
Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 1

L15: Large vocabulary continuous speech recognition

• Introduction

• Acoustic modeling

• Language modeling

• Decoding

• Evaluating LVCSR systems

This lecture is based on [Holmes, 2001, ch. 12; Young, 2008, in Benesty et al., (Eds)]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 2

Introduction

• LVCSR falls into two distinct categories
– Speech transcription

• The goal is to find out exactly what the speaker said, in terms of an
orthographic transcription (i.e., text)

• Performance is measured in terms of word recognition errors

• Applications include dictation and automatic generation of transcripts (i.e.
from broadcast news)

– Speech understanding

• The goal is to find out the meaning of the message; word recognition
errors do not matter as long as they do not affect the inferred meaning

• Applications include interactive dialogue systems, and audio
summarization (i.e., from broadcast news)

– In this lecture we focus on speech transcription

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 3

• Speech transcription
– Once the speech signal has been converted into a sequence of feature

vectors, the recognition task consists of finding the most probable
word sequence 𝑊 given the observed data 𝑌

𝑊 = arg max
𝑊

𝑃 𝑊|𝑌 = arg max
𝑊

𝑃 𝑌|𝑊 𝑃 𝑊

𝑃 𝑌
= arg max

𝑊
𝑃 𝑌|𝑊 𝑃 𝑊

– The term 𝑃 𝑌|𝑊 is determined by an acoustic model, generally
based on hidden Markov models learned from a database of
utterances

– The term 𝑃 𝑊 is determined by a language model, generally based
on n-gram statistical models built from text material chosen to be
representative of the application

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 4

• The example next page illustrates the overall procedure
– Language model postulates a word sequence, in this case ‘ten pots’

– Word sequence is decomposed into a phonetic sequence by means of
a pronunciation dictionary

– Phoneme-level HMMs are concatenated to form a model of the word
sequence

– The likelihood of the data given the word sequence 𝑃 𝑌|𝑊 is
calculated, and multiplied by the probability of the word sequence
𝑃 𝑊

– In principle, this process is repeated for a number of word sequences
and the best one is chosen as the recognizer output

– In practice, a decoder is used to make the latter step computationally
effective

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 5

[Holmes, 2001]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 6

• Challenges posed by large vocabularies
– In continuous speech, words may not be distinguishable based on

their acoustic information alone

• First, due to coarticulation, word boundaries are not usually clear. In
some instances, linguistically different sequences have very similar or
identical acoustic information (e.g., ‘grey day’ vs. ‘grade A’)

• Second, the pronunciation of many words, particularly function words
(e.g., articles, pronouns, conjunctions…), can be reduced to where there is
hardly any acoustic information

– Memory and computational requirements become very large,
particularly in terms of decoding

– With increasing vocabularies, it becomes increasingly harder to find
sufficient data to train the acoustic models and even the language
models

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 7

Acoustic modeling

• Context-dependent phone modeling
– Considering the amount of words in a typical language (500k to 1M

words in English, depending on the source), it is impractical to train a
separate HMM for each word in a LVCSR

• Note also that even if it was possible, it would be highly impractical since
many words can share subcomponents

– For these reasons, and as illustrated in the previous example, LVCSR
systems are based on sub-word units, generally phoneme-sized

• This unit size is more effective and allows new words to be added simply
by extending the pronunciation dictionary

• Approximately 44 phonemes are needed to represent all English words

– Due to co-articulation, however, the acoustic realization of any one
phoneme can vary dramatically depending on its context

– For this reason, context-dependent HMMs are generally used

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 8

• Triphones
– The most popular context-dependent unit is the triphone, whereby

each phone has a distinct HMM for every pair of left and right contexts
• Using triphones, the word ‘ten’ spoken in isolation would be modeled as

𝑠𝑖𝑙 𝑡𝑠𝑖𝑙 𝑒 𝑒𝑡 𝑛 𝑛𝑒 𝑠𝑖𝑙 𝑠𝑖𝑙

• In contrast, the phrase ‘ten pots’ would be modeled by the triphone
sequence 𝑠𝑖𝑙 𝑡𝑠𝑖𝑙 𝑒 𝑒𝑡 𝑛 𝑛𝑒 𝑝 𝑝𝑛 𝑜 𝑜𝑝 𝑡 𝑡𝑜 𝑠 𝑠𝑡 𝑠𝑖𝑙 𝑠𝑖𝑙

• Notice how the two instances of phone [t] are represented by a different
triphone because their contexts are different

– The above are known as a cross-word triphones
• CWTs are beneficial because they model coarticulation effects across

word boundaries, but complicate the decoding process since the
sequence of HMMs for any one word will depend on the following word

– An alternative is to use word-internal triphones
• WITs explicitly encode word boundaries, which facilitates decoding; in the

example above , the triphones 𝑛𝑒 𝑝 𝑝𝑛 𝑜 would be replaced by 𝑛𝑒 _ 𝑝_ 𝑜

• However, their inability to model contextual effects across words is too
much of a disadvantage, and current systems generally use CWTs

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 9

• Training issues with context-dependent models
– With 44 phones there are 443=85,184 triphones, though many of

these combinations do not occur due to phonotactic constraints

– Nonetheless, LVCSR systems will need around 60,000 triphones, which
is a large enough number to pose challenges for model training

• First, the models add up to a very large number of parameters

– Assuming 39-dimensional vectors (12 MFCC + energy, Δ, Δ2) and diagonal
matrices, each state needs 790 parameters (30×10 means, 30×10 variances,
10 mixture weights)

– Assuming 3-state models (typical in HTK) and 10 mixture components per
state (needed to model speaker variability), a system with 60k triphones will
require over 142M parameters!

• In addition, many triphones will not occur in most training sets, so some
method is required to generate models for these unseen triphones

– Several smoothing techniques can be used to address these issues, as
we see next

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 10

• Smoothing techniques
– Backing off

• When there is insufficient data to train a context-dependent model, one
can “back-off” to a less-specific model for which data is available

– As an example, one may replace a triphone by a relevant biphone, generally a
right-biphone since coarticulation tends to be anticipatory

– In there are insufficient examples to train a biphone, one may then use a
context-independent phone model: a monophone

• Backing-off ensures that every model is adequately trained, though at the
expense that some context are not modeled very accurately

– Interpolation

• One may also interpolate the parameters of a context-dependent model
with those of a less-specific model to establish a compromise between
context-dependency and model robustness

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 11

– Parameter tying

• Alternatively, one may cluster all the triphones representing any one
phone into groups with similar characteristics

– This approach can retain a greater degree of specificity than the previous
method and is most commonly used in LVCSR systems

• The first attempts at parameter tying focused on clustering triphone
models into generalized triphones

– This approach assumed that the similarity between two models is the same
for all the states in the models

– To see how this is an erroneous assumption, consider triphones 𝑒𝑡 𝑛 𝑒𝑡 𝑝 𝑒𝑘 𝑛 :

for triphones 1-2 the first state may be expected to be very similar, whereas
for triphones 1-3 it is the last state that may expected to be similar

• Thus, tying at the state level rather than at the model level offers much
more flexibility in terms of making the best use of the training data

• Next, we discuss two issues one encounters when using parameter tying

– The general procedure to train tied-state mixture models

– The choice of clustering method to decide on state groupings

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 12

• Training procedure for tied-state models (typical)
– Monophone HMMs (1-Gaussian, diagonal Σ) are created and trained

– All training utterances are transcribed into triphones
• For each triphone, an initial model is “cloned” from its monophone

• Triphone model parameters are re-estimated and state occupancies are
stored for later use

– Triphones representing each phone are clustered to create tied states
• In the process, one needs to make sure sufficient data are available for

each state (i.e., by ensuring state occupancies exceed a threshold count)

• Parameters of the tied-state single-Gaussian models are re-estimated

– Multiple-component mixtures are trained with a mixture-splitting
procedure
• Starting from a single Gaussian, a 2-Gaussian is obtained by duplicating

and perturbing the means in opposite directions (e.g., ±0.2𝜎);
covariances are left unaltered and mixing coefficients are set to 0.5

• Mean, covariance and mixing coefficient are re-estimated

• Mixture-splitting is reapplied to the component with largest weight, and
the process is repeated until the desired complexity is reached

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 13

[Holmes, 2001]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 14

– Introducing the multi-component Gaussians in the last stage has
several advantages

• Triphone mixture models are trained only after the model inventory has
been setup to ensure adequate training data is available for each state

• State-typing procedure is simpler because the state similarity measure
consists of comparing pairs of single Gaussians (rather than pairs of
mixtures)

• By not introducing mixtures for monophone models one avoids using the
mixture to capture contextual variation, a job that is reserved to the
triphones (mixture components are needed to model speaker variability!)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 15

• Clustering procedures for tied-state models
– Bottom-up (agglomerative) clustering

• Start with a separate model for each triphone

• Merge similar states to form a new model state

• Repeat until sufficient training data is available for each state

• For triphones not included in the training set, back off to bi/mono-phones

– Top-down clustering (phonetic decision tree)

• All triphones for a phoneme are initially grouped together

• Hierarchical splitting procedure is used to progressively divide the group

– Splitting is based on binary questions about the left or right phonetic context

• Questions may relate to specific phones (i.e., is the phone to the right /n/?) or to
broad phonetic classes (i.e. is the phone to the right a nasal?)

– Questions are arranged as a phonetic decision tree

• All states clustered at each leaf node are tied together

• This approach to clustering ensures that a model will be specified for any
triphone, regardless of whether it occurred in the training set

– This method builds more accurate models than backing off

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 16

[Holmes, 2001]

Decision tree used to cluster the center state of some /e/ triphones

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 17

• Constructing a phonetic decision tree
– Linguistic knowledge is used to choose context questions

• Questions may include tests for a specific phone, phonetic classes (e.g.,
stop, vowel), more restrictive classes (e.g. voiced stop, front vowel) or
more general classes (e.g., voiced consonant, continuant)

• Typically, there are about 100 questions for each context (left vs. right)

– The tree building procedure works as follows

• Place all states to be clustered at the root node

• Find the best question for splitting S into two groups

– Compute mean and variance assuming that all states in S are tied

– Estimate the likelihood of the data given the pool of states 𝐿 𝑆

– For each question, compute likelihoods for yes/no groups 𝐿 𝑆𝑦/𝑛 𝑞

– Choose question that maximizes Δ𝐿𝑞 = 𝐿 𝑆𝑦 𝑞 + 𝐿 𝑆𝑛 𝑞 − 𝐿 𝑆

– Split nodes according to the winning question, and repeat process

– Process terminates when (1) splitting leads to a node with fewer examples
than an established occupancy threshold, or (2) Δ𝐿𝑞 falls below a threshold,

which avoids splitting a node when all its states are acoustically similar

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 18

Language modeling

• N-grams
– The purpose of the language model is to take advantage of linguistic

constraints to compute the probability of different word sequences

– Assuming a sequence of 𝐾words, 𝑊 = 𝑤1, 𝑤2, … , 𝑤𝐾 , the
probability 𝑃 𝑊 can be expanded as

𝑃 𝑊 = 𝑃 𝑤1, 𝑤2, … , 𝑤𝐾 = 𝑃 𝑤𝑘|𝑤1, 𝑤2, … , 𝑤𝑘−1
𝐾
𝑘=1

– Since it is unfeasible to specify this probability for every possible word
sequence, we generally make the simplifying assumption that any
word 𝑤𝑘 depends only on the previous 𝑁 − 1 words in the sequence

𝑃 𝑊 = 𝑃 𝑤𝑘|𝑤1, 𝑤2, … , 𝑤𝑘−1
𝐾
𝑘=1 ≈ 𝑃 𝑤𝑘|𝑤𝑘−𝑁+1, … , 𝑤𝑘−1

𝐾
𝑘=1

– This is known as an N-gram model

• A unigram (N=1) represents the probability of each word

• A bigram (N=2) models the probability of a word given its previous word

• A trigram (N=3) takes into account the previous two words, and so on

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 19

– N-gram probabilities can be estimated using simple frequency counts
from a text corpus

• For a bigram model

𝑃 𝑤𝑘|𝑤𝑘−1 =
𝐶 𝑤𝑘 , 𝑤𝑘−1

𝐶 𝑤𝑘−1

• For a trigram model

𝑃 𝑤𝑘|𝑤𝑘−1, 𝑤𝑘−2 =
𝐶 𝑤𝑘 , 𝑤𝑘−1, 𝑤𝑘−2

𝐶 𝑤𝑘−1, 𝑤𝑘−2

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 20

• Perplexity of a language model
– Given a particular sequence of 𝐾 words in some database, the value of

𝑃 𝑊 for that sequence is an indication of how well the LM can
predict the sequence (the higher 𝑃 𝑊 the better)

– To account for word length, one then takes the 𝐾𝑡ℎ root, the inverse of
which defines the perplexity 𝑃𝑃 𝑊

𝑃𝑃 𝑊 = 𝑃 𝑤1, 𝑤2…𝑤𝐾
−1/𝐾 = 𝑃 𝑤𝑘|𝑤1, … , 𝑤𝑘−1

𝐾
𝑘=1

−1/𝐾

– Perplexity represents the average branching factor
• i.e., the average number of words that need to be distinguished anywhere

in the sequence assuming all words at any point were equiprobable

• Perplexity is bounded by 1 (for a system where only one word sequence is
allowed) and by ∞ (when any word in a sequence has zero probability)

– A good language model should have low perplexity when computed
on a large corpus of unseen text material (i.e., outside the training set)
• Thus, perplexity is a good measure for comparing different LMs

• It also provides a good indicator of the difficulty of the recognition task
that must be performed by the acoustic models

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 21

• Data sparsity in language models

– A vocabulary with 𝑉 words provides 𝑉2 bigrams and 𝑉3 trigrams

• For a 20k-word dictionary, there are 400M bigrams and 8e6 trigrams

• While typical text corpora may contain over 100M words, most of the
possible bigrams and the vast majority of trigrams will not occur at all

– Thus, data sparsity is a much larger issue in LMs due to the larger
number of units in the inventory (words vs. phones)

• Hence, smoothing techniques are needed in order to obtain accurate,
robust (non-zero) probability estimates for all possible N-grams

• Smoothing refers to adjusting upwards zero or low-value probabilities,
and adjusting downwards high probabilities

– Several smoothing techniques can be used, as described next

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 22

• Smoothing in language models
– Discounting

• For any set of events (bigrams or trigrams), the sum of probabilities for all
possibilities must add up to one

– When only a subset of all possible events occur in the training set (as is the
case), then the sum must be less than one

• This rationale is used in discounting to “free” probability mass from the
observed events, which can be redistributed to the unseen events

– One simple and effective method (among several) is absolute discounting,
where some small fixed amount is subtracted from each frequency count

– Backing off

• If a trigram is not observed (or has a very low frequency count) , then one
backs off to the relevant bigram, or even to the monogram if the bigram is
not available either

• For words that do not occur in the corpus, one then backs off to a uniform
distribution where all these words are assumed equiprobable

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 23

– Interpolation

• Backing off involves choosing b/w a specific and a more general model

– An alternative is to compute a weighted average of different probability
estimates from contexts ranging from very specific to very general

• As an example, a trigram probability could be estimated by linear
interpolation b/w relevant trigrams, bigrams and unigrams

𝑃 𝑤𝑘|𝑤𝑘−2, 𝑤𝑘−1 = 𝜆3
𝐶 𝑤𝑘−2,𝑤𝑘−1,𝑤𝑘

𝐶 𝑤𝑘−2,𝑤𝑘−1
+ 𝜆2

𝐶 𝑤𝑘−1,𝑤𝑘

𝐶 𝑤𝑘−1
++𝜆1

𝐶 𝑤𝑘

𝐾

– where 𝐾 is the number of different words, and 𝜆1 + 𝜆2 + 𝜆3 = 1

• When using interpolation, the training data is divided into two sets

– The first (larger) set is used to derive the frequency counts

– The second set is used to find the optimum value of the weights 𝜆𝑖

• One generally applies this process for different ways of splitting the data,
and the individual estimates are combined

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 24

Decoding

• Putting things together
– Once acoustic and language models are in place, the final step is to

put all the elements together to find the most likely state sequence 𝑊
for a given sequence of feature vectors 𝑌 = 𝑦1, 𝑦2…𝑦𝑇

– In theory, this is “just” a search through a multi-level statistical model

• At the lowest level, a network of states (an HMM) represents a triphone
(the acoustic model)

• At the next level, a network of triphones represents a word (the lexicon or
pronunciation dictionary)

• At the highest level, a network of words forms a sentence (the language
model)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 25

/t/

/ah/

/m/

/ow/

tomato

tomato (1)

tomatoe

tomatoe (1)

t ah0 m ey1 t ow2

t ah0 m aa1 t ow2

t ah0 m ey1 t ow0

t ah0 m aa1 t ow0

w1

w2

w3

wn

w w

Acoustic Model Pronunciation Model Language Model

[Young, 2008]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 26

– An efficient way to solve this problem is to use dynamic programming

• Let 𝜙𝑗 𝑡 = max
𝑋

𝑝 𝑦1, … 𝑦𝑡 , 𝑥 𝑡 = 𝑗|𝜆 be the maximum probability of

observing the partial sequence 𝑦1…𝑦𝑡 and then being in state 𝑗 at time
𝑡 given model 𝜆

• As we saw in a previous lecture, this probability can be efficiently
computed using the Viterbi algorithm

𝜙𝑗 𝑡 = max
𝑖

𝜙𝑖 𝑡 − 1 𝑎𝑖𝑗 𝑏𝑗 𝑦𝑡

– Initializing 𝜙𝑗 𝑡 = 1 for the initial state, and zero elsewhere, the probability

of the most likely state sequence is then max
𝑗

𝜙𝑗 𝑇

– By recording every maximization decision, a traceback will then yield the
required best matching state/word sequence

– As you may imagine, though, direct implementation of the Viterbi
algorithm for decoding becomes unmanageable for LVCSR

– Fortunately, much of this complexity can be abstracted away by
changing viewpoints: token passing

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 27

• Token passing
– The HMM topology can be shown by building a recognition network

• For task-oriented applications, it represents all allowable utterances

• For LVCSR, it will consist of all vocabulary words in parallel in a loop

– At any time 𝑡 in the search, a single hypothesis consists of a path
through the network representing an alignment of states with feature
vectors and having a log likelihood log𝜙𝑗 𝑡

– We now define a token as a pair of values log 𝑃 , 𝑙𝑖𝑛𝑘 , where

• log 𝑃 is the log likelihood (or score)

• 𝑙𝑖𝑛𝑘 is a pointer to a record of history information

– In this way, each network node corresponding to a HMM state can
store a single token and recognition proceeds by propagating these
tokens around the network

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 28

[Young, 2008]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 29

– Viterbi can now be recast for LVCSR as a token-passing algorithm

• When a token is passed between two internal states, its score is updated
by the corresponding transition cost 𝑎𝑖𝑗 and observation cost 𝑏𝑗 𝑦𝑡

• Each node then compares all of its tokens and discards all but the best

• When a token transitions from the exit of a word to the start of the next
word, its score is updated by the language model probability

• At the same time, the transition is recorded in a record 𝑅 containing a
copy of the tokens, the current time and the identity of the previous word

• The link field is then updated to point to the record 𝑅

• As each token proceeds through the network, it accumulates a chain of
these records

• The best token at time 𝑇 in a valid network exit point can then be
examined and traced back to recover the most likely state sequence and
the boundary times

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 30

• Optimizing the token-passing algorithm
– Token passing leads to an exact implementation of Viterbi

– To make it practical for LVCSR, however, several improvements are
needed, the most common being

• Beam search

– For efficiency, propagate only those tokens that have some likelihood of being
on the best path

– This can be achieved by discarding all tokes whose probabilities fall more than
a constant below that of the most likely token

• Tree-structured networks

– As a result of beam search, 90% of the computation is spent on the first two
phones of every word, after which most of the token are pruned

• To exploit this, structure the recognition network such that word-initial phones are
shared (see next slide)

– Note that this prevents the LM probability to be added during word-external
token propagation since the next word is not known

• To address this issue, an incremental approach is used where the LM probability is
taken to be the maximum of all possible following words; as tokens move forward,
the choices become narrower and the LM probability can be updated

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 31

[Young, 2008]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 32

• N-grams and token-passing
– The DP principle assumes that the optimal path at any point can be

extended by considering only the state information at that node

– This is an issue with N-gram models, because one then needs to keep
track of all possible 𝑁 − 1 histories, which is intractable for LVCSR

– Thus, the algorithm just described only works for bigram models

– A solution for higher-order LMs is to store multiple tokens at each
state, which allows multiple histories to “stay alive” in parallel during
the search

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 33

• Multi-pass Viterbi decoding
– The token-passing algorithm performs decoding in a single pass

– For off-line applications, significant improvements can be achieved by
performing multiple passes through the data

• The first pass could employ word-internal triphones and a bigram

• The second pass could then use cross-word triphones and trigrams

– The output of the first recognition pass is generally expressed as

• A rank-ordered N-best list of possible word sequences, or

• A word graph or lattice describing all the possibilities as a network

[Young, 2008]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 34

• Stack decoding
– Viterbi can be described as a breadth-first search, because all the

possibilities are considered in parallel

– An alternative is to adopt a depth-first search, whereby one pursues
the most promising hypothesis until the end of the utterance

– This is know as stack decoding

• the idea is to keep an ordered stack of possible hypotheses, take the best
hypothesis from the stack, choose the most likely next word and add it to
the stack, and re-order the stack if necessary

– Because the score is a product of probabilities, it will decrease with
time, which biases the comparisons towards shorter sequences

• To address this issue one normalizes each path by its number of frames

– Stack decoders, however, are expensive in terms of memory and
processing requirements

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 35

• Weighted finite state transducers (WFST)
– As we have seen, the decoder integrates a number of sources of

knowledge (acoustic models, lexicon, language models)

– These knowledge sources, however, are generally hardwired into the
decoder architecture, which makes modifications non-trivial

– For these reasons, in recent years considerable effort has been
invested in developing more flexible architectures based on WFSTs
• A FST is a finite automaton whose state transitions are labeled with both

input and output symbols
– Therefore, a path through the transducer encodes a mapping from an input

symbol sequence to an output symbol sequence

• A WFST is a FST with additional weights on transitions

– WFSTs allow us to integrate all of the required knowledge (acoustic
models, pronunciation, language models) into a single, very large, but
highly optimized network
• For more details see [M Mohri, F Pereira and M Riley (2008), “Speech

Recognition with Weighted Finite-State Transducers,” in Springer
Handbook of Speech Processing , ch. 28]

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 36

Evaluating LVCSR

• Recognition errors
– When recognizing connected speech there are three types of errors

• Substitution errors (the wrong word is recognized)

• Deletions (a word is omitted)

• Insertions (a n extra word is recognized)

– These three errors are generally reported as word error rates (WER)

𝑊𝐸𝑅 =
𝐶 𝑠𝑢𝑏𝑠 + 𝐶 𝑑𝑒𝑙 + 𝐶 𝑖𝑛𝑠

𝑁

• where 𝑁 is the number of words in the text speech and 𝐶 𝑥 is the count
of errors of type 𝑥

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 37

• Controlling word insertion errors
– The final word sequence produced by the decoder will depend on the

relative contributions from the acoustic and language models

– In general, the acoustic model has a disproportionately large influence
relative to that of the LM

– This generally results in a large number of errors due to insertion of
many short function words

• Since they are short and have large variability, a sequence of their models
mat provide the best acoustic match to short speech segments, even
though the word sequence has very low probability according to the LM

– There are two practical solutions to this problem

• Impose a word insertion penalty such that the probability of transitions
between words is penalized by a multiplicative term less than one

• Increase the influence of the language model by means of a multiplicative
term greater than one

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 38

http://itl.nist.gov/iad/mig/publications/ASRhistory/index.html

