L9: Cepstral analysis

The cepstrum

Homomorphic filtering

The cepstrum and voicing/pitch detection
Linear prediction cepstral coefficients
Mel frequency cepstral coefficients

This lecture is based on [Taylor, 2009, ch. 12; Rabiner and Schafer, 2007, ch. 5; Rabiner and Schafer, 1978, ch. 7 ]
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The cepstrum

Definition
— The cepstrum is defined as the inverse DFT of the log magnitude of the
DFT of a signal
c[n] = F~{log|F{x[n]}}
« where F is the DFT and F 1 is the IDFT
— For a windowed frame of speech y|[n], the cepstrum is

N-1 N-1 27
c[n] = z log(‘z x[n]e‘fﬁk"
n=0 n=0
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Motivation

— Consider the magnitude spectrum |F{x[n]}| of the periodic signal in
the previous slide

* This spectra contains harmonics at evenly spaced intervals, whose
magnitude decreases quite quickly as frequency increases

e By calculating the log spectrum, however, we can compress the dynamic
range and reduce amplitude differences in the harmonics
— Now imagine we were told that the log spectra was a waveform

* In this case, we would we would describe it as quasi-periodic with some
form of amplitude modulation

* To separate both components, we could then employ the DFT

* We would then expect the DFT to show
— Alarge spike around the “period” of the signal, and
— Some “low-frequency” components due to the amplitude modulation

* Asimple filter would then allow us to separate both components (see
next slide)
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Liftering in the cepstral domain
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[Rabiner & Schafer, 2007]
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Cepstral analysis as deconvolution

— As you recall, the speech signal can be modeled as the convolution of
glottal source u|[n], vocal tract v[n|, and radiation r[n]

yln] = uln] @ vin] & r(n]

* Because these signals are convolved, they cannot be easily separated in
the time domain

— We can however perform the separation as follows
* For convenience, we combine v'[n] = v[n] @ r[n], which leads to

y[n] = u[n] ® v'[n]
e Taking the Fourier transform
Y(ej“’) = U(ej“’)V’(ej“’)

* If we now take the log of the magnitude, we obtain

log(|Y(e/)[) = log(|U(e’®)]) +log(|v"(e*)])

— which shows that source and filter are now just added together

* We can now return to the time domain through the inverse FT
c[n] = Cy [n] + Cy [n]
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Where does the term “cepstrum” come from?

The crucial observation leading to the cepstrum terminology is that
the log spectrum can be treated as a waveform and subjected to
further Fourier analysis

The independent variable of the cepstrum is nominally time since it is
the IDFT of a log-spectrum, but is interpreted as a frequency since we
are treating the log spectrum as a waveform

To emphasize this interchanging of domains, Bogert, Healy and Tukey
(1960) coined the term cepstrum by swapping the order of the letters
in the word spectrum

Likewise, the name of the independent variable of the cepstrum is
known as a quefrency, and the linear filtering operation in the
previous slide is known as liftering
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Discussion

— If we take the DFT of a signal and then take the inverse DFT of that, we
of course get back the original signal (assuming it is stationary)
— The cepstrum calculation is different in two ways
 First, we only use magnitude information, and throw away the phase

e Second, we take the IDFT of the log-magnitude which is already very
different since the log operation emphasizes the “periodicity” of the
harmonics

— The cepstrum is useful because it separates source and filter
* If we are interested in the glottal excitation, we keep the high coefficients
* If we are interested in the vocal tract, we keep the low coefficients

* Truncating the cepstrum at different quefrency values allows us to
preserve different amounts of spectral detail (see next slide)
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— Note from the previous slide that cepstral coefficients are a very
compact representation of the spectral envelope

— It also turns out that cepstral coefficients are (to a large extent)
uncorrelated

* This is very useful for statistical modeling because we only need to store
their mean and variances but not their covariances

— For these reasons, cepstral coefficients are widely used in speech
recognition, generally combined with a perceptual auditory scale, as
we see next
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ex9pl.m
Computing the cepstrum
Liftering vs. linear prediction

Show uncorrelatedness of cepstrum
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Homomorphic filtering

Cepstral analysis is a special case of homomorphic filtering

— Homomorphic filtering is a generalized technigue involving (1) a
nonlinear mapping to a different domain where (2) linear filters are
applied, followed by (3) mapping back to the original domain

— Consider the transformation defined by y(n) = L{x(n)]
e If Lis a linear system, it will satisfy the principle of superposition
Llx;(n) + x,(n)] = Llx;(m)] + L{x,(n)]
— By analogy, we define a class of systems that obey a generalized
principle of superposition where addition is replaced by convolution
H[x(n)] = H[x;(n) * x,(n)] = H[x;(n)] x H[x;(n)]
e Systems having this property are known as homomorphic systems for
convolution, and can be depicted as shown below

*

x(n)

x¢(n) * x5(n)
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— An important property of homomorphic systems is that they can be
represented as a cascade of three homomorphic systems

* The first system takes inputs combined by convolution and transforms
them into an additive combination of the corresponding outputs
D.[x(m)] = D.[x,(n) * x,(n)] = Di[x;(M)] + D.[x,(n)] = %, (n) +%, (n) = X(n)

* The second system is a conventional linear system that obeys the principle
of superposition

e The third system is the inverse of the first system: it transforms signals
combined by addition into signals combined by convolution
DI y(m)] = D[P (n) + P,(m)] = DMy, ()] * Dy, (W)] = y1 () * y, (n) = y(n)

— This is important because the design of such system reduces to the
design of a linear system

+ *
> D > L > Dy >
x(n) *[ ] x(n) [ ] y(n) *[ ] y(n)
x,(n) % x,(n) X,(n) + X,(n) y(n) +Y,(n) yi(n) * y,(n)

[Rabiner & Schafer, 1978]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 13



— Noting that the z-transform of two convolved signals is the product of

their z-transforms
x(n) = x;(n) x x;(n) © X(z2) = X;(2)X,(2)

— We can then take logs to obtain

X(2) = log[X(2)] = log[X; (2)X;(2)] = log[X,(2)] + log[X;(2)]

— Thus, the frequency domain representation of a homomorphic system
for deconvolution can be represented as

@ + + + + °
———>fog[ | e[ |
X(z) X(z) Y(z) Y(z)
X(z) - Xp(2) X,(z) + Xo(2) Yi(z) +Y5(2) Y (2)-Ys(2)

2

[Rabiner & Schafer, 1978]
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— If we wish to represent signals as sequence rather than in the
frequency domain, then the systems D,[ ]and D[ ]canbe
represented as shown below

* Where you can recognize the similarity between the cepstrum with the
system D,[ |

* Strictly speaking, D[ | defines a complex cepstrum, whereas in speech
processing we generally use the real cepstrum

— Can you find the equivalent system for the liftering stage?

o[ ]
r-r——™——--—-—-—""——-"""-""""-""""-"="—""—""""""""—"—= |
*: ° + + :+
—————1'9-2[ ] Iog[ ] 21[ ]4——)
x(n) | X(z) X(z) : x(n)
o J
ol ]
[__—_______“_“‘*—_______—__—_-ﬁl
x | + + | *
| |
2] o] [ ]
y(n) : Y(z) Y(z) : y(n)
- J

[Rabiner & Schafer, 1978]
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Voicing/pitch detection

Cepstral analysis can be applied to detect local periodicity

The figure in the next slide shows the STFT and corresponding spectra
for a sequence of analysis windows in a speech signal (50-ms window,
12.5-ms shift)
The STFT shows a clear difference in harmonic structure

* Frames 1-5 correspond to unvoiced speech

e Frames 8-15 correspond to voiced speech

* Frames 6-7 contain a mixture of voiced and unvoiced excitation

These differences are perhaps more apparent in the cepstrum, which
shows a strong peak at a quefrency of about 11-12 ms for frames 8-15

Therefore, presence of a strong peak (in the 3-20 ms range) is a very
strong indication that the speech segment is voiced
* Lack of a peak, however, is not an indication of unvoiced speech since the

strength or existence of a peak depends on various factors, i.e., length of
the analysis window
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[Rabiner & Schafer, 2007]
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Cepstral-based parameterizations

Linear prediction cepstral coefficients

— As we saw, the cepstrum has a number of advantages (source-filter
separation, compactness, orthogonality), whereas the LP coefficients
are too sensitive to numerical precision

— Thus, it is often desirable to transform LP coefficients {a,,} into
cepstral coefficients {c,, }

— This can be achieved as [Huang, Acero & Hon, 2001]
In(G) n=20

c, = 1 —n-1
a, +— kcian_, 1<n<p
Nédp=1
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Mel Frequency Cepstral Coefficients (MFCC)
— Probably the most common parameterization in speech recognition

— Combines the advantages of the cepstrum with a frequency scale
based on critical bands

Computing MFCCs

— First, the speech signal is analyzed with the STFT

— Then, DFT values are grouped together in critical bands and weighted
according to the triangular weighting function shown below

* These bandwidths are constant for center frequencies below 1KHz and
increase exponentially up to half the sampling rate

0.0l

0.005

O | L
0 1000 2000 3000 4000
frequency in Hz [Rabiner & Schafer, 2007]
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— The mel-frequency spectrum at analysis time n is defined as

=0 zk X )

— where V.[k] is the triangular weighting function for the r-th filter,
ranging from DFT index L,. to U,- and

Uy
Ar — § |Vr[k]|2
k=L,

* which serves as a normalization factor for the r-th filter, so that a
perfectly flat Fourier spectrum will also produce a flat Mel-spectrum

— For each frame, a discrete cosine transform (DCT) of the log-
magnitude of the filter outputs is then computed to obtain the MFCCs

MFCC[m] = %Zle log(MF|r]) cos [2% (r + %) m]

— where typically MFCC|m] is evaluated for a number of coefficients
Nyrcc that is less than the number of mel-filters R

* For F;, = 8KHz, typical values are Nyrcc = 13 and R = 22
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Comparison of smoothing techniques: LPC, cepstral and mel-cepstral
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[Rabiner & Schafer, 2007]
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Notes

— The MFCCis no longer a homomorphic transformation

* It would be if the order of summation and logarithms were reversed, in
other words if we computed

z log|V,.[k]X(n, k)|
Ay Lag=p,
* |nstead of

1 U
log (A—TERZMWT[HX(n, k>|>

* In practice, however, the MFCC representation is approximately
homomorphic for filters that have a smooth transfer function

* The advantages of the second summation above is that the filter energies
are more robust to noise and spectral properties
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— MFCCs employ the DCT instead of the IDFT

* The DCT turns out to be closely related to the Karhunen-Loeve transform

— The KL transform is the basis for PCA, a technique that can be used to find
orthogonal (uncorrelated) projections of high dimensional data

— As a result, the DCT tends to decorrelate the mel-scale frequency log-energies
e Relationship with the DFT
— The DCT transform (the DCT-II, to be exact) is defined as

Xper(k) = z::: x[n] cos [% (n + %) k]

— whereas the DFT is defined as
N-1 _z_nk
Xopr(K) = ) x[n]e/N*"
n=0
— Under some conditions, the DFT and the DCT-Il are exactly equivalent

— For our purposes, you can think of the DCT as a “real” version of the DFT (i.e.,

no imaginary part) that also has a better energy compaction properties than
the DFT
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ex9p2.m
Computing MFCCs

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

24



