L10: Probability, statistics, and estimation theory

Review of probability theory

Bayes theorem

Statistics and the Normal distribution

Least Squares Error estimation

Maximum Likelihood estimation

Bayesian estimation

This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 3]

Review of probability theory

Definitions (informal)

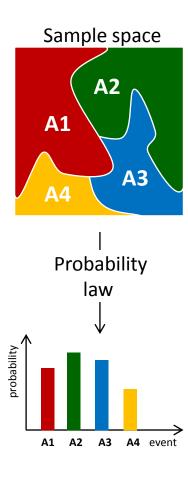
- Probabilities are numbers assigned to events that indicate "how likely" it is that the event will occur when a random experiment is performed
- A probability law for a random experiment is a rule that assigns probabilities to the events in the experiment
- The sample space S of a random experiment is the set of all possible outcomes

Axioms of probability

- Axiom I: $P[A_i] \ge 0$

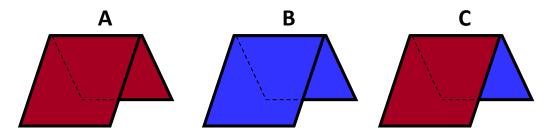
- Axiom II: P[S] = 1

- Axiom III: $A_i \cap A_j = \emptyset \Rightarrow P[A_i \cup A_j] = P[A_i] + P[A_j]$



Warm-up exercise

- I show you three colored cards
 - One BLUE on both sides.
 - One RED on both sides
 - One BLUE on one side, RED on the other



- I shuffle the three cards, then pick one and show you one side only.
 The side visible to you is RED
 - Obviously, the card has to be either A or C, right?
- I am willing to bet \$1 that the other side of the card has the same color, and need someone in class to bet another \$1 that it is the other color
 - On the average we will end up even, right?
 - Let's try it!

More properties of probability

$$-P[A^C] = 1 - P[A]$$

$$-P[A] \leq 1$$

$$-P[\emptyset]=0$$

- given
$$\{A_1 ... A_N\}, \{A_i \cap A_j = \emptyset, \forall ij\} \Rightarrow P[\bigcup_{k=1}^N A_k] = \sum_{k=1}^N P[A_k]$$

$$- P[A_1 \cup A_2] = P[A_1] + P[A_2] - P[A_1 \cap A_2]$$

$$- P[\bigcup_{k=1}^{N} A_k] =$$

$$\sum_{k=1}^{N} P[A_k] - \sum_{j< k}^{N} P[A_j \cap A_k] + \dots + (-1)^{N+1} P[A_1 \cap A_2 \dots \cap A_N]$$

$$-A_1 \subset A_2 \Rightarrow P[A_1] \leq P[A_2]$$

Conditional probability

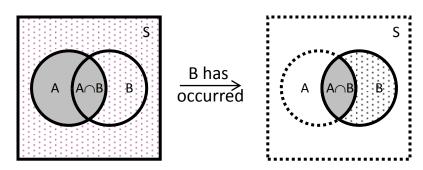
 If A and B are two events, the probability of event A when we already know that event B has occurred is

$$P[A|B] = \frac{P[A \cap B]}{P[B]} \quad if \ P[B] > 0$$

- This conditional probability P[A|B] is read:
 - the "conditional probability of A conditioned on B", or simply
 - the "probability of A given B"

Interpretation

- The new evidence "B has occurred" has the following effects
 - The original sample space S (the square) becomes B (the rightmost circle)
 - The event A becomes A∩B
- P[B] simply re-normalizes the probability of events that occur jointly with B



Theorem of total probability

- Let B_1 , B_2 ... B_N be a partition of S (mutually exclusive that add to S)
- Any event A can be represented as

$$A = A \cap S = A \cap (B_1 \cup B_2 \dots B_N) = (A \cap B_1) \cup (A \cap B_2) \dots (A \cap B_N)$$

- Since B_1 , B_2 ... B_N are mutually exclusive, then

$$P[A] = P\{A \cap B_1\} + P\{A \cap B_2\} + \dots + P\{A \cap B_N\}$$

and, therefore

$$P[A] = P[A|B_1]P[B_1] + \cdots P[A|B_N]P[B_N] = \sum_{k=1}^{N} P[A|B_k]P[B_k]$$



Bayes theorem

- Assume $\{B_1, B_2 \dots B_N\}$ is a partition of S
- Suppose that event A occurs
- What is the probability of event B_i ?
- Using the definition of conditional probability and the Theorem of total probability we obtain

$$P[B_j|A] = \frac{P[A \cap B_j]}{P[A]} = \frac{P[A|B_j]P[B_j]}{\sum_{k=1}^N P[A|B_k]P[B_k]}$$

 This is known as Bayes Theorem or Bayes Rule, and is (one of) the most useful relations in probability and statistics

Bayes theorem and statistical pattern recognition

When used for pattern classification, BT is generally expressed as

$$P[\omega_j | x] = \frac{P[x | \omega_j] P[\omega_j]}{\sum_{k=1}^{N} P[x | \omega_k] P[\omega_k]} = \frac{P[x | \omega_j] P[\omega_j]}{P[x]}$$

- where ω_j is the j-th class (e.g., phoneme) and x is the feature/observation vector (e.g., vector of MFCCs)
- A typical decision rule is to choose class ω_j with highest $P[\omega_j|x]$
 - Intuitively, we choose the class that is more "likely" given observation x
- Each term in the Bayes Theorem has a special name
 - $P[\omega_j]$ <u>prior</u> probability (of class ω_j)
 - $P[\omega_j|x]$ <u>posterior</u> probability (of class ω_j given the observation x)
 - $P[x|\omega_j]$ <u>likelihood</u> (probability of observation x given class ω_j)
 - P[x] normalization constant (does not affect the decision)

Example

- Consider a clinical problem where we need to decide if a patient has a particular medical condition on the basis of an imperfect test
 - Someone with the condition may go undetected (false-negative)
 - Someone free of the condition may yield a positive result (false-positive)

Nomenclature

- The true-negative rate P(NEG | ¬COND) of a test is called its SPECIFICITY
- The true-positive rate P(POS|COND) of a test is called its SENSITIVITY

Problem

- Assume a population of 10,000 with a 1% prevalence for the condition
- Assume that we design a test with 98% specificity and 90% sensitivity
- Assume you take the test, and the result comes out POSITIVE
- What is the probability that you have the condition?

Solution

- Fill in the joint frequency table next slide, or
- Apply Bayes rule

	TEST IS POSITIVE	TEST IS NEGATIVE	ROW TOTAL
HAS CONDITION	True-positive P(POS COND)	False-negative P(NEG COND)	
FREE OF CONDITION	False-positive P(POS ¬COND)	True-negative P(NEG ¬COND)	
COLUMN TOTAL			

	TEST IS	TEST IS	ROW TOTAL
	POSITIVE	NEGATIVE	
HAS CONDITION	True-positive	False-negative	
	P(POS COND)	P(NEG COND)	
	100×0.90	100×(1-0.90)	100
FREE OF CONDITION	False-positive	True-negative	
	P(POS ¬COND)	P(NEG ¬COND)	
	9,900×(1-0.98)	9,900×0.98	9,900
COLUMN TOTAL	288	9,712	10,000

Applying Bayes rule

$$P[cond|+] =$$

$$= \frac{P[+|cond]P[cond]}{P[+]} =$$

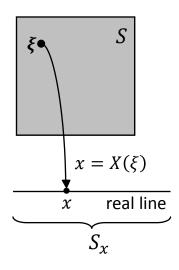
$$= \frac{P[+|cond]P[cond]}{P[+|cond]P[cond]} =$$

$$= \frac{0.90 \times 0.01}{0.90 \times 0.01 + (1 - 0.98) \times 0.99} =$$

$$= 0.3125$$

Random variables

- When we perform a random experiment we are usually interested in some measurement or numerical attribute of the outcome
 - e.g., weights in a population of subjects, execution times when benchmarking CPUs, shape parameters when performing ATR
- These examples lead to the concept of random variable
 - A random variable X is a function that assigns a real number $X(\xi)$ to each outcome ξ in the sample space of a random experiment
 - $X(\xi)$ maps from all possible outcomes in sample space onto the real line
- The function that assigns values to each outcome is fixed and deterministic, i.e., as in the rule "count the number of heads in three coin tosses"
 - Randomness in X is due to the underlying randomness of the outcome ξ of the experiment
- Random variables can be
 - Discrete, e.g., the resulting number after rolling a dice
 - Continuous, e.g., the weight of a sampled individual

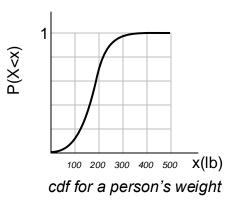


Cumulative distribution function (cdf)

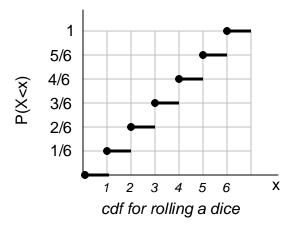
- The cumulative distribution function $F_X(x)$ of a random variable X is defined as the probability of the event $\{X \leq x\}$

$$F_X(x) = P[X \le x] - \infty < x < \infty$$

– Intuitively, $F_X(b)$ is the long-term proportion of times when $X(\xi) \leq b$



- Properties of the cdf
 - $0 \le F_X(x) \le 1$
 - $\lim_{x\to\infty} F_X(x) = 1$
 - $\lim_{x \to -\infty} F_X(x) = 0$
 - $F_X(a) \le F_X(b)$ if $a \le b$
 - $F_X(b) = \lim_{h \to 0} F_X(b+h) = F_X(b^+)$



Probability density function (pdf)

The probability density function $f_X(x)$ of a continuous random variable X, if it exists, is defined as the derivative of $F_X(x)$

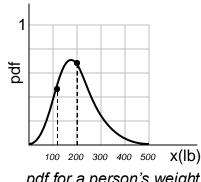
$$f_X(x) = \frac{dF_X(x)}{dx}$$

 For discrete random variables, the equivalent to the pdf is the probability mass function

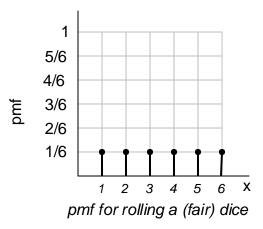
$$f_X(x) = \frac{\Delta F_X(x)}{\Delta x}$$

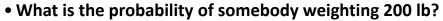
- $f_X(x) > 0$
- $P[a < x < b] = \int_a^b f_X(x) dx$
- $F_X(x) = \int_{-\infty}^x f_X(x) dx$
- $1 = \int_{-\infty}^{\infty} f_X(x) dx$

•
$$f_X(x|A) = \frac{d}{dx} F_X(x|A)$$
 where $F_X(x|A) = \frac{P[\{X < x\} \cap A]}{P[A]}$ if $P[A] > 0$



pdf for a person's weight

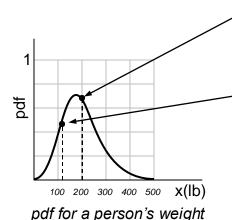


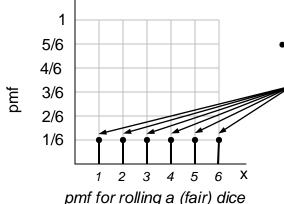


- According to the pdf, this is about 0.62
- This number seems reasonable, right?

- According to the pdf, this is about 0.43
- But, intuitively, we know that the probability should be zero (or very, very small)

- The pdf DOES NOT define a probability, but a probability DENSITY!
- To obtain the actual probability we must integrate the pdf in an interval
- So we should have asked the question: what is the probability of somebody weighting 124.876 lb plus or minus 2 lb?





- The probability mass function is a 'true' probability (reason why we call it a 'mass' as opposed to a 'density')
 - The pmf is indicating that the probability of any number when rolling a fair dice is the same for all numbers, and equal to 1/6, a very legitimate answer
 - The pmf DOES NOT need to be integrated to obtain the probability (it cannot be integrated in the first place)

Statistical characterization of random variables

- The cdf or the pdf are SUFFICIENT to fully characterize a r.v.
- However, a r.v. can be PARTIALLY characterized with other measures
- Expectation (center of mass of a density)

$$E[X] = \mu = \int_{-\infty}^{\infty} x f_X(x) dx$$

Variance (spread about the mean)

$$var[X] = \sigma^2 = E[(X - E[X])^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$

Standard deviation

$$std[X] = \sigma = var[X]^{1/2}$$

N-th moment

$$E[X^N] = \int_{-\infty}^{\infty} x^N f_X(x) dx$$

Random vectors

- An extension of the concept of a random variable
 - A random vector X is a function that assigns a vector of real numbers to each outcome ξ in sample space S
 - We generally denote a random vector by a column vector
- The notions of cdf and pdf are replaced by 'joint cdf' and 'joint pdf'
 - Given random vector $X = [x_1, x_2 ... x_N]^T$ we define the joint cdf as $F_X(\underline{x}) = P_X[\{X_1 \le x_1\} \cap \{X_2 \le x_2\} \dots \{X_N \le x_N\}]$
 - and the joint pdf as

$$f_{\underline{X}}(\underline{x}) = \frac{\partial^N F_{\underline{X}}(\underline{x})}{\partial x_1 \partial x_2 \dots \partial x_N}$$

- The term <u>marginal pdf</u> is used to represent the pdf of a subset of all the random vector dimensions
 - A marginal pdf is obtained by integrating out variables that are of no interest

• e.g., for a 2D random vector
$$\underline{X} = [x_1, x_2]^T$$
, the marginal pdf of x_1 is
$$f_{X_1}(x_1) = \int_{x_2 = -\infty}^{x_2 = +\infty} f_{X_1 X_2}(x_1 x_2) dx_2$$

Statistical characterization of random vectors

- A random vector is also fully characterized by its joint cdf or joint pdf
- Alternatively, we can (partially) describe a random vector with measures similar to those defined for scalar random variables
- Mean vector

$$E[X] = \underline{\mu} = [E[X_1], E[X_2] \dots E[X_N]]^T = [\mu_1, \mu_2, \dots \mu_N]^T$$

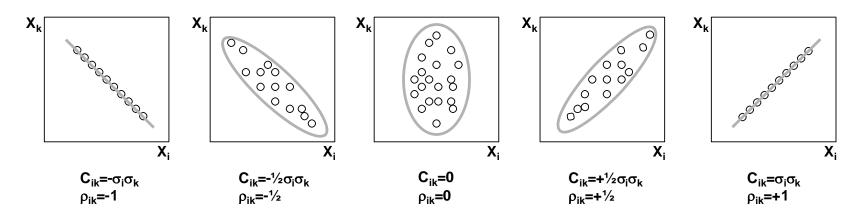
Covariance matrix

$$cov[X] = \Sigma = E\left[\left(\underline{X} - \underline{\mu}\right)\left(\underline{X} - \underline{\mu}\right)^{T}\right] =$$

$$= \begin{bmatrix} E[(x_{1} - \mu_{1})^{2}] & \dots & E[(x_{1} - \mu_{1})(x_{N} - \mu_{N})] \\ \vdots & \ddots & \vdots \\ E[(x_{1} - \mu_{1})(x_{N} - \mu_{N})] & \dots & E[(x_{N} - \mu_{N})^{2}] \end{bmatrix} =$$

$$= \begin{bmatrix} \sigma_{1}^{2} & \dots & c_{1N} \\ \vdots & \ddots & \vdots \\ c_{1N} & \dots & \sigma_{N}^{2} \end{bmatrix}$$

- The covariance matrix indicates the tendency of each pair of features (dimensions in a random vector) to vary together, i.e., to <u>co-vary</u>*
 - The covariance has several important properties
 - If x_i and x_k tend to increase together, then $c_{ik} > 0$
 - If x_i tends to decrease when x_k increases, then $c_{ik} < 0$
 - If x_i and x_k are uncorrelated, then $c_{ik} = 0$
 - $|c_{ik}| \le \sigma_1 \sigma_k$, where σ_i is the standard deviation of x_i
 - $-c_{ii} = \sigma_i^2 = var[x_i]$
 - The covariance terms can be expressed as $c_{ii} = \sigma_i^2$ and $c_{ik} = \rho_{ik}\sigma_i\sigma_k$
 - where ρ_{ik} is called the correlation coefficient



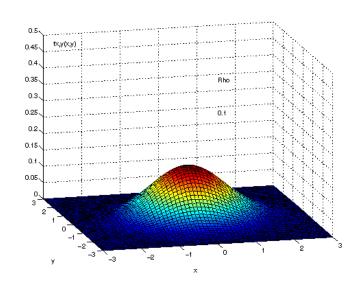
The Normal or Gaussian distribution

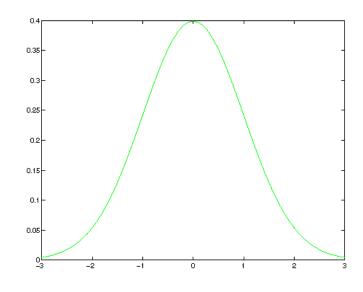
- The multivariate Normal distribution $N(\mu, \Sigma)$ is defined as

$$f_X(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

For a single dimension, this expression is reduced to

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$





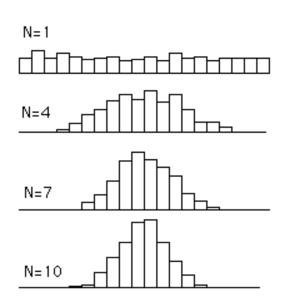
Gaussian distributions are very popular since

- Parameters (μ, Σ) uniquely characterize the normal distribution
- If all variables x_i are uncorrelated $(E[x_ix_k] = E[x_i]E[x_k])$, then
 - Variables are also independent $(P[x_ix_k] = P[x_i]P[x_k])$, and
 - Σ is diagonal, with the individual variances in the main diagonal
- Central Limit Theorem (next slide)
- The marginal and conditional densities are also Gaussian
- Any linear transformation of any N jointly Gaussian rv's results in N rv's that are also Gaussian
 - For $X=[X_1X_2\dots X_N]^T$ jointly Gaussian, and $A_{N\times N}$ invertible, then Y=AX is also jointly Gaussian

$$f_Y(y) = \frac{f_X(A^{-1}y)}{|A|}$$

Central Limit Theorem

- Given <u>any</u> distribution with a mean μ and variance σ^2 , the sampling distribution of the mean approaches a normal distribution with mean μ and variance σ^2/N as the sample size N increases
 - No matter what the shape of the original distribution is, the sampling distribution of the mean approaches a normal distribution
 - N is the sample size used to compute the mean, not the overall number of samples in the data
- Example: 500 experiments are performed using a uniform distribution
 - N = 1
 - One sample is drawn from the distribution and its mean is recorded (500 times)
 - The histogram resembles a uniform distribution, as one would expect
 - N = 4
 - Four samples are drawn and the mean of the four samples is recorded (500 times)
 - The histogram starts to look more Gaussian
 - As N grows, the shape of the histograms resembles a Normal distribution more closely



Estimation theory

The estimation problem

- Suppose that a set of random variables $X=\{X_1,X_2...X_N\}$ is iid (independent identically distributed) according to pdf $p(x|\Phi)$ but the value of Φ is unknown
- We seek to build an estimator of Φ, a real-valued function $\theta(X_1, X_2 ... X_N)$ that specifies the value of Φ for each possible set of values of $X_1, X_2 ... X_N$
- Three types of estimation procedures are commonly used
 - Minimum Mean Squared Error / Least Squares Error
 - Maximum Likelihood
 - Bayesian

Minimum Mean Squared Error / Least Squares Error

- Assume two random variables X and Y are iid according to $f_{xy}(x,y)$
- Suppose we do a series of experiments and observe the value of X
- We seek to find a transformation $\widehat{Y}=g(X,\Phi)$ that allows us to predict the value of Y
 - This assumes that we know the general form of $g(\)$ but not the specific value of its parameters Φ
- The following quantity can measure the goodness of $\hat{Y}=g(X,\Phi)$ $E\big(Y-\hat{Y}\big)^2=E\big(Y-g(X,\Phi)\big)^2$
 - This quantity is called the *mean squared error* (MSE)
- The process of finding parameter $\widehat{\Phi}_{MMSE}$ that minimizes the MSE is known as the minimum mean squared error (MMSE) estimator

$$\widehat{\Phi}_{MMSE} = \underset{\Phi}{\operatorname{argmin}} \left[E (Y - g(X, \Phi))^{2} \right]$$

- In some cases, however, the joint pdf $f_{xy}(x, y)$ is unknown, so we must estimate Φ from a training set of samples (x, y)
- In this case, the following criterion can be used

$$\widehat{\Phi}_{LSE} = \underset{\Phi}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - g(x_i, \Phi))^2$$

- The process of finding parameter $\widehat{\Phi}_{LSE}$ that minimizes this sumsquared-error (SSE) is called the *least squared error (LSE)* or *minimum squared error (MSE)* estimator
- We will now derive MMSE/LSE estimates for two classes of functions
 - Constant functions $G_c = \{g(x) = c; c \in \mathcal{R}\}$
 - Linear functions $G_l = \{g(x) = ax + b; a, b \in \mathcal{R}\}$

MMSE/LSE for constant functions

- When $\widehat{Y}=g(x)=c$, the MSE becomes $E\big(Y-\widehat{Y}\big)^2=E(Y-c)^2$
- To find the MMSE estimate of c, we take derivatives and equate to 0 $c_{MMSE} = E(Y)$
 - which indicates that the MMSE estimate is the expected value of Y
 - Likewise, it is trivial to show that the MSE is the variance of Y
- Following the same procedure, we find that the LSE estimate is

$$c_{LSE} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

which is the sample mean

MMSE/LSE for linear functions

- When $\hat{Y} = g(x) = ax + b$, the objective function becomes $e(a,b) = E(Y \hat{Y})^2 = E(Y ax b)^2$
- To find the MMSE estimate for c, we take partial derivatives with respect to a and b and equate to 0

$$\frac{\partial e}{\partial a} = 0 \Rightarrow a = \frac{cov(X, Y)}{var(Y)} = \rho_{xy} \frac{\sigma_x}{\sigma_y}$$
$$\frac{\partial e}{\partial b} = 0 \Rightarrow b = E(Y) - \rho_{xy} \frac{\sigma_x}{\sigma_y} E(X)$$

- To find the LSE estimate, assume that we have n sample-vectors $(x_i, y_i) = (x_i^1, x_i^2 \dots x_i^d, y_i)$
- The linear function can be represented as

$$\hat{Y} = XA$$

Or in expanded form as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1^1 & x_1^d \\ 1 & x_2^1 & x_2^d \\ 1 & x_n^1 & x_n^d \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_d \end{bmatrix}$$

- ullet where we have absorbed the intercept b by adding a constant dimension
- The SSE can then be represented as

$$e(A) = \|\hat{Y} - Y\|^2 = \sum_{i=1}^{n} (A^T x_i - y_i)^2$$

- A closed-form solution to this estimate can be obtained by taking the gradient of e(A) and equating to 0

$$\nabla e(A) = \sum_{i=1}^{n} 2(A^{T}x_{i} - y_{i})x_{i} = 2X^{T}(XA - Y) = 0$$

which yields the following form

$$A_{LSE} = (X^T X)^{-1} X^T Y$$

• The expression $X^{\perp} = (X^T X)^{-1} X^T$ is known as the pseudo-inverse of X

- When X^TX is singular, the pseudo-inverse cannot be computed
- In this case, we use the alternative objective function $e(A) = ||XA Y||^2 + \alpha ||A||^2$
 - where α is known as a *regularization* parameter
- Following a similar procedure as before, we obtain the LSE estimate $A_{LSE} = (X^TX + \alpha I)^{-1}X^TY$
 - which is generally known as the regularized LSE or ridge-regression solution

ex10p1.m

Find the LSE solution (1 dimensional model) ex10p2.m

Find the LSE solution (3 dimensional model)

Maximum Likelihood Estimation (MLE)

- MLE is the most commonly used parametric estimation method
- Assume that a set of random samples $X = \{X_1, X_2 ... X_n\}$ are independently drawn from pdf $p(x|\Phi)$
- Assume that we make a number of observations $x = (x_1, ... x_n)$
- In MLE we seek to find the set of parameters Φ that maximize the observations
- Since $X = \{X_1, X_2 \dots X_n\}$ are independently drawn, the joint likelihood can be rewritten as

$$p_n(x|\Phi) = \prod_{k=1}^n p(x_k|\Phi)$$

and the maximum likelihood estimate is

$$\Phi_{MLE} = \operatorname*{argmax}_{\Phi} p_n(x|\Phi)$$

 Since the logarithm is a monotonically increasing function, we generally maximize the log-likelihood

$$l(\Phi) = \log p_n(x|\Phi) = \sum_{k=1}^n \log p(x_k|\Phi)$$

MLE example

Let's look at the MLE for a univariate Gaussian

$$p(x|\Phi) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

- where in this case $\Phi = \{\mu, \sigma^2\}$
- The log likelihood is

$$\log p_{n}(x|\Phi) = \log \prod_{k=1}^{n} p(x_{k}|\Phi) = \sum_{k=1}^{n} \log \left[\frac{1}{\sqrt{2\pi}\sigma} e^{-(x_{k}-\mu)^{2}/(2\sigma^{2})} \right] = -\frac{n}{2} \log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{k=1}^{n} (x_{k} - \mu)^{2}$$

- Taking partial derivatives, setting to zero and solving for μ , σ^2 yields

$$\mu_{MLE} = \frac{1}{n} \sum_{k=1}^{n} x_k$$

$$\sigma_{MLE}^2 = \frac{1}{n} \sum_{k=1}^{n} (x_k - \mu_{MLE})^2$$

 which shows that the MLEs for the mean and variance are the sample mean and the sample variance

Bayesian estimation

- Bayesian estimation follows a different philosophy from MLE
 - MLE assumes that the parameter Φ is unknown but <u>fixed</u>
 - Instead, BE assumes that the parameter Φ itself is a random variable with its own prior distribution $p(\Phi)$
- The most popular form of Bayesian estimation is the so-called *Maximum A Posteriori* (MAP) estimation
- Given observation sequence $\mathbf{x} = (x_1, \dots x_n)$, the posterior distribution of Φ can be obtained using Bayes' rule as

$$p(\Phi|\mathbf{x}) = \frac{p(\mathbf{x}|\Phi)p(\Phi)}{p(\mathbf{x})} \propto p(\mathbf{x}|\Phi)p(\Phi)$$

– In MAP, we seek to find the parameter that maximizes $p(\Phi|x)$

$$\widehat{\Phi}_{\text{MAP}} = \underset{\Phi}{\operatorname{argmax}} \, p(\Phi | \mathbf{x})$$

- The MAP estimator allows us to incorporate any prior knowledge we may have about parameter Φ by means of prior $p(\Phi)$
 - When the amount of data is limited, the MAP estimator relies more heavily on the prior $p(\Phi)$
 - As the amount of data increases, MAP begins to balance information in the prior and in the likelihood $p(x|\Phi)$
 - For large enough n, MAP approaches the MLE solution
- If we set the prior $p(\Phi)$ to a constant value (also known as a *non-informative* prior), MAP estimation becomes equivalent to MLE