(30)=9.70, p<0.005. The mean familiarity ratings were 5.45 for the typical
famous faces and 5.90 for the distinctive famous faces. A r-test showed that
this difference was not significant [#(30)=1.59, 0.1<p<0.05]. All t-tests
reported were two-tailed.

Familiarity Decision Task

Subjects. Twenty-four (22 female, 2 male) members of the APU subject
panel acted as subjects. Their mean age was 38.9 years.

Materials. The stimuli consisted of the 32 slides of unfamiliar faces and
the 32 slides of famous faces selected on the basis of the rating task described

above.

Apparatus.  The apparatus described for Experiment 1 was used.
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Design. A list of 64 slides of faces was presented. Half of the slides were
of famous people, half were of unfamiliar faces. The subject was instructed to
respond YEs if a face was familiar and No if it was unfamiliar. Thgre were 16
faces in each of the following four categories of stimuli: distinctive famou:s
faces, typical famous faces, distinctive unfamiliar faces, and typical unfami-
tiar faces. Eight faces in each category were presented upright and 8 were
presented upside-down. Each face was presented upright to half of the
subjects and inverted to the remainder.

Procedure.  All subjects were tested individually. Subjects were given a
list of the names of the famous people who appeared in the experiment. They
were asked whether they thought they would be able to recognize all of the ’
people on the list. Two subjects who were not familiar with many of the faces
did not take part in the experiment. All of the remaining subjects were
familiar with all but two or three faces at most. If subjects said they would
not recognize a particular face, the experimenter provided some other
semantic information about the individual (e.g. a film they had appeared in, a
description of a part played in a TV series, etc.). Often subjects would then be
more confident of recognizing the face.

Subjects were told that they would see a series of slides of faces. They were
informed that about half of the faces of celebrities, and that the names of all
of the celebrities in the series were included in the list they had just read.
Subjects were instructed to press the YES button if a face was familiar anq to
respond No if it was unfamiliar. They were informed that RT was being
measured and were instructed to respond as quickly and as accurately as
possible. Subjects were warned that half of the faces would be presgnted
upside-down and were instructed to keep their head upright while loqkmg at
upside-down faces. The slides were presented for 5 sec, with a 2-sec interval
between slides. A quasi-random slide order was constructed with the
constraint that there were no more than three famous or unfamiliar faces in
sequence and no more than three consecutive faces presented in the same
orientation. A second slide order was generated by reversing the order in
which the two halves of the first series were presented. The slide order and the
assignment of slides to the orientation were counter-balanced across subjects.

Results

For each subject, hit and false positive rates were calculated and combined in
A’ scores. Mean A’ scores, mean number of hits and false positives, and mean
RT of hits and correct rejections are shown in Table 3.

Assessment of accuracy in a familiarity decision task is always slightly
problematic as it is possible that a subject does not know a “famous” face or
genuinely recognizes an “unfamiliar” face. The former “disagreement” is
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" TABLE 3
ean Latency and Accgracy“. of Responses in a Familiarity Decision Task as a Function
of Orientation and Distinctiveness (Experiment 3)

Upright Inverted

Distinctive Typical Distinctive Typical

Mean RT of correct 983 1076
an 1552

familiar responses Bl
Mean RT of correct 1526 1698 2197 2372
unfamiliar responses
Mean no. of correct 7.5 7.3 5.0 3.0
familiar responses® ‘ .
Mean no. of familiar 0.3 0.9 0.7 1.3
responses to ‘“‘unfamiliar” ‘ .
faces*
Mean A’ of familiarity 0.975 0.944
Mean 4 . 0.865 0.715

* Max no. of responses in each cell=8.

much more likely, but the occurrence of such disagreements in this experi-
meqt should have been very much reduced by checking at the start that
subject§ were familiar with the names of the celebrities. Despite this
precaution, “misses” occurred on 28.75% of trials in which a famous face
was pr‘e‘sented, and “false positives” occurred on 10% of trials in which an
unfamiliar face was presented. In view of the high error rate, which reflects
the extreme difficulty of recognizing upside-down faces, an analysis of the
accuracy data is reported below.

Analysis of RT of “correct” responses does not raise such problems. The
RT data of correct responses to famous faces were subjected to a; log
trﬁan_sform before an ANOVA was carried out. There was a main effect of
dlstmctlve:ness, K(1, 23)=150.19, p<0.001. Distinctive faces were recognized
more rapidly than typical faces. There was a main effect of orientation
K1, ?3)= 149.41, p<0.001. Upright faces were recognized more rapidl):
than inverted faces. There was a significant interaction between these factors
K l-, 23)=18.07, p<0.001. Inversion increased the latency of recognition oi‘
typical fages more than of distinctive faces. Analysis of the simple main
e.ﬂ‘e(?ts using Tukey HSD tests showed that the effect of inversion was
sngplﬁgant for both distinctive and typical faces (p <0.05) and that there was
a significant effect of distinctiveness for faces tested inverted (r<0.05) but
not for faces tested upright. Due to the high error rate the mean nu;nber of
correct RTs to typical famous faces seen inverted was only 3 (see Table 3)
Therefon?, a non-parametric test was used to support the results of the.
parametric analysis. The significant interaction was the predicted effect. In

FACE RECOGNITION 185

order to test this interaction using a non-parametric test, the difference
petween RT to upright and inverted faces was calculated separately for
typical and distinctive faces. A Wilcoxon test carried out on these differences
in RT for typical and distinctive faces was significant, T7(24)=17, p<0.01,
indicating that the effect of inversion was greater for typical than for
distinctive faces.

The RT data of correct rejections were subjected to a within-subjects
ANOVA. There was a main effect of distinctiveness, F(1, 23)=11.34,
p<0.005. Distinctive unfamiliar faces were rejected more quickly than
typical unfamiliar faces. The main effect of orientation was significant, F(1,
23)="70.06, p<0.001. Upright unfamiliar faces were rejected faster than
inverted unfamiliar faces. The interaction between distinctiveness and orien-
tation was not significant.

In view of the high error rate in some conditions accuracy data were also
analysed. A’ was calculated by treating *“‘familiar” responses to unfamiliar
faces as false positives. Transformed 4’ scores (sin~ 1/A") were subjected to a
within-subjects ANOVA. There was a main effect of distinctiveness, F(1,
23)=51.48, p<0.001. Distinctive faces were recognized more accurately than
typical faces. There was also a main effect of orientation, F(1, 23)=160.92,
p<0.001. Upright faces were recognized more accurately than inverted faces.
The predicted interaction between these factors was statistically significant,
F(1, 23)=5.16, p<0.05. Inversion caused a greater impairment to recogni-
tion of typical faces than of distinctive faces. Tukey HSD tests revealed a
significant effect for all four pairwise comparisons of simple main effects
(»<0.05).

The proportion of correct “familiar” responses to famous faces (hit rate)
were also subjected to a within-subjects ANOVA. There was a main effect
of distinctiveness, F(1, 23)=43.29, p<0.001, a main effect of orientation,
F(1,23)=149.41, p<0.001, and a significant interaction between these factors,
F(1, 23)=14.60, p<0.01. Inversion caused a greater impairment to recogni-
tion of typical faces than of distinctive faces. Tukey HSD tests showed a
significant effect of inversion for both distinctive and typical faces (p <0.05),
and a significant effect of distinctiveness for faces tested inverted (p <0.05)
but not for faces tested upright.

There were many empty cells in the “false positive” data. These data were
found to violate the assumption of homogeneity of variance even after an
appropriate transformation had been carried out. Therefore, a parametric
test would not be valid. A Wilcoxon test on the difference in error rate made
to upright and inverted faces computed separately for distinctive and typical
faces, as described above, was carried out to test the interaction between
distinctiveness and inversion. No significant difference was found

[T(16)=62.5, n.s.].
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Discussion

The RT data supported the predictions derived from the multidimensiona|
space framework. Familiar distinctive faces were accepted faster than
familiar typical faces. Thus the effect of distinctiveness in a familiarity
decision task, found in previous work, was replicated. It was also predicted
that an effect of distinctiveness should be found on the RT to reject
unfamiliar faces. This prediction was supported: unfamiliar distinctive faces
were rejected faster than unfamiliar typical faces.

The predicted Inversion x Distinctiveness interaction was found in the
RTs to familiar faces. RT to accept familiar typical faces showed a greater
increase due to inversion than did the RT to accept familiar distinctive faces.
There was no Distinctiveness x Inversion interaction in the RT to reject
unfamiliar faces. It is not clear why the interaction between distinctiveness
and inversion should not be found in rejection latencies, but it is possible that
when, in the context of looking for highly familiar faces, a match to an
inverted face is not found, some form of a checking process may be initiated
which obscures the Distinctiveness x Inversion interaction. The RT data
were supported by the accuracy data. The predicted main effect of distinc-
tiveness and the Distinctiveness X Inversion interaction were found in the
analysis of the 4’ scores and correct “familiar” responses. This contrasts with
the results of Experiments 1 and 2 in which the interaction was found in the
A’ and false positive rate data, but not in the hit rate data. The difference in
the task demands between the two experiments may be a cause for this
difference in the results. Experiments 1 and 2 required recognition of
previously unfamiliar faces seen once a few minutes earlier, whereas as
Experiment 3 required recognition of highly familiar faces.

EXPERIMENT 4

Experiments 1-3 have demonstrated an interaction between distinctiveness
and inversion in two tasks that require recognition of individual faces. In
Experiment 4 the interaction between these factors in a face classification task
was investigated. As described above, the effect of distinctiveness reverses in
a classification task. Typical faces can be classified as a face more rapidly
than distinctive faces. In terms of the norm-based coding model, it is assumed
that the length of the derived vector will determine the RT in a face
classification task. Typical faces are closer to the norm and so can be
classified faster than distinctive faces. In the exemplar-based model the
exemplar density will determine the RT of classification. High exemplar
density will lead to faster classification decisions than low exemplar density.
As typical faces will be located in regions of higher exemplar density than
distinctive faces, the exemplar-based model also predicts that typical faces
will be classified faster than distinctive faces. If the stimuli in this task are
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presented upside-down, the effect would be represented in the multidimen-
sional space by increased random error associated with each encod@d fac'e. In
terms of the norm-based coding model, an increased random error is as ll}(ely
to move the vector encoded from the stimulus closer to the norm, .as it is to
move it further away. In terms of the exemplar-based model, an increased
random error is as likely to move the encoded locatiqn of the stimulus to an
area of greater exemplar density, as it is to move it to an area.of lower
exemplar density. Therefore, in both models the effects of the mcrea‘lse‘d
variability of encoding should tend to cancel each other out. Thus, 1't is
predicted that the effect of distinctiveness should be fqund for bot.h upr¥ght
and inverted faces, with no interaction between distinctlvepesg and mvers.l(?n.
The prediction of a Distinctiveness x Inversion interaction in a recognition
task arises because inversion causes a greater mismatch between the. encoding
of a face and its representation in memory. The effect of t}.ns grea.ter
mismatch will depend on the exemplar density in the region. No mteractxon
between distinctiveness and inversion is predicted in a face classiﬁcatwfl task
because there is no requirement to discriminate between the representation of

individual faces in memory.

Method

The experiment was in two parts. First faces were rated for distinctiveness.
Different subjects then carried out a face classification task.

Distinctive Ratings

Subjects.  Fifteen (2 male and 13 female) of the sixteen subject.s whf)
rated the faces used in Experiment 1 also rated the faces used in this
experiment. Their mean age was 44.9 years.

Materials. Thirty-two faces were prepared as monochrome prints ap-
proximately 130 mm x 110 mm. The faces were all male, in a full-face pose
with a neutral expression. None had a beard or a moustache and none wore
glasses. They were copied from a directory of actgrs, and on the basis of
previous work were not likely to be familiar to subjects.

Procedure. The procedure was the same as that dcscribed'above, except
that the prints rather than slides were used. Based on the ratings, the fa-ces
were split into a set of 16 distinctive faces (mean rating, 4.9) and 1.6 t.yplcal
faces (mean rating, 3.3). A r-test confirmed that there was a significant
difference in perceived distinctiveness between the two sets of faces,

1(30)="7.88, p<0.005.
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Face Classification Task

S"ubjects. Twenty-one members of the APU subject panel acted as
subjects. Data from one subject were discarded because of an error rate of

10%. Thus usable data were obtained from 20 (4 male and 16 female). Their
mean age was 41.4 years.

Materials. Stimuli were prepared from the 32 faces described above
toge‘ther with 4 faces for use as practice items. An ““intact” and a “jumbled’:
version of‘ each face was made. A grid of lines was drawn on the intact faces
before being copied onto slides, so that the intact faces had the same lines on
them as the jumbled faces. To make the jumbled faces, a rectangle was drawn
aropnd the eyes-nose-mouth region of each face and was divided b
horizontal lines into three regions corresponding to each of these featuresy
The features were cut out and reassembled either in the order mouth—eyes—.

nose or nose-mouth-eyes (from top to bottom). Figure 3 shows an example
of an intact and a jumble face.

Apparatus.  The apparatus was the same as that used in Experiment 1.

.Desi,g‘vn. The ‘int.act and jumbled versions of the extra four faces com-
prised eight practice items at the beginning of the list. The experimental trials

FIG. 3. An Cxanlple of an intact and a jumbled faCe d i C1ass tio k in
J use n the face 1 ifica n tas
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consisted of 16 distinctive intact faces, 16 distinctive jumbled faces, 16 typical
intact faces, and 16 typical jumbled faces. The faces were split into two sets,
each consisting of half of each of these categories of stimuli. The mean
distinctiveness ratings of faces in the two sets of distinctive and typical faces
were matched. Set A was presented upright, and Set B was presented inverted
to half of the subjects. The remaining half saw the stimuli presented in the
opposite orientation. The subject was asked to classify each stimulus as it was

resented as either a “face” or a “jumbled face”. The design had two within-
subjects factors, the distinctiveness and orientation of the face. The depen-
dent variable was the RT of correct responses.

Procedure.  Subjects were tested individually. They were shown an
example print of an intact and a jumbled face, and the nature of the task was
explained. They were informed that half of the faces would be presented
upside-down and were instructed simply to classify each stimulus as a face or
a jumbled face regardless of its orientation. The response box had one button
labelled “face” and one labelled “jumbled face”. Subjects were informed that
response latency was being measured and instructed to respond as quickly
and as accurately as possible. The stimuli were presented in a quasi-random
order, with the following constraints: (a) no more than three consecutive
intact or jumbled faces, (b) no more than three typical or three distinctive
faces occurred in sequence, and (¢) no more than three consecutive stimuli
were presented in the same orientation. Two orders were used, one being
generated by reversing the order of presentation of the two halves of the first
list. The slide order and the assignment of slide set to orientation were
counter-balanced across subjects. Slides were shown for 2.5 sec, with a 2.5-
sec interval between slides. Response latencies greater than 2 sec were scored

as errors.

Results

Errors were made on 2.3% of trials in which an intact face was presented.
There were too few errors to analyse. Mean RTs of correct responses to the
intact faces are shown in Table 4. These data were subjected to a 2x2
ANOVA with distinctiveness and orientation as within-subjects factors.
There was a main effect of orientation, F(1, 19)=47.47, p<0.001. Upright
faces were classified faster than inverted faces. There was also a main effect of
distinctiveness, F(1, 19)=9.44, p<0.01. Typical faces were classified faster
than distinctive faces. The interaction between orientation and distinctive-
ness was not significant (F<1).

Errors were made on 3.3% of trials in which a jumbled face was presented.
There were too few errors to analyse. Mean RTs of correct responses to
jumbled faces are shown in Table 4. These data were subjected to a 2x2
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TABLE 4
Mean RTs to Classify Correctly Intact and Jumbled Faces, as a Function of
Distinctiveness and Orientation (Experiment 4)

Intact faces Jumbled Faces
Typical  Distinctive Mean Typical  Distinctive Mean
Upright 683 737 710 741 738 739
(0.6) (1.9) (1.3) ) (0.6) 0.3)
Inverted 817 860 839 866 841 855
(1.3) (5.6) (3.5) (7.5) (5.0) 6.3)
Mean 750 798 803 791
0.9) 3.7 3.7 2.8)

Note: * % errors are shown in parentheses

within-subjects ANOVA. There was a significant effect of orientation,
H(1,19)=14.23, p <0.002. Inverted jumbled faces were classified more slowly
than upright jumbled faces. No other effects were significant (both Fs<1).

Discussion

The results of this experiment supported the predictions derived from the
multidimensional space framework. The finding that typical faces can be
classified as faces faster than distinctive faces has replicated the effect
reported by Valentine and Bruce (1986c).

As predicted by the multidimensional space framework, an effect of
distinctiveness was also found in classification of inverted faces. The
orientation of the stimulus did not affect the magnitude of the effect of
distinctiveness.

For completeness, data on the classification of jumbled faces were
reported. However, the multidimensional space framework does not make
any clear prediction of the effects to be expected in this case. It is not clear

that a distinctive face when jumbled will become a distinctive jumbled face.
In fact no effect of distinctiveness was found.

The Effect of Race

So far the multidimensional space framework has been applied to accounts
of the effects of distinctiveness and inversion. The framework can also
provide a parsimonious account of the effect of race in face recognition.
Assuming that the dimensions of the space are based on experience with faces
of predominately one race, the feature dimensions underlying the multidi-
mensional space will be those that are appropriate for discriminating one
particular race of faces. However, different dimensions will be optimum for
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.criminating another race of faces. For. example, there i§ evidence thgt
dgsc nt facial features are used to describe black and white facgs (Ellis,
dlﬁe; eowski, & Shepherd, 1975), and to judge similarity of a set of s_1multan-
Derlgy presented black or white facgs (Shepherd' & Deregow;l_(l,' 198ils)l;
j\olthough subjects are capable of using approppate cues to istingu "
-multaneously presented other-race facgs, the ev1c.1ence available S}l,«iges
h they resort to using the familiar but inappropriate own-race facial cues
?hat cc))l nition memory paradigm (Shepherd, 1981). Thereforg, cher-race
P illgbe encoded on dimensions that do not serve to discrlml‘nate well
face® Wst faces of that race. The dimension values that are salient will tend to
2?3?556 that are characteristic of the other race, rather than tl?ose thgt are
characteristic of the individual. Therefore, other-race fa.ces will t;i (ilj(tia:;
from the central tendency but have many feature values in comntlion ind s0
will be densely clustered. Thus othe.r-race faces for.m an exce;')n 1 Lo the
assumption that the exemplar density decreases with increasing
ral tendency. '
frozlnﬂilﬁucsi:;tion of a tzvo-dimensio?al vqrsict)ln of FheFrix;)ltl'?;—zased coding
i ing own and other-race faces 1s shown 1n -

mo,ieilgltflll;ledru:)gf predictions can be derived ‘from this'interpretan;)n ot;1 ;lelg
race effect. The norm-based coding model will be considered ﬁrs(ti. bncre psed
distance from the norm will result in l:he \lzlectorsdot; ;2::;os;p?;2tr: di)f/ﬁ 2(1: f] ven

i eing more similar to each other an .
g;i?;?n?ue (gsee Figure 2). Assuming that other-race facids wgl bemrr(l)(();;
distant from the norm than own-race faces, the .norm-base co u}ge odel
predicts that other-race faces will be more difficult to recogncliz .Sown_
prediction holds even if other-race faces are equally depsely clustere ; 2:: o
race faces. The other-race effect will be er.xhancgd if othe:r-racl:le aace are
indeed more densely clustered becaus.e tpe (1'1mens1ons def}nl‘rllg the stl()) oce are
inappropriate. The difficulty of discrlmlngtxon betwe:'en s1f{111 e;lr vec © f,aces
to the distance from the norm and/or higher density o o; .er-rat db ar;
means that recognition of other-race faces should be severely disrupte \ ‘)llsed
increase in the error of deriving a stimulus vcc;tor. By the same ar%grrtlgnn e
above for typical and distinctive faces, this lejads to the pre ic i1((,)n st
recognition of other-race faces will be more .d‘lsrupted by mversfaccs an
recognition of own-race faces (i.e. in a recognition task ovlm-race:to ces are
analogous to distinctive faces and other-race faces are analogous yp
fac;'sl.lz: exemplar-based model assumgs tha(tl Si?m?:;g llosc:::it:):;rr;}n::e l;)g ::

i ing faces and so is independent o orm.
g}:\:lelf?gr:flt)l?:::txergnplar-based model can only a.cc'ount for better recogmtll(::
of own-race faces than of other-race faces if it is assumed that ’1?1’:6“\:,% ar
density is greater for other-race faces than for own-race facesl.l' fzew "
reviewed above suggests that there is some evidence to support this view.
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I;IG. ‘4. A two-.dimensional representation of a norm-based coding model of face recognition
isn ow1ngd;?opula:tlon|s of own and other-race faces. As in Figure 1, faces are represented by point;
onlz;n ;—h en:enswnm s[.;a;:.l l:dwg dimensions have been plotted for the purpose of illustration
. xes are unla ut could represent any dimension iscrimi
. . s that serve to discrim
between faces and differ in the central tendency of own and other-race faces e

the exemplar-based model uses differences in exemplar density to account for
the other-race effect, it also leads to the prediction that recognition of other-
race faces. will be more disrupted by inversion than recognition of own-race
faces. This result has been reported by Valentine and Bruce (1986a). The
results of this study are given in Table 5. .

. The de§ign of this experiment was identical to Experiment 1, except that
lists of v&"hlte faces and black African faces were used instead of ]i;ts of typical
fmd (%1st1nctive white faces. The only differences in the procedure were that an
identical ‘picture of the target faces was used at test and exposure times of
2 sec (white faces) and 5 sec (black faces) in the initial list were used to equate
performance. Twenty white subjects took part in the experiment. Separate
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TABLE 5
Mean A’ Scores, Hits,* False Positives® and Mean RT of Hits® and Correct Rejections® as a
Function of Orientation and Race in a Recognition Memory Task

Upright Inverted
White Black White Black
A 0.900 0.918 0.723 0.609
Hits 6.5 6.7 4.9 4.7
F.P. 1.2 0.9 2.3 3.6
RT of Hits 1222 1553 1685 1933
RT of C.R. 1502 1792 2002 2355

* Maximum 8.
b In msec.
Note: Accuracy data from: Valentine & Bruce ( 1986a).

analysis of the hit and false positive data, and analysis of the latency data
were not reported by Valentine and Bruce (1986a), so they will be reported
here briefly. The results of both the accuracy and latency measures were
directly analogous to the results of Experiment 1 in all aspects. There was a
significant interaction between the effects of race and orientation in the
analyses of transformed A’ scores (sin~ 1 /4", K1, 16)=16.52, p<0.001, and
false positive rate F(1, 16)=21.41, p<0.001, but not in the analyses of hit
rate or latency of hits or correct rejections (all F ratios < 1). In the analyses in
which an interaction was found, it reflected a greater effect of orientation
upon recognition -of other-race faces than of own-race faces. In all five
analyses there was a strong main effect of orientation. In the accuracy data
no effect of race was found, due to the use of differential exposure duration to
equate performance. However, an own-race advantage was found in the
latency of hits, F(1, 16)=6.09, p<0.05, and in the latency of correct
rejections, F(1, 16)=14.40, p<0.001.

The effect of inversion is modelled in the multidimensional space frame-
work as an increase in the error of encoding the stimulus. This assumption
does not involve any aspect that is unique to the effect of inversion. In fact, it
leads to the prediction that any manipulation that impairs face recognition
will impair recognition of other-race faces more than recognition of own-race
faces. Ellis and Deregowski (1981) found that a change in pose (full-face vs.
three-quarters profile) between inspection and test in a recognition memory
task impaired recognition of other-race faces more than recognition of own-
race faces. Therefore, Ellis and Deregowski’s data support the predictions of
the multidimensional space framework. This study included a cross-cultural
control in which European and African subjects were tested using black and
white faces.
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It is interesting to note that the multidimensional space framework ang
the distinction between component and configural information (see introdyc.
tion) lead to different predictions of the interaction between inversion and
race. Rhodes, Tan, Brake, and Taylor (1989) base their analysis of the effect
of race on Diamond and Carey’s (1986) work on the role of expertise in
encoding second-order relational information. Rhodes and colleagues argue
that lack of expertise in encoding other-race faces would mean that second-
order relational information cannot be encoded from other-race faces. As it
is assumed that disruption to encoding of second-order relational informa-
tion in own-race faces causes the disproportionate effect of inversion on own-
race face recognition, Rhodes and colleagues argue that recognition of other-
race faces will be less disrupted by inversion than recognition of own-race
faces. They found support for their hypothesis using a somewhat different
procedure to that used by Valentine and Bruce (1986a). These apparently
conflicting results will be discussed further below. In Experiment 5, the
exploration of the interaction between the effects of distinctiveness and
inversion is extended to a face classification task.

EXPERIMENT 5

The norm-based coding model makes a clear prediction that other-race faces
should be classified as a face more slowly than own-race faces in an intact/
jumbled face classification task. The length of the vector is assumed to affect
RT in a face classification task. As other-race faces will, as a group, be
located further from the norm than own-race faces, other-race faces will be
classified more slowly than own-race faces. The exemplar-based model does
not make a clear prediction. Classification RT is assumed to be determined
by the exemplar density in a region of a given radius around the stimulus
(Krumbhansl, 1978). Higher exemplar density will lead to faster classification
RTs. In order to account for the effect of race on recognition memory, the
exemplar-based model must assume that other-race faces are more densely
clustered than own-race faces. However, there will be fewer other-race faces
in memory than own-race faces. Therefore, there will be two opposing
factors that determine RT in the exemplar-based model. The effect of race on
classification RT will depend on the value of unspecified parameters such as
the radius of the region in question, the density of own and other-race faces,
and the number of faces in memory. The exemplar-based model could
account for faster classification of own-race faces if the exemplar density
around a stimulus is greater for own-race faces, despite being less densely
clustered, because there are many more own-race faces falling within the
region concerned. The norm-based coding model and the exemplar-based
model both predict that the effect of race on classification of faces should not
be affected by inversion of the stimulus. An increase in the random encoding
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error caused by stimulus inversion would not have a systefnatic effect on
cither the distance from the norm or the exemplar density aropnd }he
jocation of the stimulus. The effect of race and inversion in a classification
task were investigated in Experiment 5.

Method

Subjects.  Sixteen (10 female and 6 male) members of the APU sub:iect
panel acted as subjects. Their mean age was 40.5 years. All were Caucasian.

Materials. Sets of 18 white faces and 18 blaclf African faces were
selected. None had a beard or wore glasses. The .18 white ‘t:z.lces were a”subset
of those used in Experiment 4. For each face a slide of an “intact face” and a
“jumbled face” were prepared as described above.

Apparatus.  This was the same as for Experiment 1.

Design. Two of the 18 faces of each race were assignpd to. be practice
jtems. The intact and jumbled versions of these faces compnsed elght practice
items at the beginning of the list. The experimen?al trials consisted of ‘16
black intact faces, 16 black jumbled faces, 16 white mtact' fa}ces, and 16 white
jumbled faces. As in Experiment 4, the stimuli were split into sets, and the
assignment of stimulus set to orientation was counter-balancefi across
subjects. The design had two within-subjects factors, the race .and-orlcntatlon
of the face. The dependent variable was the RT to classify intact faces

correctly.

Procedure. This was as described for Experiment 4, except that subjects
were informed that they would see black and white faces.

Results

Mean RTs to classify the intact faces correctly were c':alculated for ea(?h
subject. These data and the error rates are shown in Table 6. As in
Experiment 4, responses over 2 sec were scored as errors. Errors were made
on 2.9% of trials. . _

The RT data were subjected to an ANOVA.with race ar}d orientation of
the face as within-subject factors. This analysis gave a main effect of race,
K1, 15)=26.13, p<0.001, and orientation, F(1, 15)=94.66, p<0.001. Thus
own-race (white) faces were classified as a face fastgr than other-race (black)
faces and upright faces were classified faster than inverted faces. There was
no interaction between race and orientation (F =‘1 .04).

Although no predictions were made concerning the 'eﬁ‘ect of race and
orientation on the RT to classify jumbled faces, an analysis of these data was
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TABLE 6
Mean RTs to Classify Intact and Jumbled Faces, as a Function of Race and Orientation
(Experiment 5)

Intact Faces Jumbled Faces

White Black Mean White Black Mean
Upright 611 765 688 739 707 723

(0.8) 3.1 (1.9) 4.7 (0) 2.3)
Inverted 719 843 781 796 724 759

(1.6) (6.3) 3.9) 7.0) ©) 3.5)
Mean 665 804 768 716

(1.2) @.7 (5.9 ©)

Note: % errors are shown in parentheses

carried out. Errors were made on 2.9% of trials. The mean RT of correct
responses are shown in Table 6.

A 2x2 ANOVA revealed a main effect of race, F(1,15)=11.17, p<0.005.
Other-race (black) faces were classified as jumbled faces faster than own-race
(white) faces. Neither the main effect of inversion nor the interaction between
race and inversion achieved statistical significance; however, the interaction
term approached statistical significance, F(1, 15)=3.86, p <0.07. There was a
trend for classification of own-race faces to show a larger effect of inversion.

Discussion

This experiment provides evidence that in a face classification task, other-
race faces take longer to be classified as a face than own-race faces. As
predicted, there was no interaction between the effects of race and inversion
on correct classification of intact faces. These results are consistent with the
multidimensional space framework and are analogous to the results of
Experiment 4. According to the norm-based coding model, other-race faces
take longer to classify as a face because they are relatively distant from the
norm. Therefore, in this task other-race faces behave like distinctive faces.
This is in contrast to a recognition task when other-race faces behave like
typical faces showing a larger effect of inversion, because in a recognition
task similarity between faces rather than distance from the own-race norm is
the critical parameter. The exemplar-based model can also account for the
effect of race in classification if it is assumed that RT is determined by
exemplar density in a region around the stimulus and that the relatively small
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aumber of other-race faces in memory makes the exemplar density of other-
i low.

racz)rfl?:ci?nrstl::ilgfllyof Experiment 5 and Valentine and Bruce's (198§a)
experiment is that only subjects from one race tqok part. The inte.ra'lctlon
found by Valentine and Bruce was interpreted as evidence tba} recognition of
other-race faces is more impaired by inversion than recognition of own—rac(ei
faces. However, the possibility cannot be excluded that thf: black facesbnfsek
in the experiment would show a greater effect of 1r}v<:'r51on even to.bhlz'itc
subjects. A cross-cultural study would be needed to ehm.mate this po;s1 }I 1ty.
However, it should be noted that Ellis and Deregowski (1981) found t . ? a
change in pose affected recognition of other-rag: facc?s more than recogr:n 1or;
of own-race faces using a cross-cultural design. Similarly a cross-%u tqra
study would be needed to confirm that the effect of race on classification
found in Experiment 5 was genuinely due to an other-race effect. ‘

The results of Experiment 5 and Valentine and Bruce (1986a) prov1dc1:. a(;
least tentative evidence that the multidimensional fra.mework can be app li
to the effect of race in face processing. Two studies of recognition tfis ;
provide a note of caution, however Buckhout and. Regap (1988) examine
the interaction between the effect of race and inversion in recognition
memory for unfamiliar faces. Both black and white subjects took part
(presumably residents of New York). Buckhout anfi Regan found an own-
race advantage but no Race x Orientation interaction. They do not report
separate analysis of false positives and hits but use a percent correct measfulre.
It is possible that the use of this measure may obscure an effect on false
positives alone as found by Valentine and Bruce (19862.1). o

Rhodes et al. (1989) studied the effect of race and inversion in a cross-
cultural study using Chinese and European faces. They us.ed a two-alternat-
ive forced choice test procedure and found a greater inversion effect for own-
race faces than other-race faces (i.c. the opposite interacpor.l to that found by
Valentine & Bruce, 1986a). In their first experiment the significant Race x Or-
ientation interaction was found in forced choice RT but not acguracy. Ina
second experiment the interaction was foun.d only.m. forced choice acc;uracg
and only when the test face pairs were not highly similar. The use of a orc;
choice test procedure in Rhodes and colleagues’ study may have opscured the
effect in false positives found by Valentine and Bruce, but this does no';
explain why the opposite interaction should be found. A .numbelr] o
parameters may account for the different result.s of the three §tud1es that akve
investigated the interaction of race and inver519n, e’.g. the‘dlﬂiculty of tasks,
the test procedures and measures used, the subjects experience of other-ra;ce
faces, homogeneity of stimulus sets, etc. Further research is needed to resolve
the issues raised by these studies.
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GENERAL DISCUSSION

An account of structural encoding of faces has been outlined in which the
mental representation of faces is considered in terms of locations in a
multidimensional space. Within this general framework, two specific models
were identified, a norm-based coding model and a purely exemplar-based
model. Although the detailed assumptions of the models differ, both models
predict a greater effect of inversion for typical faces than for distinctive faces
in recognition tasks but not in a classification task. These predictions were
supported. It was found that inversion was more disruptive to recognition of
typical faces than to recognition of distinctive faces in a recognition memory
task using previously unfamiliar faces (Experiments 1 and 2), and in a
familiarity decision task using famous faces (Experiment 3). In Experiment 4,
it was found that the effects of inversion and distinctiveness were additive in a
face classification task. These results are consistent with inversion causing an
increased error of encoding that only has a differential effect on distinctive
and typical faces when the tasks require individual faces to be discriminated.

The multidimensional space framework was also extended to account for
the effects of race. It was proposed that other-race faces form a class of faces
that violate the statistics of the own-race face population. Other-race faces
have been found to behave like typical faces in a recognition task (Valentine
& Bruce, 1986a) and like distinctive faces in a face classification task
(Experiment 5). The extension of the multidimensional space framework to
account for the effects of race is, at this stage, somewhat tentative as-data
from studies that include full cross-cultural controls are conflicting. How-
ever, the multidimensional space framework potentially provides a unified
account of the effects of distinctiveness, inversion, and race. A further
advantage is that it is applicable to recognition of both familiar (e.g. famous)
faces and previously unfamiliar faces.

The multidimensional framework (in either its norm-based coding or
purely exemplar-based forms) provides a principled framework that can
account for the effects found in the experiments reported here. Can some
other theory account for these results rendering the multidimensional space
framework unnecessary?

It is possible that the interaction between distinctiveness and orientation
found in Experiments 1-3 could be explained in terms of disruption to
processing of configural information in inverted faces (Carey & Diamond,
1977; Diamond & Carey, 1986). Recognition of distinctive faces may be less
affected by inversion because distinctive faces can be more easily encoded in
terms of component information (i.e. information based on isolated features
rather than global properties). This interpretation of the data is not mutually
exclusive to the multidimensional space framework, but it begs the question
of the basis of distinctive information in faces. The multidimensional space
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framework is neutral in respect to the issue of whether distir}ctive inf'orma-
tion is conveyed predominately by component or configural mfc.)rmat'lon. It
should be possible to separate an account based solely on (.ils‘rupt.lon to
processing of configural information from the more general dlstmct%veness
account offered by the multidimensional space framework by explgrmg 'the
interaction between distinctiveness and transformations other than 1nverS}on
(e.g- masking with visual noise). The multidimensional framework predicts
that any experimental manipulation that impairs encoding of faces shou!d
interact with distinctiveness in the same way as inversion. The account in
terms of disruption to processing of configural information is specific to the
effect of inversion; different accounts would be required for each transforma-
tion found to interact with distinctiveness. Further research is r.equ.ired to
explore the effects of other transformations on recognition of distinctive and
typical faces.

The predictions of the multidimensional space framework and the compo-
nent/configural information differ in regard to the interaction between the
effects of race and orientation on recognition memory for faces. Based on
Diamond and Carey’s (1986) distinction between isolated features and
second-order relational information, Rhodes et al. (1989) predict that
recognition of other-race faces will be less disrupted by inversi.on than
recognition of own-race faces. Although the component/configural informa-
tion distinction and the multidimensional space framework make different
predictions concerning the Race x Orientation interaction in rec.ognition
memory, the available data are conflicting (see discussion of Experiment 5).

In order to provide a full account for the present data in terms of a
component/configural information distinction, it is also necessary to explain
why distinctiveness affects a face classification task and to account for th.e
additivity of the effects of distinctiveness and inversion in such. a task. It is
plausible to argue that second-order relational information is irrelevant to

“the task because only discrimination of first-order relational properties is

required (i.e. Is the configuration face-like?). This argument coul.d account
for the lack of an interaction between distinctiveness and inversion. How-
ever, it is then not clear why the presence of the more distinctive isolated
features of a distinctive face should affect the classification decision at all if
their arrangement conforms to the first order relational properties of a face.

A third possible account would be to argue that the data reported reflect
response bias. The data in recognition tasks could arise if su.bj(?cts are more
likely to respond positively: (1) to typical faces than to distinctive faces;
(2) to inverted faces than to upright faces; and (3) to other-race than to
own-race faces. However, a simple response bias model cannot account for
the data in recognition tasks (Experiments 1-3) because in all experiments
the critical orientation by distinctiveness interaction was found in 4, a
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criterion-free measure of sensitivity. Therefore, I suggest that the multidi.
mensional space framework provides a more parsimonious account of the
data reported than the other possible accounts considered here.

So far the norm-based coding model has been described as if an explicit
process of comparing each stimulus face to a single stored norm wag
involved. Rhodes et al. (1987) and Ellis (1981) proposed that multiple norms
might exist for different categories of faces. For example, separate norms
might be stored for male and female faces and for own-race and other-race
faces. The norm-based coding model outlined here assumes that other-race
faces are encoded by reference to the own-race norm, only because it is
assumed that other-race faces have rarely been experienced. With increasing
familiarity of faces of another race, there must be a point at which a new
norm is abstracted and stored. Storage of multiple norms raises the problem
of how the appropriate norm is selected to encode a face. If the nearest norm
to a stimulus in the multidimensional space is selected, a distance-based
similarity measure, as proposed in the purely exemplar-based model, is used
to select the norm. If such a process is postulated, it is unparsimonious to
suggest that a different basis of similarity is used to recognize individual
faces. Therefore, the exemplar-based model should be preferred on the
grounds of parsimony in the absence of any evidence compelling the norm-
based coding model to be preferred.

The experiments reported here do not discriminate between the norm-
based coding model and the exemplar-based model. This begs the question of
how, if at all, it could be possible to distinguish between the two models. The
critical difference between the models is that distance from the norm and
exemplar-density are both important parameters in the norm-based coding
model, but exemplar-density alone determines performance in the exemplar-
based model. The difficulty in discriminating between the models arises
because exemplar density is assumed to be correlated to distance from the
norm. However, other-race faces provide a violation of this assumption.
Therefore, exploration of the interaction between the effects of distinctive-
ness and race provides a means to distinguish the models. A cross-cultural
study of these factors in currently underway (Valentine & Endo, 1990).

An alternative to the dichotomy between the norm-based coding and the
exemplar-based model is to view “prototype abstraction” as an emergent
property of distributed storage of faces. The description of faces encoded as
vectors in a multidimensional space and the use of a vector similarity
measure is strikingly similar to some parallel distributed processing models.
Therefore, a distributed model of memory provides an alternative conceptual
framework which allows the vector-based similarity measure of the norm-
based coding model to be retained without raising the conceptual problems
caused by storage of multiple norms. McClelland and Rumelhart (1985)
demonstrated how “prototype” effects emerge from a distributed memory
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model using an auto-associative network. According to ‘such a }rlrtxode:
nstances are overlaid in memory and stored by adjusting weig s 0
1 nnections between elements of a neural network. Patterns‘ s.tored.m a
(:;twork in this manner can be regarded as vectprs in a mu!tldm}enst:)rlz}
space. Although an auto-associator is n.oF a direct 1mplementathn o fa r; om-
pased coding model (Valentine, 1990), 1.t implements the prope:itles g 1: cctor
based similarity within a multidimensional space. McClellan a;n umel
hart showed that when specific instances of similar patterns arehea;ne r,Oto-
network can respond to the prototype of the patterns, although t iop ote-
type itself has not been experienced. "I"he network‘ canfaﬁpearrm_base(1
abstracted multiple prototypes. Such an implementation o t ;1 n(r)n m-based
coding model implies that the prototype effects emerge from : t; nnet |
which the memory traces are stored rather than the nature of the e “ doei
processes per se. A PDP implementation h'as a number of ac?valn;ages.r ¢ doe
not postulate an explicit process of extraction of a Protptyplca f:}ceto on e,
nor does it require a “‘face-specific”” process. Distinctiveness ef e(l:1 sc N magy
simply because faces form a relativ‘ely homogeneous’categogy o wu; h many
exemplars are experienced (cf. Diamond & Car;y S, 1986, acc'(:. o e
inversion effect). As specific exemplars are 9verlald in memory,b i t1s pt sible
for a large number of “‘old” exemplars to influence the norm ut nge oo
individually retrievable any longer by any key as a §Pe01ﬁc instan ﬂ.ucnce
provides a mechanism for previously seen but unfamiliar fac(:? t-o 1? uencs
recognition of familiar faces. Simulatlons.of the .eﬁ’t':cts of distinc 1vmOdei
inversion, and race in face recognitionhusmg a distributed memory
ul line of future research. o
wo;lrlldsf:;?n;::;f the multidimensional fran}ework is intended as a heufr}st;
framework that could provide a potential link between‘ many a;peclts oThz e
recognition research that have proceeded somewhat 1ndeperll Zn;i y. [ here
are several aspects of the framework that have not been clear 3(/1 et. friled. ror
example, the dimensions underlying jche space have pot been identi em Lhe
assumption of a Euclidean metric will almost certainly be an ovgr-sn [ﬁcn
cation. The exact nature of the decision process has not been ma € exp ei
These aspects have not been speciﬁec! simply becz?\use there 1sd ast/v !
insufficient evidence available to enable mtjorms:d choices to b; mad e.ersus
issues appear to be of particular theoretical interest: norm- tase e\I/n s
purely exemplar-based coding and the use of vc':ct01"-based orin er-exd .fﬁ;():ult
distance as a similarity measure. These theoretical issues may prmr bx el
to distinguish in experiments using phqtographs of faces as Stlmllll.l,h ue the
use of “realistic’ stimuli is essential to discover the processes py whic pt.a[;l
recognize faces. Further research on the effect of race 1s1 adpotci::l 1am);
theoretically rich area as it could allow t.he effects of exemplar dens y
distance from a norm to be separated using natural stimulus classes.
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It is known that when simultaneous bimanual aiming movements are made to
targets with different IDs (Index of Difficulty), Fitts’ Law is violated. There is
massive slowing of the casy target hand, but a debate has arisen over the degree
of synchronization between the hands and whether this effect represents a
coordinative structure or interference due to neural cross-talk. This issue was
investigated in an experiment with 12 subjects who moved styli forward in the
sagittal plane to pairs of targets that differed in difficulty (0.77/3.73 ID and
0.77/5.17 ID). Reaction time, movement time, and kinematic measures of
resultant velocity and acceleration were analysed. The results showed clear-cut
timing differences between the hands that depended on both the ID difference
between target pairs and elapsed time of the movement. The violation of Fitts’
Law was confined to the easy target hand. Pronounced individual differences in
both timing differences and left-right asymmetry were aiso noted. Neither the
coordinative structure nor the neural cross-talk models can fully account for
these data, and it is possible that the initial constraints on movement are
moderated by visually driven corrective movements.

Skilled performers appear capable of using their limbs virtually indepen-
dently of each other to execute complex sequences of movements (Shaffer,
1981). On the other hand, untrained individuals exhibit constraints on tasks
involving timing (for a review, see Keele, 1986) and aiming (Peterson, 1965;
Robinson & Kravinsky, 1976). Understanding these constraints and how
they are modified by practice is crucial to the development of a theory of
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