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Likelihood ratio test (LRT)

Assume we are to classify an object based on the evidence
provided by feature vector x
— Would the following decision rule be reasonable?

* "Choose the class that is most probable given observation x”

* More formally: Evaluate the posterior probability of each class P(w;|x)
and choose the class with largest P(w;|x)

Let’s examine this rule for a 2-class problem
— In this case the decision rule becomes
if P(wq]x) > P(w,|x) choose w else choose w,

— Or, in a more compact form
w1
P(w1|x) Z P(wz]x)
w2
— Applying Bayes rule
p(x|w)P(wq) “;1P(x|w2)P(w2)

<

p(x) w2 p(x)
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— Since p(x) does not affect the decision rule, it can be eliminated*
— Rearranging the previous expression

_ p(x|wq) “;113(0)2)
p(x|w;) o, P(w1)

A(x)

The term A(x) is called the likelihood ratio, and the decision rule is
known as the likelihood ratio test

*p(x) can be disregarded in the decision rule since it is constant regardless of
class w;. However, p(x) will be needed if we want to estimate the posterior
P(w;|x) which, unlike p(x|w,)P(w,), is a true probability value and,
therefore, gives us an estimate of the “goodness” of our decision
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Likelihood ratio test: an example

Problem

— Given the likelihoods below, derive a decision rule based on the LRT
(assume equal priors)
p(x|lw;) =N(H4,1); plxlwy) =N(10,1)

Solution
Le_%(x_‘l')z w1
— Substituting into the LRT expression A(x) = ‘/12” - =2 "
me—z(x—lo) 5
1 1 w
— Simplifying the LRT expression A(x) = e 2 (X 9 3 (x-10)7 211
w2
w1
— Changing signs and taking logs (x — 4)* — (x — 10)%$0
w2
— Which yields xw<17 TS O | Rorsay
2 t s
P(x| o,

— This LRT result is intuitive since the
likelihoods differ only in their mean

— How would the LRT decision rule change

if the priors were such thatP(w;) = 2P(w,)? ——
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Probability of error

The performance of any decision rule can be measured by
Plerror]
— Making use of the Theorem of total probability (L2):
Plerror] = 5, Plerror|w;|1P[w;]

— The class conditional probability P|error|w;] can be expressed as

Plerror|w;] = P|choose a)j|a)l-] = f p(x|w;)dx = €
Rj
— So, for our 2-class problem, P[error] becomes

Plerror] = P[a)l]j p(x|wy)dx + Plw,] | p(x|w,)dx
R, YRy

- - -

€1 €2
* where ¢; is the integral of p(x|w;)
over region R; where we choose w;

— For the previous example, since we
assumed equal priors, then
Plerror] = (e; +€,)/2
— How would you compute Plerror]

Ri:say o, R,: say o,

—

numerically?
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How good is the LRT decision rule?

— To answer this question, it is convenient to express Plerror] in terms
of the posterior Plerror|x]

co

Plerror] = j Plerror|x]p(x)dx

— 00

— The optimal decision rule will minimize P|error|x] at every value of x
in feature space, so that the integral above is minimized
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— Ateach x’, P[error|x'] is equal to P[w;|x"] when we choose w;

* Thisis illustrated in the figure below

< I:zl,ALT ? RZ,ALT ’
A 4 IQl,LTR ‘A[ E R2,LRT ’

2 L
5 E : Plerror | x'] for ALT decision rule
3 P(w,[X) ;
e Vel
[ & |

P(@,lx) B Plerror | x'] for LRT decision rule

; >
J

— From the figure it becomes clear that, for any value of x’, the LRT
will always have a lower P[error|x’']

* Therefore, when we integrate over the real line, the LRT decision rule
will yield a lower Plerror]

For any given problem, the minimum probability of error is
achieved by the LRT decision rule; this probability of error is called
the Bayes Error Rate and is the best any classifier can do.
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Bayes risk

So far we have assumed that the penalty of misclassifying
X € w4 as w, is the same as the reciprocal error

— In general, this is not the case

— For example, misclassifying a cancer sufferer as a healthy patient is a
much more serious problem than the other way around

— This concept can be formalized in terms of a cost function C;;

* (jj represents the cost of choosing class w; when w; is the true class

We define the Bayes Risk as the expected value of the cost

R = E[C] = %71 %.5-1CijP|choose w;and x € w;] =
= ¥i-1%5-1CijP|x € Ri|w;|P|w)]
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What is the decision rule that minimizes the Bayes Risk?
— First notice that

Plx € R; o] = j p(x|w;)dx
R;
— We can express the Bayes Risk as

R=| [C1Plwi]lp(x|w1) + C1pPlw,]p(x|w,]dx +
Ry

| tCarPloalpGelon) + CooPloglp(rlozlds
R

2

— Then we note that, for either likelihood, one can write:

j p(XIwi)dx+f p(x|w;)dx =f p(x|w;)dx =1
R R,

1 R1UR;
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— Merging the last equation into the Bayes Risk expression yields

R=C1 Py p(xla)l)dx H‘lC12P2 p(xla)z)dx
Ry Ry
r /sl
+@21P1J P(x|w1)d3?+(czzpzj p(x|w,)dx)

R;

R;

161Py [ plondetlenp, [ plwydx)

JRl

C21P1

p(x|wy)dx

Ry

_lCZZPZ

— Now we cancel out all the integrals over R,

m = Cle

+(CooP,)+

(C12 = C32) Py | p(x|wa)dx)—|(Coy — C11)Py _ p(x|w,)dx
HO_/ Ry HO_/ Ry
> >

— The first two terms are constant w.r.t. R; so they can be ignored
— Thus, we seek a decision region R; that minimizes

R, = argminf

Rq

= argmin j g(x)

Rq

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

[(C12 — C32)Pop(x|wy) — (Co1 — C1)Pip(x|wq)]dx

10



— Let’s forget about the actual expression of g(x) to develop some intuition
for what kind of decision region R; we are looking for

* Intuitively, we will select for R; those regions that minimize fR g(x)
1

* In other words, those regions where g(x) < 0

A

g(x) Ri=R;,U RigU Ry
STV e

VR4

— So we will choose R; such that
(C21 — C1)Pip(x|wy) > (C12 — Ca2)Pop(x|wy)
— And rearranging
P(x|wq) “1 (C2 — C22)P(w3)

P(x|w,) w<z (C21 — Cy1) P(wy)
— Therefore, minimization of the Bayes Risk also leads to an LRT
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The Bayes risk: an example

0.2 T

— Consider a problem with likelihoods
Ll — N(O; \/-g) and LZ = N(z,l) 0.16}

* Sketch the two densities

« What is the likelihood ratio? e
* AssumeP; =P,,C; =0,C5, =1 |
and C,, = 31/2
* Determine a decision rule to 0.02f
minimize P|[error] %+ =
w1 Ry
_ N(0V3) 5 1 02
A(x) - N(Z,l) < \/3 = 0.8}
w2
2 a)l 0.16
1x 1 > o
> —=——+=(x—2) 0= 012
73 Tz T <
(1)2 0.08}
a)l 0.06
2 > 0.04}
= 2x*—=12x+12 - 0= 0.02.
(0V))) % 4 2

= x = 4.73,1.27
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LRT variations

Bayes criterion

— This is the LRT that minimizes the Bayes risk
p(x|wq) S (Ci2 — C22)P(w3)
p(x|wy) &, (C21 — C11) P(wq)
Maximum A Posteriori criterion

— Sometimes we may be interested in minimizing P[error]

ABayes (x) =

0;i=j
Li+j
— Known as the MAP criterion, since it seeks to maximize P(w;|x)
p(x|wq) “a P(w;) N P(wq]x) “a

p(x|wz) o, P(w1)  Plwzlx) s,

Maximum Likelihood criterion

— For equal priors P[w;] = 1/2 and 0/1 loss function, the LTR is known

as a ML criterion, since it seeks to maximize P(x|w;)
xX|wq) @1
Ay (%) = p(x|w,) > 1
P(x|w2) w2

— A special case of Ag,yes (x) that uses a zero-one cost Cij; = {

Apmap(x) =
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Two more decision rules are commonly cited in the literature

— The Neyman-Pearson Criterion, used in Detection and Estimation
Theory, which also leads to an LRT, fixes one class error probabilities,
say €; < a, and seeks to minimize the other

* For instance, for the sea-bass/salmon classification problem of L1, there

may be some kind of government regulation that we must not misclassify
more than 1% of salmon as sea bass

 The Neyman-Pearson Criterion is very attractive since it does not require
knowledge of priors and cost function

— The Minimax Criterion, used in Game Theory, is derived from the
Bayes criterion, and seeks to minimize the maximum Bayes Risk

* The Minimax Criterion does nor require knowledge of the priors, but it
needs a cost function

— For more information on these methods, refer to “Detection,
Estimation and Modulation Theory”, by H.L. van Trees
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Minimum P|error| for multi-class problems

Minimizing P[error] generalizes well for multiple classes

— For clarity in the derivation, we express P[error] in terms of the

probability of making a correct assignment

Plerror] = 1 — P[correct]
The probability of making a correct assignment is
P[correct] = Zic;lP[a)i]J p(x|w;)dx
R;
* Minimizing P|error] is equivalent to maximizing P[correct], so
expressing the latter in terms of posteriors

P[correct] = Zlef p(x)P(w;|x)dx
R;

* To maximize P[correct], we must maximize 24
each integral [, which we achieve by
l

P§m3lx)

choosing the class with largest posterior

* So each R; is the region where P(w;|x) is
maximum, and the decision rule that

! P(o,x) |

Probability

P(,/X)

minimizes Plerror] is the MAP criterion
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Minimum Bayes risk for multi-class problems

Minimizing the Bayes risk also generalizes well

— As before, we use a slightly different formulation
* We denote by a; the decision to choose class w;
* We denote by a(x) the overall decision rule that maps feature vectors x
into classes w;, a(x) — {ay, ay, ... ac}
— The (conditional) risk R(a;|x) of assigning x to class w; is
Rla(x) - a;) = R(a;|x) = Z]-C=1CijP(a)j|x)
— And the Bayes Risk associated with decision rule a(x) is
R(a(x) = [ Ra(@)|x)p(x)dx
— To minimize this expression, f R, {R,i R, iRyRyi R i R,
we must minimize the L
conditional risk R(a(x)|x)
at each x, which is

equivalent to choosing w;
such that R(a;|x) is minimum

Risk

R (o3]x)
R (o |x)
R (o, |x)

v

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 16



Discriminant functions

All the decision rules shown in L4 have the same structure

— At each point x in feature space, choose class w; that maximizes (or
minimizes) some measure g;(x)

— This structure can be formalized with a set of discriminant functions
gi(x),i = 1..C, and the decision rule

“assign x to class w; if g;(x) > g;(x) Vj # i”

— Therefore, we can visualize the
decision rule as a network that
computes C df’s and selects the
class with highest discriminant

Class assignment

T

Select max

— And the three decision rules
can be summarized as

Criterion Discriminant Function
Features

Bayes g.,(x)=-%R (o |x)
MAP 9,(x)=P (o [x)
ML g.(x)=P(x|w)

Discriminant functions
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