L21: HTK

Introduction

Building an HTK recognizer
Data preparation

Creating monophone HMMs
Creating tied-state triphones
Recognizer evaluation
Adapting the HMMs

This lecture is based on The HTK Book, v3.4 [Young et al., 2009]
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Introduction

What is HTK?
— HTK is a toolkit for building Hidden Markov Models

— HTK is primarily designed for building speech recognizers
e Estimating HMM parameters from a set of training utterances

* Transcribing unknown utterances
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Available HTK tools

— Data preparation tools
* Convert speech waveforms into parametric format (e.g. MFCC)

» Convert the associated transcriptions into appropriate format (e.g., phone
or word labels)

— Training
* Define the topology of the HMMs (i.e., prototypes)
 Initialize models (e.g., bootstrap, flat start)
* Train models (e.g., parameter tying, Baum-Welch, adaptation)
— Testing
* Viterbi based recognizer (HVite) — can also be used for forced alignment
e Decoder for large vocabulary speech recognition (HDecode)
— Analysis
e Evaluate model performance (e.g., WER, ROC, ...)
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HTK Processing Stages
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Using HTK
— HTK consists of a set of tools to be run with a command-line interface
e Each tool contains a set of required arguments and optional arguments
e Optional arguments are always prefixed by a minus sign

HFoo -T 1 -f 34.3 -a -s myfile filel file2
N J J

N
Optional arguments (4) Main arguments (2)

 HTK tools can also be controlled by parameters in a configuration file

HFoo CC configl -C config% -f 34.3 -a -s myfile filel file2

N
Configuration files (2)
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Building an HTK recognizer

A tutorial example

— For the remainder of this lecture, we will introduce HTK by
constructing a recognizer for a simple voice dialing application

e Corpus will consist of continuously spoken digits and proper names

* Though the task is simple, the recognizer will be sub-word-based so it can

be easily expanded

« HMMs will be continuous Gaussian mixture tied-state triphone with
clustering performed using phonetic decision trees

—

W..
W

B88.

" call Julian "
_p.
" dial 332654 "
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Data preparation

Step 1 — the Task Grammar
— Application: voice-operated interface for phone dialing
— ASR must handle digit strings and personal names such as

* “Dial nine zero four one oh nine”
* “Phone Woodland”
— HTK provides a grammar definition language for simple tasks,
consisting of variable definitions and regular expressions
* Vertical bars denote alternatives
e Square brackets denote optional items
* Angle braces denote one or more repetitions

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU



one

TwWo

00

three

... etc
e
Julian Odell
Dave Ollason

... etc

98¢

phone

gram
$digit = ONE | TWO | THREE | FOUR | FIVE |

SIX | SEVEN | EIGHT | NINE | OH | ZERO;
$name = [ JOOP ] JANSEN |

[ JULIAN ] ODELL |
[ DAVE ] OLLASON |
[ PHIL ] WOODLAND |
[ STEVE ] YOUNG;
( SENT-START ( DIAL <$digit> | (PHONE|CALL) $name) SENT-END )

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU



— The HTK recognizer will require a word network, which can be created
automatically from the grammar above using the HParse tool

HParse gram wdnet

* where ‘gram’ contains the above grammar

Grammar
(gram)
HPARSE
Word Net
(wdnet )

Fig. 3.2
Step 1
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Step 2 — the Dictionary

— Create a sorted list of all required words (file ‘wlist’)
e For our grammar, this can be done manually

— Obtain a pronunciation dictionary (file ‘beep’)
e Publicly available; see p. 27 for URL

— The HTK tool HDMan will then create a new dictionary by finding
pronunciations for each word in ‘wlist’

HDMan -m -w wlist -n monophonesl -1 dlog dict beep names

* ‘names’: phonetic transcription of all proper names in our grammar
* ‘global.ded’: edit script with additional commands (p. 27)
* ‘monophonesl’: list of phones used (output)
— The general format for each dictionary entry will be
* WORD [outsym] pl p2 p3
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TIMIT BEEP Dict Names Dict
Prompts (beep) (nanes)

sort | unig

Word List
(wlist)

Edit Script

HDMan (gl obal . ded)

Dictionary
(dict)

Fig. 3.3 Step 2
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Step 3 — Recording the Data

— Generate list of prompts for training and test sentences with HSGen
HSGen -1 -n 200 wdnet dict > testprompts

* which will randomly traverse the word network, generate 200 numbered
utterances, and pipe them to file ‘testprompts’

— Record training and test sentences
* You can use HTK tool HSLab or other audio recording program

TIMIT Word Net
Prompts (wdnet)

Train Files
S0001.wav
S0002.wav
...etc

@DD ol Hstan

Test Files
TO001.wav
TO002.wav
...etc

Fig. 3.4 Step 3
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Step 4 — Creating the Transcription Files

— The first step is to create an orthographic transcription in HTK label
format (MLF), which can be done with Perl script ‘prompts2mlf’

prompts2mlf words.mlf trainingprompts

* ‘trainingprompts’: list of training utterances

* ‘words.mlf’: orthographic transcription (output)

— This is an example of a Master Label File (MLF), a single file containing a
complete set of transcriptions (HTK allows each individual transcription to be
stored in its own file but it is more efficient to use an MLF)

— The second step is to generate phone-level MLFs, using HLEd
HLEd -1 '*' -d dict -i phones0.mlf mkphones(O.led words.mlf

* ‘phones0.mlf’: phone-level transcription
* ‘mkphonesO.led’: edit script (see p. 30), which commands HLEd to

— Replace every word in ‘words.mlf’” with its pronunciation in ‘dict’
— Insert a silence model at the start and end of every utterance, and
— Delete all short-pause labels
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trainingprompts

50001 ONE VALIDATED ACTS OF SCHOOL DISTRICTS

50002 TWO OTHER CASES ALSO WERE UNDER ADVISEMENT
S0003 BOTH FIGURES WOULD GO HIGHER IN LATER YEARS
50004 THIS IS NOT A PROGRAM OF SOCIALIZED MEDICINE

etc
words.mlf phonesO.mlf

#!MLF ! # #IMLEF!# TIMIT
"x/S0001.1lab" "%/350001.1ab" Prompts
ONE sil

promptsZmlf Word Level
VALIDATED v Transcription
ACTS ah (words. mf)
OF n Edit Script
SCHOOL v (mkphones0.led
DISTRICTS ae
: - > HLED
"%/S0002.1lab" ih ’
TWO d —
OTHER . etc ( chtlonm'y)

(dict)

CASES Phone Level
ALSO Transcription
WERE (phones0. m f
UNDER
ADVISEMENT

Fig. 3.5 Step 4
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Step 5 — Coding the data

— The final stage of data preparation is to parameterize the speech into
sequence of feature vectors
 HTK supports both FFT-based and LPC-based analysis
* Here we will use MFCCs
— Coding is performed with the HTK tool HCopy
HCopy -T 1 -C config -S codetr.scp
* ‘config’: specifies all the conversion parameters

* ‘codetr.scp’: script file, containing list of source files and their
corresponding outputs

— The output is a separate MFCC file (*.mfc) for each audio file (*.wav) in
the script file ‘codetr.scp’
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C

onfiguration
File
(config)

Waveform Files MEFCC Files
S0001. wav HCopy S0001. nf ¢
S0002. wav S0002. nfc
S0003. wav S0003. nfc
etc etc

Script File
(codetr. scp)

Fig. 3.6 Step 5

config codetr.scp

# Coding parameters /root/sjy/waves/S0001.wav /root/sjy/train/S0001.mfc

TARGETKIND = MFCC_O /root/sjy/waves/S0002.wav /root/sjy/train/S0002.mfc
TARGETRATE = 100000.0 /root/sjy/waves/S0003.wav /root/sjy/train/S0003.mfc

SAVECOMPRESSED = T /root/sjy/waves/S0004.wav /root/sjy/train/S0004.mfc
SAVEWITHCRC = T

WINDOWSIZE = 250000.0
USEHAMMING = T
PREEMCOEF = 0.97
NUMCHANS = 26
CEPLIFTER = 22
NUMCEPS = 12
ENORMALISE = F

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 16



Creating monophone HMMs

Introduction

— In this step, we create a set of identical monophone HMMs and train
them, realign the training utterances, and retrain the HMMs

Step 6 — Creating flat-start HMMs

— Define prototype model containing HMM topology (file ‘proto’)
* For phone-based systems, a 3-state left-right with no skips is appropriate
— Compute global mean and variance of data, and initialize HMM proto
HCompV -C config -f 0.01 -m -S train.scp -M hmm0 proto
e ‘train.scp’: script containing the list of all training WAV files

* ‘hmm0O’: directory where new HMM proto with global mean and variance
will be saved

— HCompV also creates file ‘vFloor’ containing a variance floor for the HMMs
— Manually generate two files and save them on ‘hmm0’

* ‘macro’: contains global-options macro and the variance floor macro
generated earlier (see p. 34)

* ‘hmmdefs’: contains a copy of ‘proto’ for each phoneme, including ‘sil’
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13 MFCC + A + A?

proto \ Macros hmmdefs
"o <VecSize> 39 <MFCC_0_D_A> e ~h "aa"
"h "proto" <VecSize> 39 <BeginHMM>
<BeginHMM> <MFCC 0 D A-> <EndHMM>
<NumStates> b ~V "varFloorl" ~h "eh"
<State> 2 <Variance> 39 -
Mean> 39 <BeginHMM>
0.0 0.0 0.0 ... Sl Lt <EndHMM >
<Variance> 39 ... etc
1.0 1.0 1.0 ...
<State> 3
<Mean> 39
0.0 0.0 0.0 ...
<Variance> 39
1.0 1.01.0 ...
<State> 4
<Mean> 39
0.0 0.0 0.0 ...
<Variance> 39
1.0 1.0 1.0 ...
<TransP> &
0.0 1.0 0.0 0.0 0.0
0.0 0.6 0.4 0.0 0.0
0.0 0.0 0.6 0.4 0.0
0.0 0.0 0.0 0.7 0.3
0.0 0.0 0.0 0.0 0.0
<EndHMM>
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— Re-estimate flat-start monophone HMMs in directory ‘hmm0’

HERest -C config -I phonesO.mlf -t 250.0 150.0 1000.0 -S
train.scp -H hmmO/macros -H hmmO/hmmdefs -M hmml monophonesO

* ‘monophones0’: same as ‘monophonesl’ without short-pause (sp)
e Results will be saved in new directory ‘Thmm1’

— Repeat HERest twice more, generating directories ‘hmm?2’ and ‘hmm3’

Prototype HMM
Definition
(proto)

Training File HMM list
y listed in ( monophones0)
HCompV (train.scp)

( hmmO Y l hmml

MBCT 05 p{ HEREST ITBCT 05
\ hmmdef s } hnmdef s

Phone Level
Transcription
(phoneso.mif

Fig. 3.8 Step 6
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Step 7 — Fixing the Silence Models

— In this step, we make the models more robust by
* Adding transitions to/from states 2 and 4 in the silence model,
* Creating a 1-state short pause (sp) model tied to the center state of ‘sil’

— This is done in two steps
* Manually edit ‘hmm3/hmmdefs’ to add a new (sp) model, and save it in a
new directory ‘hmm4’ (see p. 35)
* Run tool HHEd to add extra transitions and tie the (sp) model
HHEd -H hmm4/macros -H hmm4/hmmdefs -M hmm5 sil.hed

monophonesl
* ‘sil.hed’: script containing code to add transitions and tie states

— Repeat HERest twice more, generating directories ‘hmm6’ and ‘hmm?7’
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Edit
sil > sp

hmm4
Macr os
hmmdef s

HMM list

(monophones1)

HHED

Edit Script
(511 .ned)

Fig. 3.10 Step 7

hmm5
MACI 05

hmdef s

HEREsT
(x2)
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Step 8 — Realigning the Training Data

— Realign training data and create new transcriptions

HVite -1 '*' -o SWT -b silence -C config -a -H hmm7/macros -H
hmm7/hmmdefs -i aligned.mlf -m -t 250.0 -y lab -I words.mlf -S
train.scp dict monophonesl

e ‘aligned.mlf’: will contain the realigned utterances, in this case
considering the best fit of all possible pronunciations in the dictionary

* Before doing this, we will need to manually insert an entry ‘silence sil’ at
the end of the dictionary file ‘dict’

— Repeat HERest twice more, generating directories ‘hmm8’ and ‘hmm9’
[HMMM{)
(monophones
Word Level \
Transcriptions

(words. mf)

Dictionary
(dict)

Phone Level
HViTE Transcriptions
(aligned. nif)

Training Data
Listed in

(train. scp)

Fig. 3.11 Step 8
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Creating Tied-State Triphones

Introduction
— The last step of model building is to transform the monophone HMMs
into context-dependent triphone HMMs, which is done in two steps

 First, convert monophone transcriptions into triphone transcriptions,
create a new set of triphones (by copying monophones), and reestimating

» Second, tie similar acoustic states (to ensure robust estimation)

Step 9 — Making Triphones from Monophones

— Generate triphones transcriptions for training data
HLEd -n triphonesl -1 '*' -i wintri.mlf mktri.led aligned.mlf

* ‘mktri.led’: edit script explaining how to handle pauses (p. 38)
e ‘wintri.mlf’: word-internal triphone transcriptions (output)
e ‘triphonesl’: list of triphones (output)
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— Generate context-dependent triphones by cloning monophones
HHEd -B -H hmm9/macros -H hmm9/hmmdefs -M hmml0 mktri.hed
monophonesl

* ‘mktri.hed’: edit script describing the procedure for HHEd (p. 39)

— Reestimate (twice) the triphone set with HERest

HERest -B -C config -I wintri.mlf -t 250.0 150.0 1000.0 -s
stats -S train.scp -H hmmll/macros -H hmmll/hmmdefs -M hmml2
triphonesl

e ‘stats’: state occupation statistics (output), to be used during the state-
clustering process (step 10)
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Monophone
Transcriptions
{aligned.mlf]

Monophones
(hnm8)

HHED HLEp

Triphones Triphone

(hmmi 0}

Transcriptions
{(wintri.mf)

HEREsT (%2) |fg— |

State Occs
(stats)

Triphones
(hmil 2)

Fig. 3.13 Step 9
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Step 10 — Making Tied-State Triphones

— The last step in model building is to tie states within triphone sets in
order to share data and make robust parameter estimates

— Here we use a method based on decision trees, which is based on
asking questions about the left and right context of each triphone

HHEd -B -H hmml2/macros -H hmml2/hmmdefs -M hmml3 tree.hed
triphonesl > log

* ‘tree.hed’: edit script describing which context to examine and what
results to save in output files (p. 41)
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— Prior to executing HHEd, we will need to generate a list of all possible
triphones on the entire dictionary, not just those on the training set
(this is needed for recognition purposes)

HDMan -b sp -n fulllist -g global.ded -1 flog beep-tri beep

* ‘global.ded’: global command TC (p. 42)

o “fulllist’: full list of all triphones (output)

* ‘beep-tri’: triphone transcription of all words in grammar (output)
» ‘tiedlist’: list of all tied states (output)

* ‘trees’: list of all trees (output)

— Repeat HERest twice more, generating directories ‘hmm14’ and
‘hmm15’
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Triphones State Occs
{hmm12) (stats)

l

|l
HHED
-~}
[ Edit Script |
| (tree.hed) |
[ Tied—State | [ HP\fﬂ\-'[_ITist ]
Triphones _(tiedlist)

{hmm13)

l

HREST (x2) [™®

l

( Tied—State )

Triphones
(hmm15)

Fig. 3.14 Step 10
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Recognizer evaluation

Step 11 — Recognizing the Test Data

— First, run the recognizer on test data

HVite -C config -H hmml5/macros -H hmml5/hmmdefs -S test.scp -
l1 '*'" -i recout.mlf -w wdnet -p 0.0 -s 5.0 dict tiedlist

* ‘config’: configuration file to allow word-internal expansion (p. 43)
» ‘test.scp’: list of test files (MFC)
* ‘recout.mlf’: transcription output

— Finally, compare recognizer output against ground truth
HResults -I testref.mlf tiedlist recout.mlf

» ‘testref.mlf’: word-level transcription for each test file (ground truth)

Tied-State
Triphones Word Net Dictionary Reference
P rwdnet ) (dict) Transcription
(testraf.mf

Test Files Yy vy Recognised ,

. . i Results
Listed in HVmE W(}Td% HRESULTS — Summary
(t st . scp) {recout.mf) - )

Fig. 3.15 Step 11
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