
CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 1

L25: Ensemble learning

• Introduction

• Methods for constructing ensembles

• Combination strategies

• Stacked generalization

• Mixtures of experts

• Bagging

• Boosting

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 2

Introduction
• What is ensemble learning?

– Ensemble learning refers to a collection of methods that learn a target
function by training a number of individual learners and combining their
predictions

• Why ensemble learning?
– Accuracy: a more reliable mapping can be obtained by combining the

output of multiple “experts”
– Efficiency: a complex problem can be decomposed into multiple sub-

problems that are easier to understand and solve (divide-and-conquer
approach)

– There is not a single model that works for all PR problems!
• “To solve really hard problems, we’ll have to use several different

representations..... It is time to stop arguing over which type of pattern-
classification technique is best..... Instead we should work at a higher level of
organization and discover how to build managerial systems to exploit the
different virtues and evade the different limitations of each of these ways of
comparing things.” [Minsky, 1991]

• When to use ensemble learning?
– When you can build component classifiers that are more accurate than

chance and, more importantly, that are independent from each other

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 3

Why do ensembles work?

• Because uncorrelated errors of individual classifiers can be
eliminated through averaging
– Assume a binary classification problem for which you can train

individual classifiers with an error rate of 0.3

– Assume that you build an ensemble by combining the prediction of 21
such classifiers with a majority vote

– What is the probability of error
for the ensemble?

• In order for the ensemble to
misclassify an example, 11 or
more classifiers have to be in
error, or a probability of 0.026

• The histogram below shows the
distribution of the number of
classifiers that are in error in
the ensemble machine

From [Dietterich, 1997]

[Dietterich, 1998]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 4

• The target function may not be implementable with single
classifiers, but may be approximated by ensemble averaging
– Assume that you want to build a diagonal decision boundary with

decision trees

– The decision boundaries constructed by these machines are
hyperplanes parallel to the coordinate axes, or “staircases” in the
example below

– By averaging a large number of such “staircases”, the diagonal decision
boundary can be approximated with arbitrarily small accuracy

[Dietterich, 1997]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 5

Methods for constructing ensembles

• Subsampling the training examples
– Multiple hypotheses are generated by training individual classifiers on

different datasets obtained by resampling a common training set
(Bagging, Boosting)

• Manipulating the input features
– Multiple hypotheses are generated by training individual classifiers on

different representations, or different subsets of a common feature
vector

• Manipulating the output targets
– The output targets for C classes are encoded with an L-bit codeword,

and an individual classifier is built to predict each one of the bits in the
codeword

– Additional “auxiliary” targets may be used to differentiate classifiers

• Modifying the learning parameters of the classifier
– A number of classifiers are built with different learning parameters,

such as number of neighbors in a k Nearest Neighbor rule, initial
weights in an MLP, etc.

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 6

Structure of ensemble classifiers

• Parallel
– All the individual classifiers are invoked

independently, and their results are
fused with a combination rule (e.g.,
average, weighted voting) or a meta-
classifier (e.g., stacked generalization)

– The majority of ensemble approaches
in the literature fall under this category

• Cascading or Hierarchical
– Classifiers are invoked in a sequential

or tree-structured fashion

– For the purpose of efficiency,
inaccurate but fast methods are
invoked first (maybe using a small
subset of the features), and
computationally more intensive but
accurate methods are left for the latter
stages

E x p e rt 1

E x p e rt 2

E x p e rt K

C o m b in e r

E x p e rt 1

E x p e rt 2

E x p e rt K

C o m b in e r

E x p e rt 1 E x p e rt 2 E x p e rt 3E x p e rt 1 E x p e rt 2 E x p e rt 3

E x p e r t 1

E x p e r t 3
A

E x p e r t 3
B

E x p e r t 3
C

E x p e r t 3
D

E x p e r t 2
A

E x p e r t 2
B

E x p e r t 1

E x p e r t 3
A

E x p e r t 3
B

E x p e r t 3
C

E x p e r t 3
D

E x p e r t 2
A

E x p e r t 2
B

[Jain, 2000]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 7

Combination strategies
• Static combiners

– The combiner decision rule is independent of the feature vector. Static
approaches can be broadly divided into non-trainable and trainable

– Non-trainable: The voting is performed independently of the performance
of each individual classifier
• Various combiners may be used, depending on the type of output produced by

the classifier, including
– Voting: used when each classifier produces a single class label. In this case, each

classifier “votes” for a particular class, and the class with the majority vote on the
ensemble wins

– Averaging: used when each classifier produces a confidence estimate (e.g., a
posterior). In this case, the winner is the class with the highest average posterior
across the ensemble

– Borda counts: used when each classifier produces a rank. The Borda count of a
class is the number of classes ranked below it [Ho et al., 1994]

– Trainable: The combiner undergoes a separate training phase to improve
the performance of the ensemble. Two noteworthy approaches are
• Weighted averaging: the output of each classifier is weighted by a measure of

its own performance, e.g., prediction accuracy on a separate validation set

• Stacked generalization: the output of the ensemble serves as a feature vector
to a meta-classifier

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 8

• Adaptive combiners
– The combiner is a function that depends on the input feature vector

• Thus, the ensemble implements a function that is local to each region in
feature space

• This divide-and-conquer approach leads to modular ensembles where
relatively simple classifiers specialize in different parts of I/O space

• In contrast with static-combiner ensembles, the individual experts here do
not need to perform well for all inputs, only in their region of expertise

– Representative examples of this approach are Mixture of Experts (ME)
and Hierarchical ME [Jacobs et al., 1991; Jordan and Jacobs, 1994]

E x p e rt 1

E x p e rt 2

E x p e rt K

M e ta

E x p e rt

F e a tu re

v e c to r

O u tp u t

s ig n a l

y
1

y
2

y
k

E x p e rt 1

E x p e rt 2

E x p e rt K

M e ta

E x p e rt

F e a tu re

v e c to r

O u tp u t

s ig n a l

y
1

y
2

y
k

[Gosh, 2002]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 9

Stacked generalization

• In stacked generalization, the output of the ensemble serves
as an input to a second-level expert [Wolpert, 1992]
– Training of this modular ensemble can be performed as follows

• From a dataset 𝑋 with 𝑁 examples, leave out one test example, and train
each of the level-0 experts on the remaining 𝑁 − 1 examples

• Generate a prediction for the test example. The output pattern
𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑘] across the level-0 experts, along with the target 𝑡 for
the test example, becomes a training example for the level-1 expert

• Repeat this process in a leave-one-out fashion. This yields a training set 𝑌
with 𝑁 examples, which is used to train the level-1 expert separately

• To make full use of the training data, re-train all the level-0 experts one
more time using all 𝑁 examples in 𝑋

[Bishop, 1995]

E x p e rt0
1

E x p e rt0
2

E x p e rt0
K

E x p e rt1
F e a tu re

v e c to r (X)

O u tp u t

s ig n a l (T)

y
1

y
2

y
K

E x p e rt0
1

E x p e rt0
2

E x p e rt0
K

E x p e rt1
F e a tu re

v e c to r (X)

O u tp u t

s ig n a l (T)

y
1

y
2

y
K

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 10

Mixture of experts

• ME is the classical adaptive ensemble method
– A gating network is used to partition feature space into different

regions, with one expert in the ensemble being responsible for
generating the correct output within that region [Jacobs et al., 1991]

– The experts in the ensemble and the gating network are trained
simultaneously, which can be efficiently performed with EM

– ME can be extended to a multi-level hierarchical structure, where each
component is itself a ME. In this case, a linear network can be used
for the terminal classifiers without compromising the modeling
capabilities of the machine

E x p e rt 1

E x p e rt 2

E x p e rt K



G a tin g

N e tw o rk

g
1

g
2

g
k

F e a tu re

v e c to r

O u tp u t

s ig n a l

y
1

y
2

y
k

E x p e rt 1

E x p e rt 2

E x p e rt K



G a tin g

N e tw o rk

g
1

g
2

g
k

F e a tu re

v e c to r

O u tp u t

s ig n a l

y
1

y
2

y
k

[Bishop, 1995]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 11

Subsampling the training set

• Bagging [Breiman, 1996]
– Bagging (for bootstrap aggregation) creates an ensemble by training

individual classifiers on bootstrap samples of the training set

– As a result of the sampling-with-replacement procedure, each
classifier is trained on the average of 63.2% of the training examples

– For a dataset with N examples, each example has a probability of
1 − 1 − 1/𝑁 𝑁 of being selected at least once in the N samples.

• For 𝑁 → ∞, this number converges to (1 − 1/𝑒) or 0.632
[Bauer and Kohavi, 1999]

– Bagging traditionally uses component classifiers of the same type
(e.g., decision trees), and a simple combiner consisting of a majority
vote across the ensemble

[Bauer and Kohavi, 1999l; Duda et al., 2001]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 12

• Bagging (continued)
– The perturbation in the training set due to the bootstrap resampling

causes different hypotheses to be built, particularly if the classifier is
unstable

• A classifier is said to be unstable if a small change in the training data
(e.g., order of presentation of examples) can lead to a radically different
hypothesis. This is the case of decision trees and, arguably, neural
networks

– Bagging can be expected to improve accuracy if the induced classifiers
are uncorrelated

• In some cases, such as k Nearest Neighbors, bagging has been shown to
degrade performance as compared to individual classifiers as a result of
an effectively smaller training set

– A related approach to bagging is “cross-validated committees”, in
which the component classifiers are built on different partitions of the
training set obtained through k-fold cross-validation

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 13

• Boosting [Schapire, 1990; Freund and Schapire, 1996]
– Boosting takes a different resampling approach than bagging, which

maintains a constant probability of 1/N for selecting each example

– In boosting, this probability is adapted over time based on performance
• The component classifiers are built sequentially, and examples that are

mislabeled by previous components are chosen more often than those that
are correctly classified

– Boosting is based on the concept of a “weak learner”, an algorithm that
performs slightly better than chance (e.g., 50% classification rate on binary
tasks)
• Schapire has shown that a weak learner can be converted into a strong learner

by changing the distribution of training examples

• Boosting can also be used with classifiers that are highly accurate, but the
benefits in this case will be very small

– A number of variants of boosting are available in the literature. We focus
on the most popular form, known as AdaBoost (for Adaptive Boosting),
which allows the designer to continue adding components until an
arbitrarily small error rate is obtained on the training set
• NOTE: boosting is also known as arcing (for adaptive resampling and

combining), a term that was coined by Breiman

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 14

AdaBoost
• AdaBoost operates as follows

– At iteration 𝑛, boosting provides the weak learner with a distribution 𝐷𝑛 over the
training set, where 𝐷𝑛(𝑖) represents the probability of selecting the i-th example
• The initial distribution is uniform: 𝐷1(𝑖) = 1/𝑁. Thus, all examples are equally likely to

be selected for the first component

– The weak learner subsamples the training set according to 𝐷𝑛 and generates a
trained model or hypothesis 𝐻𝑛

– The error rate of 𝐻𝑛 is measured with respect to the distribution 𝐷𝑛

– A new distribution 𝐷𝑛+1 is produced by decreasing the probability of those
examples that were correctly classified, and increasing the probability of the
misclassified examples

– The process is repeated 𝑇 times, and a final hypothesis is obtained by weighting
the votes of individual hypotheses {ℎ1, ℎ2, … , ℎ𝑇} according to their performance

• Note
– The strength of AdaBoost derives from the adaptive re-sampling of examples, not

from the final weighted combination
• To prove this point Breiman developed a variant of AdaBoost, known as ‘arc-x4’, in which

the ensemble voting is unweighted [Breiman, 1996]: his results show that AdaBoost
(referred to as ‘arc-fs’) and ‘arc-x4’ have similar performance [Bauer and Kohavi, 1999]

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 15

The bias and variance decomposition

• The effectiveness of Bagging and Boosting has been
explained in terms of the bias-variance decomposition of
classification error
– The expected error of a learning algorithm can be decomposed into

• A bias term that measures how closely the average classifier produced by
the learning algorithm matches the target function

• A variance term that measures how much the learning algorithm’s
predictions fluctuate for different training sets (of the same size)

• An intrinsic target noise, which is the minimum error that can be
achieved: that of the Bayes optimal classifier

– Following this line of reasoning, Breiman has suggested that both
Bagging and Boosting reduce errors by reducing the variance term

– Along the same lines, Freund and Schapire have argued that Boosting
also attempts to reduce the bias term since it focuses on misclassified
samples
• Work by Bauer and Kohavi, however, seems to indicate that Bagging can

also reduce the bias term

[Opitz and Maclin, 1999]

