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L20: MLPs, RBFs and SPR 

• Bayes discriminants and MLPs 

• The role of MLP hidden units 

• Bayes discriminants and RBFs 

• Comparison between MLPs and RBFs 
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Bayes discriminants and MLPs 
• As we have seen throughout the course, the classifier that 

minimizes 𝒑 𝒆𝒓𝒓𝒐𝒓  is defined by the MAP rule 
𝜔∗ = arg max

𝜔𝑖

𝑔𝑖 𝑥 = 𝑃 𝜔𝑖|𝑥  

• How does the MLP relate to this optimal classifier? 
– Assume a MLP with a one-of-C target encoding  

𝑡𝑖 𝑥 =  
1 𝑥 ∈ 𝜔𝑖

0 𝑜. 𝑤.
  

– The contribution to the error of the 𝑖𝑡ℎ output is 

𝐽 𝑊 = 𝑔𝑖 𝑥;𝑊 − 𝑡𝑖
2

∀x

= 

 𝑔𝑖 𝑥;𝑊 − 1 2

x∈𝜔𝑖

+  𝑔𝑖 𝑥;𝑊 − 0 2

x∉𝜔𝑖

= 𝑁
𝑁𝑖
𝑁

1

𝑁𝑖
 𝑔𝑖 𝑥;𝑊 − 1 2

x∈𝜔𝑖

+
𝑁 − 𝑁𝑖
𝑁

1

𝑁 − 𝑁𝑖
 𝑔𝑖 𝑥;𝑊 − 0 2

x∉𝜔𝑖

 

– where 𝑔𝑖 𝑥;𝑊  is the discriminant function computed by the MLP for the 
𝑖𝑡ℎ class and the set of weights 𝑊 
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– Assuming infinite number of examples, the previous function becomes 

lim
𝑁→∞

1

𝑁
𝐽 𝑊 = 

lim
𝑁→∞

𝑁𝑖
𝑁

1

𝑁𝑖
 𝑔𝑖 𝑥;𝑊 − 1 2

x∈𝜔𝑖

+
𝑁 − 𝑁𝑖
𝑁

1

𝑁 − 𝑁𝑖
 𝑔𝑖 𝑥;𝑊 − 0 2

x∉𝜔𝑖

= lim
𝑁→∞

𝑁𝑖
𝑁

lim
𝑁→∞

1

𝑁𝑖
 𝑔𝑖 𝑥;𝑊 − 1 2

x∈𝜔𝑖

+ lim
𝑁→∞

𝑁 − 𝑁𝑖
𝑁

lim
𝑁→∞

1

𝑁 − 𝑁𝑖
 𝑔𝑖 𝑥;𝑊

2

x∉𝜔𝑖

= 𝑃 𝜔𝑖  𝑔𝑖 𝑥;𝑊 − 1 2𝑝 𝑥|𝜔𝑖 𝑑𝑥
𝑥

+ 𝑃 𝜔𝑘≠𝑖  𝑔𝑖 𝑥;𝑊 − 0 2𝑝 𝑥|𝜔𝑘≠𝑖 𝑑𝑥
𝑥
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– Expanding the quadratic terms and rearranging 

lim
𝑁→∞

1

𝑁
𝐽 𝑊 = 

=  𝑔𝑖
2 −2𝑔𝑖 +1 𝑝 𝑥,𝜔𝑖 𝑑𝑥

𝑥

+ 𝑔𝑖
2𝑝 𝑥, 𝜔𝑘≠𝑖 𝑑𝑥

𝑥

= 

 𝑔𝑖
2 𝑝 𝑥, 𝜔𝑖 + 𝑝 𝑥,𝜔𝑘≠𝑖 𝑑𝑥

𝑥

− 2𝑔𝑖𝑝 𝑥, 𝜔𝑖 𝑑𝑥
𝑥

+ 𝑝 𝑥,𝜔𝑖 𝑑𝑥
𝑥

= 

 𝑔𝑖
2𝑝 𝑥 𝑑𝑥

𝑥

− 2𝑔𝑖𝑃 𝜔𝑖|𝑥 𝑝 𝑥 𝑑𝑥
𝑥

+ 𝑃2 𝜔𝑖|𝑥 𝑝 𝑥 𝑑𝑥
𝑥

− 𝑃2 𝜔𝑖|𝑥 𝑝 𝑥 𝑑𝑥
𝑥

+ 𝑝 𝑥,𝜔𝑖 𝑑𝑥
𝑥

= 

 𝑔𝑖 − 𝑃 𝜔𝑖 𝑥
2𝑝 𝑥 𝑑𝑥

𝑥

− 𝑃2 𝜔𝑖|𝑥 𝑝 𝑥 𝑑𝑥
𝑥

+ 𝑝 𝑥,𝜔𝑖 𝑑𝑥
𝑥

 

 

 

 

independent of 𝑊 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 5 

– Therefore, by minimizing J(W) we also minimize 

 𝑔𝑖 𝑥;𝑊 − 𝑃 𝜔𝑖 𝑥
2𝑝 𝑥 𝑑𝑥

𝑥

 

– Summing over all classes (output neurons), we can then conclude that 
back-prop attempts to minimize the following expression  

  𝑔𝑖 𝑥;𝑊 − 𝑃 𝜔𝑖 𝑥
2𝑝 𝑥 𝑑𝑥

𝑥

𝑁𝐶

𝑖=1

 

– Therefore, in the large sample limit , the outputs of the MLP will 
approximate (in a least-squares sense) the posteriors 

𝑔𝑖 𝑥;𝑊 ≅ 𝑃 𝜔𝑖 𝑥  

– Notice that nothing said here is specific to MLPs 

• Any discriminant function with adaptive parameters trained to minimize 
the sum squared error at the output of a 1-of-C encoding will approximate 
the a posteriori probabilities  
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• This result will be true if and only if 
– We use a 1-of-C encoding with [0,1] outputs, and 
– The MLP has enough hidden units to represent the posteriors, and  
– We have an infinite number of examples, and 
– The MLP does not get trapped in a local minima 

• In practice we will have a limited number of examples 
– The outputs will not always represent probabilities  

• For instance, there is no guarantee that they will sum up to 1 

– We can use this result to determine if the network has trained properly 
• If the sum of the outputs differs significantly from 1, it will be an indication that the MLP 

is not modeling the posteriors properly and that we may have to change the MLP 
(topology, number of hidden units, etc.) 

– If we still want to interpret MLP outputs as probabilities, we must then enforce 
that they add up to 1 
• This can be achieved by choosing the output’s non-linearity to be exponential, and 

normalizing across the output layer 

𝑦𝑘
2
=

exp 𝑛𝑒𝑡𝑘
2

 exp 𝑛𝑒𝑡𝑘
2𝑁𝑂

𝑘=1

 

• This is known as the soft-max method, which receives its name from the fact that it can 
be interpreted as a smoothed version of the winner-take-all rule 
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The role of MLP hidden units 
• Assume 

– MLP with non-linear activation  
functions for the hidden layer(s)  
and linear activation function for  
the output layer 

– Let us also hold constant the set  
of hidden weights 𝑤𝑖𝑗

𝑚
; 𝑚 = 1. .𝑀 − 1 

– In this case, minimizing 𝐽(𝑊) w.r.t. output  
weights 𝑤𝑖𝑗

𝑀
 is a linear problem, and its solution is the pseudo-inverse  

𝑊 𝑀 = argmin
𝑊

1

2
  𝑦𝑘

𝑀 (𝑛
− 𝑡𝑘

(𝑛
2

𝑁𝑂

𝑘=1

𝑁

𝑛=1

 

= argmin
𝑊

1

2
𝑌 𝑀−1 𝑊 𝑀 − 𝑇

2
 

⇒ 𝑊 𝑀 = 𝑌 𝑀−1 ′
𝑌 𝑀−1

−1
𝑌 𝑀−1 ′

𝑇 = 𝑌 𝑀−1 †
𝑇  

• 𝑊 𝑀  denotes the weights of the (output) linear layer and 

• 𝑌 𝑀−1  denotes the outputs of the last hidden layer and 
• 𝑇 denotes the targets 
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[Bishop, 1995] 
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– It can be shown that the role of the output biases is to compensate for the 
difference between the averages of the targets and that of the hidden unit 
outputs 

𝑤0𝑘
𝑀 = 𝐸 𝑡𝑘 −  𝑤𝑗𝑘

𝑀

𝑁𝐻𝑀−1

𝑗=1

𝐸 𝑦𝑗
𝑀−1  

• Knowing that the output biases can be computed in this manner, we will 
assume for convenience that both 𝑇 and 𝑌 𝑀−1  are zero-mean 

– As we will see, this will allow us to interpret certain terms as scatter matrices 

– Plugging the pseudo-inverse into the objective function we obtain 

𝐽 𝑊 =
1

2
𝑌 𝑀−1 𝑊 𝑀 − 𝑇

2
=

1

2
𝑌 𝑀−1 𝑌 𝑀−1 †

𝑇 − 𝑇
2

  

– And realizing that the SSE is the sum of ONLY the diagonal terms in ⋅ 2 

𝐽 𝑊 =
1

2
𝑇𝑟 𝑌 𝑀−1 𝑌 𝑀−1 †

𝑇 − 𝑇 𝑌 𝑀−1 𝑌 𝑀−1 †
𝑇 − 𝑇

′

  

– which, after some manipulation [Bishop, 1995], can be expressed as 

𝐽 𝑊 =
1

2
𝑇𝑟 𝑇′𝑇 − 𝑆𝐵𝑆𝑇𝑂𝑇

−1  𝑤ℎ𝑒𝑟𝑒  
𝑆𝑇𝑂𝑇 = 𝑌 𝑀 ′

𝑌 𝑀     

𝑆𝐵 = 𝑌 𝑀 ′
𝑇𝑇′𝑌 𝑀 ′  
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– Since 𝑇′𝑇 is independent of 𝑊, minimizing 𝐽(𝑊) is equivalent to maximizing 𝐽′(𝑊) 

𝐽′ 𝑊 =
1

2
𝑇𝑟 𝑆𝐵𝑆𝑇𝑂𝑇

−1  

– Since we are using 1-of-C encoding in the output layer, it can be shown that 𝑆𝐵 
becomes  

𝑆𝐵 =  𝑁𝑘
2 𝑦 𝑘

𝑀−1 − 𝑦 𝑀−1 𝑦 𝑘
𝑀−1 − 𝑦 𝑀−1 ′

𝐶

𝑘=1

    

𝑤𝑖𝑡ℎ    
𝑦 𝑘

𝑀−1 = 𝐸 𝑦𝑘
𝑀−1

𝑥∈𝜔𝑘

𝑦 𝑀−1 = 𝐸 𝑦 𝑀−1
∀𝑥
         

  

• where 𝐸 𝑦𝑘
𝑀−1

𝑥∈𝜔𝑘
 is the mean activation vector at the last hidden layer for all 

examples of class 𝜔𝑘, and 𝐸 𝑦 𝑀−1
∀𝑥

 is the mean activation vector regardless of class 

– Notice that this 𝑆𝐵 only differs from the conventional between-class covariance 
matrix by having 𝑁𝑘

2 instead of 𝑁𝑘 
• This means that this scatter matrix will have a strong bias in favor of classes that have a 

large number of examples 

– and 𝑆𝑇𝑂𝑇 is the total covariance matrix at the output of the final hidden layer 
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• Conclusion 
 

 

 

 

 

– In other words, the hidden layers of an MLP perform a non-linear 
version of Fisher’s discriminant analysis (L10)  

– This is precisely why MLPs have been demonstrated to perform so well 
in pattern classification tasks 

 

Minimization of the sum squared error between the desired targets 
and the outputs of an MLP with linear output neurons forces the 
hidden layer(s) to perform a non-linear transformation of the inputs 

that maximizes the discriminant function 𝑻𝒓 𝑺𝑩𝑺𝑻𝑶𝑻
−𝟏  measured at 

the output of the (last) hidden layer  
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An example 

• Train an MLP to classify five 
odors with a 60-sensor array 
– MLP has 60 inputs, one per sensor 

– There are 5 outputs, one per odor 
• Output neurons use 1-of-C 

encoding 

• Output layer has linear activation 
function 

– Four hidden neurons are used (as 
many as LDA projections) 
• Hidden layer has the logistic 

sigmoidal activation function 

– Training 
• Hidden weights and biases trained 

with steepest descent rule 

• Output weights and biases trained 
with the pseudo-inverse rule 
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Bayes discriminants and RBFs 

• Recall from previous lectures that the posterior can be 
expressed as 

𝑝 𝜔𝑘|𝑥 =
𝑝 𝑥|𝜔𝑘 𝑝 𝜔𝑘

 𝑝 𝑥|𝜔𝑘′ 𝑝 𝜔𝑘′
𝐶
𝑘′=1

 

– If we model each class with a single kernel 𝑝 𝑥|𝜔𝑘 , this can be 
viewed as a simple network with normalized basis functions given by 

𝜑𝑘 𝑥 =
𝑝 𝑥|𝜔𝑘

 𝑝 𝑥|𝜔𝑘′ 𝑝 𝜔𝑘′
𝐶
𝑘′=1

 

– and hidden-to-output weights defined by 
𝑤𝑘 = 𝑝 𝜔𝑘  

– This provides a very simple interpretation of RBFs as Bayesian 
classifiers and vice versa 
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• In some situations, however, a single kernel per class may 
not be sufficient to model the input space density 
– Let’s then use 𝑀 different basis functions, labeled by index 𝑗 

• The class conditional density is then given by 

𝑝 𝑥|𝜔𝑘 =  𝑝 𝑥|𝑗 𝑝 𝑗|𝜔𝑘
𝑀
𝑗=1   

– and the unconditional density is given by 

𝑝 𝑥 =  𝑝 𝑥|𝜔𝑘 𝑝 𝜔𝑘

𝐶

𝑘=1

= 𝑝 𝑥|𝑗 𝑝 𝑗

𝑀

𝑗=1

 

– where the priors 𝑝(𝑗) can be defined by 

𝑝 𝑗 =   𝑝 𝑗|𝜔𝑘 𝑝 𝜔𝑘

𝐶

𝑘=1

 

– With these expressions in mind, the posterior probabilities become 

𝑝 𝜔𝑘|𝑥 =
𝑝 𝑥|𝜔𝑘 𝑝 𝜔𝑘

𝑝 𝑥
=
 𝑝 𝑥|𝑗 𝑝 𝑗|𝜔𝑘 𝑝 𝜔𝑘
𝑀
𝑗=1

 𝑝 𝑥|𝑗′ 𝑝 𝑗′𝑀
𝑗′=1
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– Moving the denom. inside the sum, and adding the term 𝑝(𝑗)/𝑝(𝑗) = 1 

𝑝 𝜔𝑘|𝑥 = 
𝑝 𝑥|𝑗 𝑝 𝑗|𝜔𝑘 𝑝 𝜔𝑘

 𝑝 𝑥|𝑗′ 𝑝 𝑗′𝑀
𝑗′=1

𝑀

𝑗=1

𝑝 𝑗

𝑝 𝑗
 

– This operation allows us to regroup the expression as 

𝑝 𝜔𝑘|𝑥 = 𝑤𝑗𝑘𝜑𝑗 𝑥

𝑀

𝑗=1

 

– where 

𝜑𝑗 𝑥 =
𝑝 𝑥|𝑗 𝑝 𝑗

 𝑝 𝑥|𝑗′ 𝑝 𝑗′𝑀
𝑗′=1

= 𝑝 𝑗|𝑥     and    𝑤𝑗𝑘 =
𝑝 𝑗|𝜔𝑘 𝑝 𝜔𝑘

𝑝 𝑗
= 𝑝 𝜔𝑘 𝑗  

• INTERPRETATION 
– The activation of a basis function can be interpreted as the posterior 

probability of the presence of its prototype pattern in the input space 

– H-O weights can be interpreted as the posterior probabilities of the 
classes given the prototype pattern of the basis function, and 
• The output of the RBF can also be interpreted as the posterior probability of 

class membership 
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Comparison between MLPs and RBFs 
• Similarities 

– Either model can function as an “universal approximator” 
• MLPs and RBFs can approximate any functional continuous mapping with 

arbitrary accuracy, provided that the number of hidden units is sufficiently 
large 

• Differences 
– MLPs perform a global and distributed approximation of the target 

function, whereas RBF perform a local approximation 

– MLP partition feature space with hyper-planes; RBF decision boundaries 
are hyper-ellipsoids 

– The distributed representation of MLPs causes the error surface to have 
multiple local minima and nearly flat regions with very slow convergence.  
As a result training times for MLPs are usually larger than those for RBFs 

– MLPs generalizes better than RBFs in regions of feature space outside of 
the local neighborhoods defined by the training set.  On the other hand, 
extrapolation far from training data is oftentimes unjustified and 
dangerous 

– MLPs typically require fewer parameters than RBFs to approximate a non-
linear function with the same accuracy 
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• Differences (cont.) 
– All the parameters in an MLP are trained simultaneously; parameters 

in the hidden and output layers of an RBF network are typically trained 
separately using an efficient, faster hybrid algorithm 

– MLPs may have multiple hidden layers with complex connectivity, 
whereas RBFs typically have only one hidden layer and full 
connectivity 

– The hidden neurons of an MLP compute the inner product between an 
input vector and their weight vector; RBFs compute the Euclidean 
distance between an input vector and the radial basis centers 

– The hidden layer of an RBF is non-linear, whereas the output layer is 
linear.  In an MLP classifier, all layers are typically non-linear.  Only 
when an MLP is used for non-linear regression, the output layer is 
typically linear 
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