
Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 1

L21: HTK

• Introduction

• Building an HTK recognizer

• Data preparation

• Creating monophone HMMs

• Creating tied-state triphones

• Recognizer evaluation

• Adapting the HMMs

This lecture is based on The HTK Book, v3.4 [Young et al., 2009]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 2

Introduction

• What is HTK?
– HTK is a toolkit for building Hidden Markov Models

– HTK is primarily designed for building speech recognizers

• Estimating HMM parameters from a set of training utterances

• Transcribing unknown utterances

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 3

• Available HTK tools
– Data preparation tools

• Convert speech waveforms into parametric format (e.g. MFCC)

• Convert the associated transcriptions into appropriate format (e.g., phone
or word labels)

– Training

• Define the topology of the HMMs (i.e., prototypes)

• Initialize models (e.g., bootstrap, flat start)

• Train models (e.g., parameter tying, Baum-Welch, adaptation)

– Testing

• Viterbi based recognizer (HVite) – can also be used for forced alignment

• Decoder for large vocabulary speech recognition (HDecode)

– Analysis

• Evaluate model performance (e.g., WER, ROC, …)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 4

HTK Processing Stages

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 5

• Using HTK
– HTK consists of a set of tools to be run with a command-line interface

• Each tool contains a set of required arguments and optional arguments

• Optional arguments are always prefixed by a minus sign

• HTK tools can also be controlled by parameters in a configuration file

HFoo -T 1 -f 34.3 -a -s myfile file1 file2

Main arguments (2) Optional arguments (4)

HFoo -C config1 -C config2 -f 34.3 -a -s myfile file1 file2

Configuration files (2)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 6

Building an HTK recognizer

• A tutorial example
– For the remainder of this lecture, we will introduce HTK by

constructing a recognizer for a simple voice dialing application

• Corpus will consist of continuously spoken digits and proper names

• Though the task is simple, the recognizer will be sub-word-based so it can
be easily expanded

• HMMs will be continuous Gaussian mixture tied-state triphone with
clustering performed using phonetic decision trees

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 7

Data preparation

• Step 1 – the Task Grammar
– Application: voice-operated interface for phone dialing

– ASR must handle digit strings and personal names such as

• “Dial nine zero four one oh nine”

• “Phone Woodland”

– HTK provides a grammar definition language for simple tasks,
consisting of variable definitions and regular expressions

• Vertical bars denote alternatives

• Square brackets denote optional items

• Angle braces denote one or more repetitions

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 8

gram

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 9

– The HTK recognizer will require a word network, which can be created
automatically from the grammar above using the HParse tool

HParse gram wdnet

• where ‘gram’ contains the above grammar

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 10

• Step 2 – the Dictionary
– Create a sorted list of all required words (file ‘wlist’)

• For our grammar, this can be done manually

– Obtain a pronunciation dictionary (file ‘beep’)

• Publicly available; see p. 27 for URL

– The HTK tool HDMan will then create a new dictionary by finding
pronunciations for each word in ‘wlist’
HDMan -m -w wlist -n monophones1 -l dlog dict beep names

• ‘names’: phonetic transcription of all proper names in our grammar

• ‘global.ded’: edit script with additional commands (p. 27)

• ‘monophones1’: list of phones used (output)

– The general format for each dictionary entry will be

• WORD [outsym] p1 p2 p3

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 11

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 12

• Step 3 – Recording the Data
– Generate list of prompts for training and test sentences with HSGen

HSGen -l -n 200 wdnet dict > testprompts

• which will randomly traverse the word network, generate 200 numbered
utterances, and pipe them to file ‘testprompts’

– Record training and test sentences

• You can use HTK tool HSLab or other audio recording program

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 13

• Step 4 – Creating the Transcription Files
– The first step is to create an orthographic transcription in HTK label

format (MLF), which can be done with Perl script ‘prompts2mlf’
prompts2mlf words.mlf trainingprompts

• ‘trainingprompts’: list of training utterances

• ‘words.mlf’: orthographic transcription (output)

– This is an example of a Master Label File (MLF), a single file containing a
complete set of transcriptions (HTK allows each individual transcription to be
stored in its own file but it is more efficient to use an MLF)

– The second step is to generate phone-level MLFs, using HLEd
HLEd -l '*' -d dict -i phones0.mlf mkphones0.led words.mlf

• ‘phones0.mlf’: phone-level transcription

• ‘mkphones0.led’: edit script (see p. 30), which commands HLEd to

– Replace every word in ‘words.mlf’ with its pronunciation in ‘dict’

– Insert a silence model at the start and end of every utterance, and

– Delete all short-pause labels

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 14

words.mlf

trainingprompts

phones0.mlf

prompts2mlf

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 15

• Step 5 – Coding the data
– The final stage of data preparation is to parameterize the speech into

sequence of feature vectors

• HTK supports both FFT-based and LPC-based analysis

• Here we will use MFCCs

– Coding is performed with the HTK tool HCopy
HCopy -T 1 -C config -S codetr.scp

• ‘config’: specifies all the conversion parameters

• ‘codetr.scp’: script file, containing list of source files and their
corresponding outputs

– The output is a separate MFCC file (*.mfc) for each audio file (*.wav) in
the script file ‘codetr.scp’

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 16

config codetr.scp

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 17

Creating monophone HMMs

• Introduction
– In this step, we create a set of identical monophone HMMs and train

them, realign the training utterances, and retrain the HMMs

• Step 6 – Creating flat-start HMMs
– Define prototype model containing HMM topology (file ‘proto’)

• For phone-based systems, a 3-state left-right with no skips is appropriate

– Compute global mean and variance of data, and initialize HMM proto
HCompV -C config -f 0.01 -m -S train.scp -M hmm0 proto

• ‘train.scp’: script containing the list of all training WAV files

• ‘hmm0’: directory where new HMM proto with global mean and variance
will be saved

– HCompV also creates file ‘vFloor’ containing a variance floor for the HMMs

– Manually generate two files and save them on ‘hmm0’

• ‘macro’: contains global-options macro and the variance floor macro
generated earlier (see p. 34)

• ‘hmmdefs’: contains a copy of ‘proto’ for each phoneme, including ‘sil’

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 18

proto

13 MFCC + Δ + Δ2

macros hmmdefs

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 19

– Re-estimate flat-start monophone HMMs in directory ‘hmm0’
HERest -C config -I phones0.mlf -t 250.0 150.0 1000.0 -S

train.scp -H hmm0/macros -H hmm0/hmmdefs -M hmm1 monophones0

• ‘monophones0’: same as ‘monophones1’ without short-pause (sp)

• Results will be saved in new directory ‘hmm1’

– Repeat HERest twice more, generating directories ‘hmm2’ and ‘hmm3’

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 20

• Step 7 – Fixing the Silence Models
– In this step, we make the models more robust by

• Adding transitions to/from states 2 and 4 in the silence model,

• Creating a 1-state short pause (sp) model tied to the center state of ‘sil’

– This is done in two steps

• Manually edit ‘hmm3/hmmdefs’ to add a new (sp) model, and save it in a
new directory ‘hmm4’ (see p. 35)

• Run tool HHEd to add extra transitions and tie the (sp) model

HHEd -H hmm4/macros -H hmm4/hmmdefs -M hmm5 sil.hed

monophones1

• ‘sil.hed’: script containing code to add transitions and tie states

– Repeat HERest twice more, generating directories ‘hmm6’ and ‘hmm7’

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 21

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 22

• Step 8 – Realigning the Training Data
– Realign training data and create new transcriptions
HVite -l '*' -o SWT -b silence -C config -a -H hmm7/macros -H

hmm7/hmmdefs -i aligned.mlf -m -t 250.0 -y lab -I words.mlf -S

train.scp dict monophones1

• ‘aligned.mlf’: will contain the realigned utterances, in this case
considering the best fit of all possible pronunciations in the dictionary

• Before doing this, we will need to manually insert an entry ‘silence sil’ at
the end of the dictionary file ‘dict’

– Repeat HERest twice more, generating directories ‘hmm8’ and ‘hmm9’

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 23

Creating Tied-State Triphones

• Introduction
– The last step of model building is to transform the monophone HMMs

into context-dependent triphone HMMs, which is done in two steps

• First, convert monophone transcriptions into triphone transcriptions,
create a new set of triphones (by copying monophones), and reestimating

• Second, tie similar acoustic states (to ensure robust estimation)

• Step 9 – Making Triphones from Monophones
– Generate triphones transcriptions for training data
HLEd -n triphones1 -l '*' -i wintri.mlf mktri.led aligned.mlf

• ‘mktri.led’: edit script explaining how to handle pauses (p. 38)

• ‘wintri.mlf’: word-internal triphone transcriptions (output)

• ‘triphones1’: list of triphones (output)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 24

– Generate context-dependent triphones by cloning monophones
HHEd -B -H hmm9/macros -H hmm9/hmmdefs -M hmm10 mktri.hed

monophones1

• ‘mktri.hed’: edit script describing the procedure for HHEd (p. 39)

– Reestimate (twice) the triphone set with HERest
HERest -B -C config -I wintri.mlf -t 250.0 150.0 1000.0 -s

stats -S train.scp -H hmm11/macros -H hmm11/hmmdefs -M hmm12

triphones1

• ‘stats’: state occupation statistics (output), to be used during the state-
clustering process (step 10)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 25

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 26

• Step 10 – Making Tied-State Triphones
– The last step in model building is to tie states within triphone sets in

order to share data and make robust parameter estimates

– Here we use a method based on decision trees, which is based on
asking questions about the left and right context of each triphone
HHEd -B -H hmm12/macros -H hmm12/hmmdefs -M hmm13 tree.hed

triphones1 > log

• ‘tree.hed’: edit script describing which context to examine and what
results to save in output files (p. 41)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 27

– Prior to executing HHEd, we will need to generate a list of all possible
triphones on the entire dictionary, not just those on the training set
(this is needed for recognition purposes)

HDMan -b sp -n fulllist -g global.ded -l flog beep-tri beep

• ‘global.ded’: global command TC (p. 42)

• ‘fulllist’: full list of all triphones (output)

• ‘beep-tri’: triphone transcription of all words in grammar (output)

• ‘tiedlist’: list of all tied states (output)

• ‘trees’: list of all trees (output)

– Repeat HERest twice more, generating directories ‘hmm14’ and
‘hmm15’

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 28

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 29

Recognizer evaluation

• Step 11 – Recognizing the Test Data
– First, run the recognizer on test data
HVite –C config -H hmm15/macros -H hmm15/hmmdefs -S test.scp -

l '*' -i recout.mlf -w wdnet -p 0.0 -s 5.0 dict tiedlist

• ‘config’: configuration file to allow word-internal expansion (p. 43)

• ‘test.scp’: list of test files (MFC)

• ‘recout.mlf’: transcription output

– Finally, compare recognizer output against ground truth
HResults -I testref.mlf tiedlist recout.mlf

• ‘testref.mlf’: word-level transcription for each test file (ground truth)

