L10: Probability, statistics, and estimation theory

Review of probability theory

Bayes theorem

Statistics and the Normal distribution
Least Squares Error estimation
Maximum Likelihood estimation
Bayesian estimation

This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 3]
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Review of probability theory

Sample space

Definitions (informal)

— Probabilities are numbers assigned to events that
indicate “how likely” it is that the event will occur
when a random experiment is performed

— A probability law for a random experiment is a rule
that assigns probabilities to the events in the
experiment

Probability
— The sample space S of a random experiment is the law
set of all possible outcomes l

Axioms of probability
— Axiom|l:  P[A;] =0
— Axiomll:  P[S]=1 AL A2 A3 Ad event
— Axiom lll:  4; N A; = @ = P[A;UA;] = P[A;] + P|4)]

probability
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Warm-up exercise

— | show you three colored cards
* One BLUE on both sides
* One RED on both sides
* One BLUE on one side, RED on the other

A B C

— | shuffle the three cards, then pick one and show you one side only.
The side visible to you is RED
e Obviously, the card has to be either A or C, right?

— | am willing to bet $1 that the other side of the card has the same
color, and need someone in class to bet another S1 that it is the other

color
* On the average we will end up even, right?

e Let’s try it!
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More properties of probability
— P[A¢] =1 — P[A4]

— P[A] <1

- P[@] =0
— given {A; ... Ay} {A; N A; = 8,Vij} = P[UR=1 Ak| = X¥=1 P[Ax]

— P[A;UA;] = P[A,] + P[A;] — P[A; N A,]

~ P:Ull¥=1Ak] =
ZII¥=1 P[Ak] - Z?’<k P[A] N Ak] + + (_1)N+1P[A1 N AZ .. N AN]

— A; c A, > P[A{] < P[A4,;]
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Conditional probability

— |If A and B are two events, the probability of event A when we already
know that event B has occurred is

P[ANB]
* This conditional probability P[A|B] is read:
— the “conditional probability of A conditioned on B”, or simply
— the “probability of A given B”
— Interpretation
* The new evidence “B has occurred” has the following effects
* The original sample space S (the square) becomes B (the rightmost circle)
e The event A becomes ANB

* P[B] simply re-normalizes the probability of events that occur jointly with B

B has
—>
occurred
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Theorem of total probability
— Let B4, B, ... By be a partition of S (mutually exclusive that add to S)
— Any event A can be represented as
A=ANS=An(B{UB,..By) =(ANBy)U(ANB,)..(ANBy)
— Since By, B, ... By are mutually exclusive, then
P[A] = P{AnBy] + P{ANB,] + .-+ P{A N By]
— and, therefore

P[A] = P[A|B;]P[B;] + -+ P[A|By]P[By] = X¥=1 P[A|Bi]P[By]

ESREY
/B:/\VA ??
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Bayes theorem
— Assume {Bq, B, ... By} is a partition of S
— Suppose that event A occurs
— What is the probability of event B;?

— Using the definition of conditional probability and the Theorem of
total probability we obtain

PlAnB;| _ PlA|B]P|B)]
P[A] Y i1 P[A|By1P[By]

P|B;|A] =

— This is known as Bayes Theorem or Bayes Rule, and is (one of) the
most useful relations in probability and statistics

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU



Bayes theorem and statistical pattern recognition

— When used for pattern classification, BT is generally expressed as
Plx|a;|Plw;|  Plx|w;|P|w)]

V=1 Plx|wi]Plwy] P[x]

* where w; is the j-th class (e.g., phoneme) and x is the
feature/observation vector (e.g., vector of MFCCs)

P[a)j|x] =

— A typical decision rule is to choose class w; with highest P[a)j|x]
* Intuitively, we choose the class that is more “likely” given observation x

— Each term in the Bayes Theorem has a special name
* Ploy] prior probability (of class wj)

e P :a)j|x] posterior probability (of class w; given the observation x)

e P :x|a)j] likelihood (probability of observation x given class w;)

* Plx] normalization constant (does not affect the decision)
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Example
— Consider a clinical problem where we need to decide if a patient has a
particular medical condition on the basis of an imperfect test
* Someone with the condition may go undetected (false-negative)
* Someone free of the condition may yield a positive result (false-positive)

— Nomenclature
* The true-negative rate P(NEG|-COND) of a test is called its SPECIFICITY
* The true-positive rate P(POS|COND) of a test is called its SENSITIVITY

— Problem
* Assume a population of 10,000 with a 1% prevalence for the condition
e Assume that we design a test with 98% specificity and 90% sensitivity
e Assume you take the test, and the result comes out POSITIVE
* What is the probability that you have the condition?

— Solution

* Fill in the joint frequency table next slide, or
* Apply Bayes rule
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TESTIS TESTIS ROW TOTAL
POSITIVE NEGATIVE
True-positive | False-negative
HAS CONDITION | P(POS|COND) | P(NEG|COND)
o
CONDITION

COLUMN TOTAL
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TEST IS TEST IS ROW TOTAL
POSITIVE NEGATIVE
True-positive | False-negative
HAS CONDITION | P(POS|COND) | P(NEG|COND)
100x0.90 100x%(1-0.90) 100
FREE OF False-positive | True-negative
CONDITION P(POS[-COND)|P(NEG|-COND)
9,900%(1-0.98) | 9,900x0.98 9,900
COLUMN TOTAL 288 9,712 10,000
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— Applying Bayes rule
Plcond| +] =

_ Pl+]|cond]P[cond]
— P —

P[+|cond]P[cond]

~ P[+|cond]P[cond] + P[+|—~cond]P[—~cond]

B 0.90 x 0.01 B
~ 090 x 0.01 + (1 —0.98) x0.99

= 0.3125
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Random variables
— When we perform a random experiment we are usually interested in
some measurement or numerical attribute of the outcome

e e.g., weights in a population of subjects, execution times when
benchmarking CPUs, shape parameters when performing ATR

— These examples lead to the concept of random variable

* Arandom variable X is a function that assigns a real number X(¢) to each
outcome ¢ in the sample space of a random experiment

* X (&) maps from all possible outcomes in sample space onto the real line

— The function that assigns values to each outcome is
fixed and deterministic, i.e., as in the rule “count the £ S
number of heads in three coin tosses”

e Randomness in X is due to the underlying randomness
of the outcome ¢ of the experiment

— Random variables can be x = X(é)
e Discrete, e.g., the resulting number after rolling a dice
e Continuous, e.g., the weight of a sampled individual

X real line

- _/

Sx
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Cumulative distribution function (cdf)

— The cumulative distribution function Fy(x)
of a random variable X is defined as the
probability of the event {X < x}

Fy(x) =P[X<x] —oo<x<owm

— Intuitively, Fx(b) is the long-term proportion
of times when X(&) < b

— Properties of the cdf
c 0<Fy(x) <1

 lim Fy(x) =1
X—> 00

 lim Fy(x) =0
X——00

.« Fy(a) < Fy(b)ifa<b
« Fx(b) = lim Fx(b +h) = Fx(b™)

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU
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P(X<x)

5/6
4/6
3/6
2/6
1/6

100 200 300 400 s00 X(ID)

cdf for a person’s weight

1 2 3 4 5 6
cdf for rolling a dice
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Probability density function (pdf)

— The probability density function fy(x) of a
continuous random variable X, if it exists,
is defined as the derivative of Fy(x)

dFx(x)
fx(x) = dx

— For discrete random variables, the equivalent to

the pdf is the probability mass function
AFy (x)
fx(x) = Ax

— Properties
* fx(x) >0
Pla<x <b]= [ fy(x)dx
Fy(x) = f_xoo fx(x)dx
1= [, f(x)dx
fx(x|A) = %FX(MA) where Fy(x|A) =
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1
100 200 300 400 500 X(Ib)

pdf for a person’s weight

1
5/6
4/6
“g_ 3/6
2/6
1/6
[TTTTT
1 2 3 4 5 6 X
pmf for rolling a (fair) dice
P[{X<x}NA]

o U PlA]>0
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pdf

5/6
4/6
3/6
2/6
1/6

pmf

100 200 300 400 500

x(Ib)

pdf for a person’s weight

1]

pmf for rolling

L by

Iz

X

(fair) dice

e What is the probability of somebody weighting 200 Ib?
e According to the pdf, this is about 0.62
® This number seems reasonable, right?

* Now, what is the probability of somebody weighting 124.876 Ib?
e According to the pdf, this is about 0.43
e But, intuitively, we know that the probability should be zero (or very,
very small)

* How do we explain this paradox?
® The pdf DOES NOT define a probability, but a probability DENSITY!
e To obtain the actual probability we must integrate the pdf in an interval
¢ So we should have asked the question: what is the probability of
somebody weighting 124.876 |b plus or minus 2 Ib?

* The probability mass function is a ‘true’ probability (reason why we call
it a ‘mass’ as opposed to a ‘density’)

e The pmf is indicating that the probability of any number when rolling a
/ fair dice is the same for all numbers, and equal to 1/6, a very

legitimate answer
e The pmf DOES NOT need to be integrated to obtain the probability (it
cannot be integrated in the first place)
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Statistical characterization of random variables
— The cdf or the pdf are SUFFICIENT to fully characterize a r.v.
— However, a r.v. can be PARTIALLY characterized with other measures
— Expectation (center of mass of a density)

FIX == | xfdx
— Variance (spread about the mean)
var(X] = % = E[(X — EIXD?] = | (= (o

— Standard deviation
std[X] = o = var[X]'/?
— N-th moment

E[XN] = joofoX(x)dx

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU

17



Random vectors
— An extension of the concept of a random variable

* Arandom vector X is a function that assigns a vector of real numbers to each
outcome ¢ in sample space S

* We generally denote a random vector by a column vector
— The notions of cdf and pdf are replaced by ‘joint cdf’ and ‘joint pdf’

e Given random vector X = [xq, X, ... x5 ]T we define the joint cdf as
Fg(&) = Px[{X1 < x1} n{X; < x5} .. {Xy < xp}]
e and the joint pdf as

fg(&) -

— The term marginal pdf is used to represent the pdf of a subset of all the
random vector dimensions

" Fy(x)

0x10Xx5 ... 00Xy

* A marginal pdf is obtained by integrating out variables that are of no interest

* e.g., fora 2D random vector X = [xq,x,]", the marginal pdf of x; is
x2=-|—OO

fX1 (x1) = j fxlx2 (x12x2)dx;,

Xp=—00
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Statistical characterization of random vectors

— A random vector is also fully characterized by its joint cdf or joint pdf

— Alternatively, we can (partially) describe a random vector with
measures similar to those defined for scalar random variables

— Mean vector
E[X] = pu = [E[X,] EXo] . EIXN]] = [0, btz oot

— Covariance matrix

cov[X] =% = E [()_( — ) (x - E)T] _

E[(x, N .U1)2] E[(x, — .U1).(XN - .UN)]-
Bl —p) Gy — )] o ElGoy — uy)?]
012 CiN
) Cl.N 01\2/ |
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— The covariance matrix indicates the tendency of each pair of features
(dimensions in a random vector) to vary together, i.e., to co-vary*

e The covariance has several important properties
— If x; and x}, tend to increase together, then¢;, > 0
— If x; tends to decrease when xj, increases, then ¢, <0
— If x; and xj, are uncorrelated, then ¢;;, = 0
— |cik| < o10%, where g; is the standard deviation of x;
— ¢ = 0f = var[x;]
* The covariance terms can be expressed as ¢;; = al-z and c;, = pP;r0;0%
— where pyiis called the correlation coefficient

Xy Xy Xk o Xy 3 Xk
9 ©5 OO o o O M
QO C
‘oo 0 oo OooO © A g 80 Mon
9 00O o0 ? o o OoJ
Q)
“oo °6 Q ° R et Ooo
(o} o}
X; X; Xi
Cik=-6i0k Cik=-"200 Ci=0 Ci=t%20,0y Cik=cioi
pik=-1 Pik=""72 Pi=0 pi=t"2 Pi=t1
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The Normal or Gaussian distribution

— The multivariate Normal distribution N (u, X) is defined as

1 1 Ty—1
_ —5@x—u) 7 (x—u)
fx(x) = (2m)"/2|z|1/2 e 2

— For a single dimension, this expression is reduced to

) = e T
X) = e 20
X \V2To

0.4

035

0.3

025~

02r-

045

04

005

PR=]
|
ra
[=]
=]
5]
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— Gaussian distributions are very popular since
» Parameters (u, X) uniquely characterize the normal distribution

If all variables x; are uncorrelated (E[x;x,| = E[x;]E[xi]), then
— Variables are also independent (P[x;x,]| = P[x;]P[xx]), and
— XY is diagonal, with the individual variances in the main diagonal

Central Limit Theorem (next slide)

The marginal and conditional densities are also Gaussian

Any linear transformation of any N jointly Gaussian rv’s results in N rv’s
that are also Gaussian

— For X = [X,X, ... Xy]Tjointly Gaussian, and Ayxy invertible, then Y = AX is
also jointly Gaussian

A—l
f(y) =AY

|4l

Introduction to Speech Processing | Ricardo Gutierrez-Osuna | CSE@TAMU 22



Central Limit Theorem
— Given any distribution with a mean y and variance a2, the sampling

distribution of the mean approaches a normal distribution with mean u
and variance a2 /N as the sample size N increases

* No matter what the shape of the original distribution is, the sampling
distribution of the mean approaches a normal distribution

N is the sample size used to compute the mean, not the overall number of
samples in the data

— Example: 500 experiments are performed using a uniform distribution
e N=1
M=1

— One sample is drawn from the distribution
and its mean is recorded (500 times) O e H T

— The histogram resembles a uniform distribution, — I

as one would expect M=d _l_rl_r | =
e N=4 —
— Four samples are drawn and the mean of the =
four samples is recorded (500 times) M=7 ’_|—|_ e

— The histogram starts to look more Gaussian — ]

* As N grows, the shape of the histograms
resembles a Normal distribution more closely MN=10 _I_r =
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Estimation theory

The estimation problem

— Suppose that a set of random variables X = {X, X, ... Xy} is iid
(independent identically distributed) according to pdf p(x|®) but the
value of @ is unknown

— We seek to build an estimator of ®, a real-valued function
0(X1, X, ... Xy) that specifies the value of ® for each possible set of
values of X{, X5 ... Xy
— Three types of estimation procedures are commonly used
* Minimum Mean Squared Error / Least Squares Error
e Maximum Likelihood
* Bayesian
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Minimum Mean Squared Error / Least Squares Error

Assume two random variables X and Y are iid according to f,,(x,y)
Suppose we do a series of experiments and observe the value of X

We seek to find a transformation ¥ = g(X, ®) that allows us to
predict the value of Y

 This assumes that we know the general form of g( ) but not the specific
value of its parameters ®

The following quantity can measure the goodness of ¥ = g(X, ®)
E(y -7)" = E(Y - g(X, ®))’

* This quantity is called the mean squared error (MSE)

The process of finding parameter ® ;s that minimizes the MSE is
known as the minimum mean squared error (MMSE) estimator

Dysg = argc})nin [E(Y —g(X, CID))ZI
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— In some cases, however, the joint pdf fxy(x, y) is unknown, so we

must estimate ® from a training set of samples (x, y)
— In this case, the following criterion can be used

n
Dp5p = argminz_ (i — g(x;, ®))?
P =1

— The process of finding parameter @LSE that minimizes this sum-

squared-error (SSE) is called the least squared error (LSE) or minimum

squared error (MSE) estimator

— We will now derive MMSE/LSE estimates for two classes of functions

 Constant functions G, = {g(x) = c;c € R}
* Linear functions G; = {g(x) = ax + b;a,b € R}
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MMSE/LSE for constant functions
— WhenY = g(x) = ¢, the MSE becomes
E(Y -9) = E(Y —¢)?
— To find the MMSE estimate of ¢, we take derivatives and equate to O
cumse = E(Y)
* which indicates that the MMSE estimate is the expected value of Y
* Likewise, it is trivial to show that the MSE is the variance of Y

— Following the same procedure, we find that the LSE estimate is

_1yn .,
CLSE = i=1Yi

e which is the sample mean
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MMSE/LSE for linear functions
— WhenY = g(x) = ax + b, the objective function becomes
e(a,b) = E(Y — 17)2 = E(Y — ax — b)?
— To find the MMSE estimate for ¢, we take partial derivatives with
respect to a and b and equate to O

de 0o g cov(X,Y) Oy
da 4= var(Y) Pay oy
de

_ _ _ ., O
- =0=b=E() - py UyE(X)

— To find the LSE estimate, assume that we have n sample-vectors
_ (1 2 d
(x;,y;) = (xi y Xj e X J’i)
— The linear function can be represented as
Y =XA
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— Orin expanded form as

oA T 1 d7 cry -
Y1 1 x5 X1 | [Qo
y21 |1 x5 x¢| |
| Vn 1 x711 xg_ |Ad |

* where we have absorbed the intercept b by adding a constant dimension

— The SSE can then be represented as
n

e =7-v|"=) x-y)?

=1
— A closed-form solution to this estimate can be obtained by taking the
gradient of e(4) and equating to 0
n
Ve(A) = Z 2(ATx; — y)x; = 2XT(XA—Y) = 0

i=1

— which yields the following form
Asp = (XTX)"1XTy

* The expression X+ = (XTX)"1XTis known as the pseudo-inverse of X
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— When XTX is singular, the pseudo-inverse cannot be computed

— In this case, we use the alternative objective function
e(4) = |IXA-Y|* + allAll?

* where a is known as a regularization parameter

— Following a similar procedure as before, we obtain the LSE estimate
ALSE — (XTX + al)_lXTY
* which is generally known as the regularized LSE or ridge-regression
solution
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ex10pl.m
Find the LSE solution (1 dimensional model)
ex10p2.m

Find the LSE solution (3 dimensional model)
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Maximum Likelihood Estimation (MLE)

MLE is the most commonly used parametric estimation method

Assume that a set of random samples X = {X;, X, ...X,,} are
independently drawn from pdf p(x|®)

Assume that we make a number of observations x = (x4, ... X;;)

In MILE we seek to find the set of parameters ® that maximize the
observations

Since X = {X, X, ...X,,} are independently drawn, the joint likelihood can
be rewritten as

pael) = [ | i)

k=1
and the maximum likelihood estimate is
Cyre = argénax Pn (x| P)

Since the logarithm is a monotonically increasing function, we generally

maximize the log-likelihood
n

I(P) =logp,(x|P) = Z log p (x| P)

k=1
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MLE example

— Let’s look at the MLE for a univariate Gaussian

p(x|P) =
21O

 where in this case ® = {u, 62}
— The log likelihood is

log pn (x|®) = log[[}=1 p(xx|P) =
1 _ 2 2

et log | e~ O/ (20%)| =

—2log(2m0?) — —— Y (o — w)?

— Taking partial derivatives, setting to zero and solving for u, gyields

— 1 n
UMLE = o Lk=1 Xk

e_(x_ﬂ)z/zo-z

2 _ 1 2
OMLE = k=1(Xx — UmLE)
— which shows that the MLEs for the mean and variance are the sample
mean and the sample variance
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Bayesian estimation

— Bayesian estimation follows a different philosophy from MLE
* MLE assumes that the parameter @ is unknown but fixed

* Instead, BE assumes that the parameter ® itself is a random variable with

its own prior distribution p(®)

— The most popular form of Bayesian estimation is the so-called
Maximum A Posteriori (MAP) estimation

— Given observation sequence x = (x4, ... X,,), the posterior distribution

of ® can be obtained using Bayes’ rule as

D)p(P
(@) = D o p e arp ()

— In MAP, we seek to find the parameter that maximizes p(®|x)
ypap = argmax p(P|x)
P
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— The MAP estimator allows us to incorporate any prior knowledge we
may have about parameter ® by means of prior p(®)

* When the amount of data is limited, the MAP estimator relies more
heavily on the prior p(®)

e As the amount of data increases, MAP begins to balance information in
the prior and in the likelihood p(x|®)

* For large enough n, MAP approaches the MLE solution

— If we set the prior p(®) to a constant value (also known as a non-
informative prior), MAP estimation becomes equivalent to MLE
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