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L9: Cepstral analysis 

• The cepstrum 

• Homomorphic filtering 

• The cepstrum and voicing/pitch detection 

• Linear prediction cepstral coefficients 

• Mel frequency cepstral coefficients 

 

This lecture is based on [Taylor, 2009, ch. 12; Rabiner and Schafer, 2007, ch. 5; Rabiner and Schafer, 1978, ch. 7 ]  
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The cepstrum 

• Definition 
– The cepstrum is defined as the inverse DFT of the log magnitude of the 

DFT of a signal 

𝑐 𝑛 = ℱ−1 log ℱ 𝑥 𝑛  

• where ℱ is the DFT and ℱ−1 is the IDFT 

– For a windowed frame of speech 𝑦 𝑛 , the cepstrum is  

𝑐 𝑛 = log  𝑥 𝑛 𝑒−𝑗
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log ℱ 𝑥 𝑛  

ℱ−1 log ℱ 𝑥 𝑛  

ℱ 𝑥 𝑛  

[Taylor, 2009]  
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• Motivation 
– Consider the magnitude spectrum ℱ 𝑥 𝑛  of the periodic signal in 

the previous slide 

• This spectra contains harmonics at evenly spaced intervals, whose 
magnitude decreases quite quickly as frequency increases 

• By calculating the log spectrum, however, we can compress the dynamic 
range and reduce amplitude differences in the harmonics 

– Now imagine we were told that the log spectra was a waveform 

• In this case, we would we would describe it as quasi-periodic with some 
form of amplitude modulation 

• To separate both components, we could then employ the DFT 

• We would then expect the DFT to show  

– A large spike around the “period” of the signal, and 

– Some “low-frequency” components due to the amplitude modulation 

• A simple filter would then allow us to separate both components (see 
next slide) 
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Liftering in the cepstral domain 

[Rabiner & Schafer, 2007]  
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• Cepstral analysis as deconvolution 
– As you recall, the speech signal can be modeled as the convolution of 

glottal source 𝑢 𝑛 , vocal tract 𝑣 𝑛 , and radiation 𝑟 𝑛  

𝑦 𝑛 = 𝑢 𝑛 ⊗ 𝑣 𝑛 ⊗ 𝑟 𝑛  

• Because these signals are convolved, they cannot be easily separated in 
the time domain 

– We can however perform the separation as follows 

• For convenience, we combine 𝑣′ 𝑛 = 𝑣 𝑛 ⊗ 𝑟 𝑛 , which leads to 
𝑦 𝑛 = 𝑢 𝑛 ⊗ 𝑣′ 𝑛  

• Taking the Fourier transform 

𝑌 𝑒𝑗𝜔 = 𝑈 𝑒𝑗𝜔 𝑉′ 𝑒𝑗𝜔  

• If we now take the log of the magnitude, we obtain 

log 𝑌 𝑒𝑗𝜔 = log 𝑈 𝑒𝑗𝜔 + log 𝑉′ 𝑒𝑗𝜔  

– which shows that source and filter are now just added together 

• We can now return to the time domain through the inverse FT 
𝑐 𝑛 = 𝑐𝑢 𝑛 + 𝑐𝑣 𝑛  
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• Where does the term “cepstrum” come from? 
– The crucial observation leading to the cepstrum terminology is that 

the log spectrum can be treated as a waveform and  subjected to 
further Fourier analysis 

– The independent variable of the cepstrum is nominally time since it is 
the IDFT of a log-spectrum, but is interpreted as a frequency since we 
are treating the log spectrum as a waveform 

– To emphasize this interchanging of domains, Bogert, Healy and Tukey 
(1960) coined the term cepstrum by swapping the order of the letters 
in the word spectrum 

– Likewise, the name of the independent variable of the cepstrum is 
known as a quefrency, and the linear filtering operation in the 
previous slide is known as liftering 
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• Discussion 
– If we take the DFT of a signal and then take the inverse DFT of that, we 

of course get back the original signal (assuming it is stationary) 

– The cepstrum calculation is different in two ways 

• First, we only use magnitude information, and throw away the phase 

• Second, we take the IDFT of the log-magnitude which is already very 
different since the log operation emphasizes the “periodicity” of the 
harmonics 

– The cepstrum is useful because it separates source and filter 

• If we are interested in the glottal excitation, we keep the high coefficients 

• If we are interested in the vocal tract, we keep the low coefficients 

• Truncating the cepstrum at different quefrency values allows us to 
preserve different amounts of spectral detail (see next slide) 
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[Taylor, 2009]  
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– Note from the previous slide that cepstral coefficients are a very 
compact representation of the spectral envelope 

– It also turns out that cepstral coefficients are (to a large extent) 
uncorrelated 

• This is very useful for statistical modeling because we only need to store 
their mean and variances but not their covariances 

– For these reasons, cepstral coefficients are widely used in speech 
recognition, generally combined with a perceptual auditory scale, as 
we see next 
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ex9p1.m 

Computing the cepstrum 

Liftering vs. linear prediction 

Show uncorrelatedness of cepstrum 
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Homomorphic filtering 

• Cepstral analysis is a special case of homomorphic filtering 
– Homomorphic filtering is a generalized technique involving (1) a 

nonlinear mapping to a different domain where (2) linear filters are 
applied, followed by (3) mapping back to the original domain 

– Consider the transformation defined by 𝑦 𝑛 = 𝐿 𝑥 𝑛  

• If 𝐿 is a linear system, it will satisfy the principle of superposition 
𝐿 𝑥1 𝑛 + 𝑥2 𝑛 = 𝐿 𝑥1 𝑛 + 𝐿 𝑥2 𝑛  

– By analogy, we define a class of systems that obey a generalized 
principle of superposition where addition is replaced by convolution 

𝐻 𝑥 𝑛 = 𝐻 𝑥1 𝑛 ∗ 𝑥2 𝑛 = 𝐻 𝑥1 𝑛 ∗ 𝐻 𝑥2 𝑛  

• Systems having this property are known as homomorphic systems for 
convolution, and can be depicted as shown below 

 

[Rabiner & Schafer, 1978]  
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– An important property of homomorphic systems is that they can be 
represented as a cascade of three homomorphic systems 

• The first system takes inputs combined by convolution and transforms 
them into an additive combination of the corresponding outputs 

𝐷∗ 𝑥 𝑛 = 𝐷∗ 𝑥1 𝑛 ∗ 𝑥2 𝑛 = 𝐷∗ 𝑥1 𝑛 + 𝐷∗ 𝑥2 𝑛 = 𝑥 1 𝑛 +𝑥 2 𝑛 = 𝑥 𝑛  

• The second system is a conventional linear system that obeys the principle 
of superposition  

• The third system is the inverse of the first system: it transforms signals 
combined by addition into signals combined by convolution 

𝐷∗
−1 𝑦 𝑛 = 𝐷∗

−1 𝑦 1 𝑛 + 𝑦 2 𝑛 = 𝐷∗
−1 𝑦1 𝑛 ∗ 𝐷∗

−1 𝑦2 𝑛 = 𝑦1 𝑛 ∗ 𝑦2 𝑛 = 𝑦 𝑛  

– This is important because the design of such system reduces to the 
design of a linear system 

[Rabiner & Schafer, 1978]  
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– Noting that the z-transform of two convolved signals is the product of 
their z-transforms 

𝑥 𝑛 = 𝑥1 𝑛 ∗ 𝑥2 𝑛 ⇔ 𝑋 𝑧 = 𝑋1 𝑧 𝑋2 𝑧  

– We can then take logs to obtain 

𝑋 𝑧 = log 𝑋 𝑧 = log 𝑋1 𝑧 𝑋2 𝑧 = log 𝑋1 𝑧 + log 𝑋2 𝑧  
 

– Thus, the frequency domain representation of a homomorphic system 
for deconvolution can be represented as 

[Rabiner & Schafer, 1978]  
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– If we wish to represent signals as sequence rather than in the 
frequency domain, then the systems 𝐷∗  and 𝐷∗

−1  can be 
represented as shown below 

• Where you can recognize the similarity between the cepstrum with the 
system 𝐷∗  

• Strictly speaking, 𝐷∗  defines a complex cepstrum, whereas in speech 
processing we generally use the real cepstrum 

– Can you find the equivalent system for the liftering stage? 

[Rabiner & Schafer, 1978]  
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Voicing/pitch detection 

• Cepstral analysis can be applied to detect local periodicity 
– The figure in the next slide shows the STFT and corresponding spectra 

for a sequence of analysis windows in a speech signal (50-ms window, 
12.5-ms shift) 

– The STFT shows a clear difference in harmonic structure 

• Frames 1-5 correspond to unvoiced speech  

• Frames 8-15 correspond to voiced speech 

• Frames 6-7 contain a mixture of voiced and unvoiced excitation 

– These differences are perhaps more apparent in the cepstrum, which 
shows a strong peak at a quefrency of about 11-12 ms for frames 8-15 

– Therefore, presence of a strong peak (in the 3-20 ms range) is a  very 
strong indication that the speech segment is voiced 

• Lack of a peak, however, is not an indication of unvoiced speech since the 
strength or existence of a peak depends on various factors, i.e., length of 
the analysis window 

 



Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 17 

[Rabiner & Schafer, 2007]  
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Cepstral-based parameterizations 

• Linear prediction cepstral coefficients 
– As we saw, the cepstrum has a number of advantages (source-filter 

separation, compactness, orthogonality), whereas the LP coefficients 
are too sensitive to numerical precision 

– Thus, it is often desirable to transform LP coefficients 𝑎𝑛  into 
cepstral coefficients 𝑐𝑛  

– This can be achieved as [Huang, Acero & Hon, 2001] 

𝑐𝑛 =  

ln 𝐺 𝑛 = 0

𝑎𝑛 +
1

𝑛
 𝑘𝑐𝑘𝑎𝑛−𝑘

𝑛−1

𝑘=1
1 < 𝑛 ≤ 𝑝
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• Mel Frequency Cepstral Coefficients (MFCC) 
– Probably the most common parameterization in speech recognition 

– Combines the advantages of the cepstrum with a frequency scale 
based on critical bands 

• Computing MFCCs 
– First, the speech signal is analyzed with the STFT 

– Then, DFT values are grouped together in critical bands and weighted 
according to the triangular weighting function shown below 

• These bandwidths are constant for center frequencies below 1KHz and 
increase exponentially up to half the sampling rate 

 

 

[Rabiner & Schafer, 2007]  
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– The mel-frequency spectrum at analysis time 𝑛 is defined as 

𝑀𝐹 𝑟 =
1

𝐴𝑟
 𝑉𝑟 𝑘 𝑋 𝑛, 𝑘

𝑈𝑟

𝑘=𝐿𝑟

 

– where 𝑉𝑟 𝑘  is the triangular weighting function for the 𝑟-th filter, 
ranging from DFT index 𝐿𝑟 to 𝑈𝑟 and 

𝐴𝑟 = 𝑉𝑟 𝑘
2

𝑈𝑟

𝑘=𝐿𝑟

 

• which serves as a normalization factor for the 𝑟-th filter, so that a 
perfectly flat Fourier spectrum will also produce a flat Mel-spectrum 

– For each frame, a discrete cosine transform (DCT) of the log-
magnitude of the filter outputs is then computed to obtain the MFCCs 

𝑀𝐹𝐶𝐶 𝑚 =
1

𝑅
 log 𝑀𝐹 𝑟 cos

2𝜋

𝑅
𝑟 +

1

2
𝑚

𝑅

𝑟=1
 

– where typically 𝑀𝐹𝐶𝐶 𝑚  is evaluated for a number of coefficients 
𝑁𝑀𝐹𝐶𝐶  that is less than the number of mel-filters 𝑅  

• For 𝐹𝑠 = 8𝐾𝐻𝑧, typical values are  𝑁𝑀𝐹𝐶𝐶 = 13 and 𝑅 = 22 
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[Rabiner & Schafer, 2007]  

Comparison of smoothing techniques: LPC, cepstral and mel-cepstral 
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• Notes 
– The MFCC is no longer a homomorphic transformation 

• It would be if the order of summation and logarithms were reversed, in 
other words if we computed  

1

𝐴𝑟
 log 𝑉𝑟 𝑘 𝑋 𝑛, 𝑘

𝑈𝑟

𝑘=𝐿𝑟

 

• Instead of 

log
1

𝐴𝑟
 𝑉𝑟 𝑘 𝑋 𝑛, 𝑘

𝑈𝑟

𝑘=𝐿𝑟

 

• In practice, however, the MFCC representation is approximately 
homomorphic for filters that have a smooth transfer function 

• The advantages of the second summation above is that the filter energies 
are more robust to noise and spectral properties 
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– MFCCs employ the DCT instead of the IDFT 

• The DCT turns out to be closely related to the Karhunen-Loeve transform 

– The KL transform is the basis for PCA, a technique that can be used to find 
orthogonal (uncorrelated) projections of high dimensional data 

– As a result, the DCT tends to decorrelate the mel-scale frequency log-energies 

• Relationship with the DFT 

– The DCT transform (the DCT-II, to be exact) is defined as 

𝑋𝐷𝐶𝑇 𝑘 = 𝑥 𝑛 cos
𝜋

𝑁
𝑛 +

1

2
𝑘

𝑁−1

𝑛=0
 

– whereas the DFT is defined as 

𝑋𝐷𝐹𝑇 𝑘 = 𝑥 𝑛 𝑒𝑗
2𝜋
𝑁 𝑘𝑛

𝑁−1

𝑛=0
 

– Under some conditions, the DFT and the DCT-II are exactly equivalent 

– For our purposes, you can think of the DCT as a “real” version of the DFT (i.e., 
no imaginary part) that also has a better energy compaction properties than 
the DFT 
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ex9p2.m 

Computing MFCCs 


