L21: HTK

Introduction

Building an HTK recognizer
Data preparation

Creating monophone HMMs
Creating tied-state triphones
Recognizer evaluation
Adapting the HMMs

This lecture is based on The HTK Book, v3.4 [Young et al., 2009]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

Introduction

What is HTK?
— HTK is a toolkit for building Hidden Markov Models

— HTK is primarily designed for building speech recognizers
e Estimating HMM parameters from a set of training utterances

* Transcribing unknown utterances

Speech Data Transcription

N /

Traming Tools

' ooy
888, 888, ~888.

' o

Recogniser

/ N

Unknown Speech Transcription

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

Available HTK tools

— Data preparation tools
* Convert speech waveforms into parametric format (e.g. MFCC)

» Convert the associated transcriptions into appropriate format (e.g., phone
or word labels)

— Training
* Define the topology of the HMMs (i.e., prototypes)
 Initialize models (e.g., bootstrap, flat start)
* Train models (e.g., parameter tying, Baum-Welch, adaptation)
— Testing
* Viterbi based recognizer (HVite) — can also be used for forced alignment
e Decoder for large vocabulary speech recognition (HDecode)
— Analysis
e Evaluate model performance (e.g., WER, ROC, ...)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 3

HTK Processing Stages

HLED HSIAB
. HC opy
HLSTATS HIioT
HQUANT

(Tl‘anscriptious] [Speech]

HCompV, HINIT . HREST, HEREST
HSMooTH, HHED . HEADAPT

HDMaN (Vs)

Dictionar

HVITE
HBUILD (Transcnptmus]
HPARSE
HRESULTS

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

Data
Prep

Training

Testing

Analysis

Using HTK
— HTK consists of a set of tools to be run with a command-line interface
e Each tool contains a set of required arguments and optional arguments
e Optional arguments are always prefixed by a minus sign

HFoo -T 1 -f 34.3 -a -s myfile filel file2
N J J

N
Optional arguments (4) Main arguments (2)

 HTK tools can also be controlled by parameters in a configuration file

HFoo CC configl -C config% -f 34.3 -a -s myfile filel file2

N
Configuration files (2)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 5

Building an HTK recognizer

A tutorial example

— For the remainder of this lecture, we will introduce HTK by
constructing a recognizer for a simple voice dialing application

e Corpus will consist of continuously spoken digits and proper names

* Though the task is simple, the recognizer will be sub-word-based so it can

be easily expanded

« HMMs will be continuous Gaussian mixture tied-state triphone with
clustering performed using phonetic decision trees

—

W..
W

B88.

" call Julian "
_p.
" dial 332654 "

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

Data preparation

Step 1 — the Task Grammar
— Application: voice-operated interface for phone dialing
— ASR must handle digit strings and personal names such as

* “Dial nine zero four one oh nine”
* “Phone Woodland”
— HTK provides a grammar definition language for simple tasks,
consisting of variable definitions and regular expressions
* Vertical bars denote alternatives
e Square brackets denote optional items
* Angle braces denote one or more repetitions

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

one

TwWo

00

three

... etc
e
Julian Odell
Dave Ollason

... etc

98¢

phone

gram
$digit = ONE | TWO | THREE | FOUR | FIVE |

SIX | SEVEN | EIGHT | NINE | OH | ZERO;
$name = [JOOP] JANSEN |

[JULIAN] ODELL |
[DAVE] OLLASON |
[PHIL] WOODLAND |
[STEVE] YOUNG;
(SENT-START (DIAL <$digit> | (PHONE|CALL) $name) SENT-END)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

— The HTK recognizer will require a word network, which can be created
automatically from the grammar above using the HParse tool

HParse gram wdnet

* where ‘gram’ contains the above grammar

Grammar
(gram)
HPARSE
Word Net
(wdnet)

Fig. 3.2
Step 1

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 9

Step 2 — the Dictionary

— Create a sorted list of all required words (file ‘wlist’)
e For our grammar, this can be done manually

— Obtain a pronunciation dictionary (file ‘beep’)
e Publicly available; see p. 27 for URL

— The HTK tool HDMan will then create a new dictionary by finding
pronunciations for each word in ‘wlist’

HDMan -m -w wlist -n monophonesl -1 dlog dict beep names

* ‘names’: phonetic transcription of all proper names in our grammar
* ‘global.ded’: edit script with additional commands (p. 27)
* ‘monophonesl’: list of phones used (output)
— The general format for each dictionary entry will be
* WORD [outsym] pl p2 p3

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

10

TIMIT BEEP Dict Names Dict
Prompts (beep) (nanes)

sort | unig

Word List
(wlist)

Edit Script

HDMan (gl obal . ded)

Dictionary
(dict)

Fig. 3.3 Step 2

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

Step 3 — Recording the Data

— Generate list of prompts for training and test sentences with HSGen
HSGen -1 -n 200 wdnet dict > testprompts

* which will randomly traverse the word network, generate 200 numbered
utterances, and pipe them to file ‘testprompts’

— Record training and test sentences
* You can use HTK tool HSLab or other audio recording program

TIMIT Word Net
Prompts (wdnet)

Train Files
S0001.wav
S0002.wav
...etc

@DD ol Hstan

Test Files
TO001.wav
TO002.wav
...etc

Fig. 3.4 Step 3

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 12

Step 4 — Creating the Transcription Files

— The first step is to create an orthographic transcription in HTK label
format (MLF), which can be done with Perl script ‘prompts2mlf’

prompts2mlf words.mlf trainingprompts

* ‘trainingprompts’: list of training utterances

* ‘words.mlf’: orthographic transcription (output)

— This is an example of a Master Label File (MLF), a single file containing a
complete set of transcriptions (HTK allows each individual transcription to be
stored in its own file but it is more efficient to use an MLF)

— The second step is to generate phone-level MLFs, using HLEd
HLEd -1 '*' -d dict -i phones0.mlf mkphones(O.led words.mlf

* ‘phones0.mlf’: phone-level transcription
* ‘mkphonesO.led’: edit script (see p. 30), which commands HLEd to

— Replace every word in ‘words.mlf’” with its pronunciation in ‘dict’
— Insert a silence model at the start and end of every utterance, and
— Delete all short-pause labels

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 13

trainingprompts

50001 ONE VALIDATED ACTS OF SCHOOL DISTRICTS

50002 TWO OTHER CASES ALSO WERE UNDER ADVISEMENT
S0003 BOTH FIGURES WOULD GO HIGHER IN LATER YEARS
50004 THIS IS NOT A PROGRAM OF SOCIALIZED MEDICINE

etc
words.mlf phonesO.mlf

#!MLF ! # #IMLEF!# TIMIT
"x/S0001.1lab" "%/350001.1ab" Prompts
ONE sil

promptsZmlf Word Level
VALIDATED v Transcription
ACTS ah (words. mf)
OF n Edit Script
SCHOOL v (mkphones0.led
DISTRICTS ae
: - > HLED
"%/S0002.1lab" ih ’
TWO d —
OTHER . etc (chtlonm'y)

(dict)

CASES Phone Level
ALSO Transcription
WERE (phones0. m f
UNDER
ADVISEMENT

Fig. 3.5 Step 4

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

Step 5 — Coding the data

— The final stage of data preparation is to parameterize the speech into
sequence of feature vectors
 HTK supports both FFT-based and LPC-based analysis
* Here we will use MFCCs
— Coding is performed with the HTK tool HCopy
HCopy -T 1 -C config -S codetr.scp
* ‘config’: specifies all the conversion parameters

* ‘codetr.scp’: script file, containing list of source files and their
corresponding outputs

— The output is a separate MFCC file (*.mfc) for each audio file (*.wav) in
the script file ‘codetr.scp’

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 15

C

onfiguration
File
(config)

Waveform Files MEFCC Files
S0001. wav HCopy S0001. nf ¢
S0002. wav S0002. nfc
S0003. wav S0003. nfc
etc etc

Script File
(codetr. scp)

Fig. 3.6 Step 5

config codetr.scp

Coding parameters /root/sjy/waves/S0001.wav /root/sjy/train/S0001.mfc

TARGETKIND = MFCC_O /root/sjy/waves/S0002.wav /root/sjy/train/S0002.mfc
TARGETRATE = 100000.0 /root/sjy/waves/S0003.wav /root/sjy/train/S0003.mfc

SAVECOMPRESSED = T /root/sjy/waves/S0004.wav /root/sjy/train/S0004.mfc
SAVEWITHCRC = T

WINDOWSIZE = 250000.0
USEHAMMING = T
PREEMCOEF = 0.97
NUMCHANS = 26
CEPLIFTER = 22
NUMCEPS = 12
ENORMALISE = F

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 16

Creating monophone HMMs

Introduction

— In this step, we create a set of identical monophone HMMs and train
them, realign the training utterances, and retrain the HMMs

Step 6 — Creating flat-start HMMs

— Define prototype model containing HMM topology (file ‘proto’)
* For phone-based systems, a 3-state left-right with no skips is appropriate
— Compute global mean and variance of data, and initialize HMM proto
HCompV -C config -f 0.01 -m -S train.scp -M hmm0 proto
e ‘train.scp’: script containing the list of all training WAV files

* ‘hmm0O’: directory where new HMM proto with global mean and variance
will be saved

— HCompV also creates file ‘vFloor’ containing a variance floor for the HMMs
— Manually generate two files and save them on ‘hmm0’

* ‘macro’: contains global-options macro and the variance floor macro
generated earlier (see p. 34)

* ‘hmmdefs’: contains a copy of ‘proto’ for each phoneme, including ‘sil’

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 17

13 MFCC + A + A?

proto \ Macros hmmdefs
"o <VecSize> 39 <MFCC_0_D_A> e ~h "aa"
"h "proto" <VecSize> 39 <BeginHMM>
<BeginHMM> <MFCC 0 D A-> <EndHMM>
<NumStates> b ~V "varFloorl" ~h "eh"
<State> 2 <Variance> 39 -
Mean> 39 <BeginHMM>
0.0 0.0 0.0 ... Sl Lt <EndHMM >
<Variance> 39 ... etc
1.0 1.0 1.0 ...
<State> 3
<Mean> 39
0.0 0.0 0.0 ...
<Variance> 39
1.0 1.01.0 ...
<State> 4
<Mean> 39
0.0 0.0 0.0 ...
<Variance> 39
1.0 1.0 1.0 ...
<TransP> &
0.0 1.0 0.0 0.0 0.0
0.0 0.6 0.4 0.0 0.0
0.0 0.0 0.6 0.4 0.0
0.0 0.0 0.0 0.7 0.3
0.0 0.0 0.0 0.0 0.0
<EndHMM>

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

— Re-estimate flat-start monophone HMMs in directory ‘hmm0’

HERest -C config -I phonesO.mlf -t 250.0 150.0 1000.0 -S
train.scp -H hmmO/macros -H hmmO/hmmdefs -M hmml monophonesO

* ‘monophones0’: same as ‘monophonesl’ without short-pause (sp)
e Results will be saved in new directory ‘Thmm1’

— Repeat HERest twice more, generating directories ‘hmm?2’ and ‘hmm3’

Prototype HMM
Definition
(proto)

Training File HMM list
y listed in (monophones0)
HCompV (train.scp)

(hmmO Y l hmml

MBCT 05 p{ HEREST ITBCT 05
\ hmmdef s } hnmdef s

Phone Level
Transcription
(phoneso.mif

Fig. 3.8 Step 6

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 19

Step 7 — Fixing the Silence Models

— In this step, we make the models more robust by
* Adding transitions to/from states 2 and 4 in the silence model,
* Creating a 1-state short pause (sp) model tied to the center state of ‘sil’

— This is done in two steps
* Manually edit ‘hmm3/hmmdefs’ to add a new (sp) model, and save it in a
new directory ‘hmm4’ (see p. 35)
* Run tool HHEd to add extra transitions and tie the (sp) model
HHEd -H hmm4/macros -H hmm4/hmmdefs -M hmm5 sil.hed

monophonesl
* ‘sil.hed’: script containing code to add transitions and tie states

— Repeat HERest twice more, generating directories ‘hmm6’ and ‘hmm?7’

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 20

Edit
sil > sp

hmm4
Macr os
hmmdef s

HMM list

(monophones1)

HHED

Edit Script
(511 .ned)

Fig. 3.10 Step 7

hmm5
MACI 05

hmdef s

HEREsT
(x2)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

21

Step 8 — Realigning the Training Data

— Realign training data and create new transcriptions

HVite -1 '*' -o SWT -b silence -C config -a -H hmm7/macros -H
hmm7/hmmdefs -i aligned.mlf -m -t 250.0 -y lab -I words.mlf -S
train.scp dict monophonesl

e ‘aligned.mlf’: will contain the realigned utterances, in this case
considering the best fit of all possible pronunciations in the dictionary

* Before doing this, we will need to manually insert an entry ‘silence sil’ at
the end of the dictionary file ‘dict’

— Repeat HERest twice more, generating directories ‘hmm8’ and ‘hmm9’
[HMMM{)
(monophones
Word Level \
Transcriptions

(words. mf)

Dictionary
(dict)

Phone Level
HViTE Transcriptions
(aligned. nif)

Training Data
Listed in

(train. scp)

Fig. 3.11 Step 8

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 22

Creating Tied-State Triphones

Introduction
— The last step of model building is to transform the monophone HMMs
into context-dependent triphone HMMs, which is done in two steps

 First, convert monophone transcriptions into triphone transcriptions,
create a new set of triphones (by copying monophones), and reestimating

» Second, tie similar acoustic states (to ensure robust estimation)

Step 9 — Making Triphones from Monophones

— Generate triphones transcriptions for training data
HLEd -n triphonesl -1 '*' -i wintri.mlf mktri.led aligned.mlf

* ‘mktri.led’: edit script explaining how to handle pauses (p. 38)
e ‘wintri.mlf’: word-internal triphone transcriptions (output)
e ‘triphonesl’: list of triphones (output)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 23

— Generate context-dependent triphones by cloning monophones
HHEd -B -H hmm9/macros -H hmm9/hmmdefs -M hmml0 mktri.hed
monophonesl

* ‘mktri.hed’: edit script describing the procedure for HHEd (p. 39)

— Reestimate (twice) the triphone set with HERest

HERest -B -C config -I wintri.mlf -t 250.0 150.0 1000.0 -s
stats -S train.scp -H hmmll/macros -H hmmll/hmmdefs -M hmml2
triphonesl

e ‘stats’: state occupation statistics (output), to be used during the state-
clustering process (step 10)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

24

Monophone
Transcriptions
{aligned.mlf]

Monophones
(hnm8)

HHED HLEp

Triphones Triphone

(hmmi 0}

Transcriptions
{(wintri.mf)

HEREsT (%2) |fg— |

State Occs
(stats)

Triphones
(hmil 2)

Fig. 3.13 Step 9

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

25

Step 10 — Making Tied-State Triphones

— The last step in model building is to tie states within triphone sets in
order to share data and make robust parameter estimates

— Here we use a method based on decision trees, which is based on
asking questions about the left and right context of each triphone

HHEd -B -H hmml2/macros -H hmml2/hmmdefs -M hmml3 tree.hed
triphonesl > log

* ‘tree.hed’: edit script describing which context to examine and what
results to save in output files (p. 41)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 26

— Prior to executing HHEd, we will need to generate a list of all possible
triphones on the entire dictionary, not just those on the training set
(this is needed for recognition purposes)

HDMan -b sp -n fulllist -g global.ded -1 flog beep-tri beep

* ‘global.ded’: global command TC (p. 42)

o “fulllist’: full list of all triphones (output)

* ‘beep-tri’: triphone transcription of all words in grammar (output)
» ‘tiedlist’: list of all tied states (output)

* ‘trees’: list of all trees (output)

— Repeat HERest twice more, generating directories ‘hmm14’ and
‘hmm15’

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

27

Triphones State Occs
{hmm12) (stats)

l

|l
HHED
-~}
[Edit Script |
| (tree.hed) |
[Tied—State | [HP\fﬂ\-'[_ITist]
Triphones _(tiedlist)

{hmm13)

l

HREST (x2) [™®

l

(Tied—State)

Triphones
(hmm15)

Fig. 3.14 Step 10

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

Recognizer evaluation

Step 11 — Recognizing the Test Data

— First, run the recognizer on test data

HVite -C config -H hmml5/macros -H hmml5/hmmdefs -S test.scp -
l1 '*'" -i recout.mlf -w wdnet -p 0.0 -s 5.0 dict tiedlist

* ‘config’: configuration file to allow word-internal expansion (p. 43)
» ‘test.scp’: list of test files (MFC)
* ‘recout.mlf’: transcription output

— Finally, compare recognizer output against ground truth
HResults -I testref.mlf tiedlist recout.mlf

» ‘testref.mlf’: word-level transcription for each test file (ground truth)

Tied-State
Triphones Word Net Dictionary Reference
P rwdnet) (dict) Transcription
(testraf.mf

Test Files Yy vy Recognised ,

. . i Results
Listed in HVmE W(}Td% HRESULTS — Summary
(t st . scp) {recout.mf) -)

Fig. 3.15 Step 11

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 29

