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Introduction 
• What is ensemble learning? 

– Ensemble learning refers to a collection of methods that learn a target 
function by training a number of individual learners and combining their 
predictions 

• Why ensemble learning? 
– Accuracy: a more reliable mapping can be obtained by combining the 

output of multiple “experts” 
– Efficiency: a complex problem can be decomposed into multiple sub-

problems that are easier to understand and solve (divide-and-conquer 
approach) 

– There is not a single model that works for all PR problems! 
• “To solve really hard problems, we’ll have to use several different 

representations.....   It is time to stop arguing over which type of pattern-
classification technique is best..... Instead we should work at a higher level of 
organization and discover how to build managerial systems to exploit the 
different virtues and evade the different limitations of each of these ways of 
comparing things.” [Minsky, 1991] 

• When to use ensemble learning? 
– When you can build component classifiers that are more accurate than 

chance and, more importantly, that are independent from each other 
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Why do ensembles work? 

• Because uncorrelated errors of individual classifiers can be 
eliminated through averaging 
– Assume a binary classification problem for which you can train 

individual classifiers with an error rate of 0.3 

– Assume that you build an ensemble by combining the prediction of 21 
such classifiers with a majority vote 

– What is the probability of error  
for the ensemble? 

• In order for the ensemble to  
misclassify an example, 11 or  
more classifiers have to be in  
error, or a probability of 0.026 

• The histogram below shows the  
distribution of the number of  
classifiers that are in error in  
the ensemble machine 

 

 

From [Dietterich, 1997] 

[Dietterich, 1998] 
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• The target function may not be implementable with single 
classifiers, but may be approximated by ensemble averaging 
– Assume that you want to build a diagonal decision boundary with 

decision trees  

– The decision boundaries constructed by these machines are 
hyperplanes parallel to the coordinate axes, or “staircases” in the 
example below 

– By averaging a large number of such “staircases”, the diagonal decision 
boundary can be approximated with arbitrarily small accuracy 

 
[Dietterich, 1997] 
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Methods for constructing ensembles 

• Subsampling the training examples 
– Multiple hypotheses are generated by training individual classifiers on 

different datasets obtained by resampling a common training set 
(Bagging, Boosting) 

• Manipulating the input features 
– Multiple hypotheses are generated by training individual classifiers on 

different representations, or different subsets of a common feature 
vector 

• Manipulating the output targets 
– The output targets for C classes are encoded with an L-bit codeword, 

and an individual classifier is built to predict each one of the bits in the 
codeword 

– Additional “auxiliary” targets may be used to differentiate classifiers 

• Modifying the learning parameters of the classifier 
– A number of classifiers are built with different learning parameters, 

such as number of neighbors in a k Nearest Neighbor rule, initial 
weights in an MLP, etc. 
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Structure of ensemble classifiers 

• Parallel 
– All the individual classifiers are invoked 

independently, and their results are 
fused with a combination rule (e.g., 
average, weighted voting) or a meta-
classifier (e.g., stacked generalization) 

– The majority of ensemble approaches 
in the literature fall under this category 

• Cascading or Hierarchical 
– Classifiers are invoked in a sequential 

or tree-structured fashion 

– For the purpose of efficiency, 
inaccurate but fast methods are 
invoked first (maybe using a small 
subset of the features), and 
computationally more  intensive but 
accurate methods are left for the latter 
stages 
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Combination strategies 
• Static combiners 

– The combiner decision rule is independent of the feature vector.  Static 
approaches can be broadly divided into non-trainable and trainable  

– Non-trainable: The voting is performed independently of the performance 
of each individual classifier 
• Various combiners may be used, depending on the type of output produced by 

the classifier, including 
– Voting: used when each classifier produces a single class label. In this case, each 

classifier “votes” for a particular class, and the class with the majority vote on the 
ensemble wins 

– Averaging: used when each classifier produces a confidence estimate (e.g., a 
posterior).  In this case, the winner is the class with the highest average posterior 
across the ensemble  

– Borda counts: used when each classifier produces a rank. The Borda count of a 
class is the number of classes ranked below it [Ho et al., 1994] 

– Trainable: The combiner undergoes a separate training phase to improve 
the performance of the ensemble. Two noteworthy approaches are 
• Weighted averaging: the output of each classifier is weighted by a measure of 

its own performance, e.g., prediction accuracy on a separate validation set 

• Stacked generalization: the output of the ensemble serves as a feature vector 
to a meta-classifier 
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• Adaptive combiners 
– The combiner is a function that depends on the input feature vector 

• Thus, the ensemble implements a function that is local to each region in 
feature space 

• This divide-and-conquer approach leads to modular ensembles where 
relatively simple classifiers specialize in different parts of I/O space 

• In contrast with static-combiner ensembles, the individual experts here do 
not need to perform well for all inputs, only in their region of expertise 

– Representative examples of this approach are Mixture of Experts (ME) 
and Hierarchical ME [Jacobs et al., 1991; Jordan and Jacobs, 1994] 
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Stacked generalization 

• In stacked generalization, the output of the ensemble serves 
as an input to a second-level expert [Wolpert, 1992] 
– Training of this modular ensemble can be performed as follows 

• From a dataset 𝑋 with 𝑁 examples, leave out one test example, and train 
each of the level-0 experts on the remaining 𝑁 − 1 examples 

• Generate a prediction for the test example.  The output pattern 
𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑘] across the level-0 experts, along with the target 𝑡 for 
the test example, becomes a training example for the level-1 expert 

• Repeat this process in a leave-one-out fashion. This yields a training set 𝑌 
with 𝑁 examples, which is used to train the level-1 expert separately 

• To make full use of the training data, re-train all the level-0 experts one 
more time using all 𝑁 examples in 𝑋  

[Bishop, 1995] 
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Mixture of experts 

• ME is the classical adaptive ensemble method 
– A gating network is used to partition feature space into different 

regions, with one expert in the ensemble being responsible for 
generating the correct output within that region [Jacobs et al., 1991] 

– The experts in the ensemble and the gating network are trained 
simultaneously, which can be efficiently performed with EM 

– ME can be extended to a multi-level hierarchical structure, where each 
component is itself a ME.  In this case, a linear network can be used 
for the terminal classifiers without compromising the modeling 
capabilities of the machine  
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Subsampling the training set 

• Bagging [Breiman, 1996] 
– Bagging (for bootstrap aggregation) creates an ensemble by training 

individual classifiers on bootstrap samples of the training set 

– As a result of the sampling-with-replacement procedure, each 
classifier is trained on the average of 63.2% of the training examples 

– For a dataset with N examples, each example has a probability of 
1 − 1 − 1/𝑁 𝑁 of being selected at least once in the N samples.  

• For 𝑁 → ∞, this number converges to (1 − 1/𝑒) or 0.632  
[Bauer and Kohavi, 1999] 

– Bagging traditionally uses component classifiers of the same type 
(e.g., decision trees), and a simple combiner consisting of a majority 
vote across the ensemble 

 

[Bauer and Kohavi, 1999l; Duda et al., 2001] 
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• Bagging (continued) 
– The perturbation in the training set due to the bootstrap resampling 

causes different hypotheses to be built, particularly if the classifier is 
unstable 

• A classifier is said to be unstable if a small change in the training data 
(e.g., order of presentation of examples) can lead to a radically different 
hypothesis.  This is the case of decision trees and, arguably, neural 
networks 

– Bagging can be expected to improve accuracy if the induced classifiers 
are uncorrelated 

• In some cases, such as k Nearest Neighbors, bagging has been shown to 
degrade performance as compared to individual classifiers as a result of 
an effectively smaller training set 

– A related approach to bagging is “cross-validated committees”, in 
which the component classifiers are built on different partitions of the 
training set obtained through k-fold cross-validation 
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• Boosting [Schapire, 1990; Freund and Schapire, 1996] 
– Boosting takes a different resampling approach than bagging, which 

maintains a constant probability of 1/N for selecting each example 

– In boosting, this probability is adapted over time based on performance 
• The component classifiers are built sequentially, and examples that are 

mislabeled by previous components are chosen more often than those that 
are correctly classified 

– Boosting is based on the concept of a “weak learner”, an algorithm that 
performs slightly better than chance (e.g., 50% classification rate on binary 
tasks) 
• Schapire has shown that a weak learner can be converted into a strong learner 

by changing the distribution of training examples 

• Boosting can also be used with classifiers that are highly accurate, but the 
benefits in this case will be very small 

– A number of variants of boosting are available in the literature.  We focus 
on the most popular form, known as AdaBoost (for Adaptive Boosting), 
which allows the designer to continue adding components until an 
arbitrarily small error rate is obtained on the training set 
• NOTE: boosting is also known as arcing (for adaptive resampling and 

combining), a term that was coined by Breiman 
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AdaBoost 
• AdaBoost operates as follows 

– At iteration 𝑛, boosting provides the weak learner with a distribution 𝐷𝑛 over the 
training set, where 𝐷𝑛(𝑖) represents the probability of selecting the i-th example 
• The initial distribution is uniform: 𝐷1(𝑖) = 1/𝑁.  Thus, all examples are equally likely to 

be selected for the first component 

– The weak learner subsamples the training set according to 𝐷𝑛 and generates a 
trained model or hypothesis 𝐻𝑛  

– The error rate of 𝐻𝑛 is measured with respect to the distribution 𝐷𝑛 

– A new distribution 𝐷𝑛+1 is produced by decreasing the probability of those 
examples that were correctly classified, and increasing the probability of the 
misclassified examples 

– The process is repeated 𝑇 times, and a final hypothesis is obtained by weighting 
the votes of individual hypotheses {ℎ1, ℎ2, … , ℎ𝑇} according to their performance 

• Note 
– The strength of AdaBoost derives from the adaptive re-sampling of examples, not 

from the final weighted combination 
• To prove this point Breiman developed a variant of AdaBoost, known as ‘arc-x4’, in which 

the ensemble voting is unweighted [Breiman, 1996]: his results show that AdaBoost 
(referred to as ‘arc-fs’) and ‘arc-x4’ have similar performance [Bauer and Kohavi, 1999] 
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The bias and variance decomposition 

• The effectiveness of Bagging and Boosting has been 
explained in terms of the bias-variance decomposition of 
classification error 
– The expected error of a learning algorithm can be decomposed into 

• A bias term that measures how closely the average classifier produced by 
the learning algorithm matches the target function 

• A variance term that measures how much the learning algorithm’s 
predictions fluctuate for different training sets (of the same size) 

• An intrinsic target noise, which is the minimum error that can be 
achieved: that of the Bayes optimal classifier 

– Following this line of reasoning, Breiman has suggested that both 
Bagging and Boosting reduce errors by reducing the variance term 

– Along the same lines, Freund and Schapire have argued that Boosting 
also attempts to reduce the bias term since it focuses on misclassified 
samples 
• Work by Bauer and Kohavi, however, seems to indicate that Bagging can 

also reduce the bias term 

 
[Opitz and Maclin, 1999] 




