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L19: radial basis functions 

• Introduction to RBFs 

• Input-output mapping 

• Hybrid training procedures 

• Gram-Schmidt orthogonalization 

• Orthogonal Least Squares 
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Introduction 

• The previous two lectures have focused on projective neural 
networks  

– In perceptron-type networks, the activation of hidden units is based on 
the dot product between the input vector and a weight vector 

– In this lecture we will look at RBFs, networks where the activation of 
hidden units is based on the distance between the input vector and a 
prototype vector 

• Radial basis functions have a number of interesting properties 

– There exists strong connections to a number of scientific disciplines 

• These include function approximation, regularization theory, density 
estimation and  interpolation in the presence of noise [Bishop, 1995] 

– RBFs allow for a straightforward interpretation of the internal 
representation produced by the hidden layer 

– training algorithms for RBFs are significantly faster than those for MLPs  

• And, as we will see today, most of these algorithms have already been 
presented in previous lectures! 

 
[Bishop, 1995] 
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Exact function interpolation 

• RBFs have their origins in techniques for performing exact 
function interpolation [Bishop, 1995] 
– These techniques place a basis function at each training example 

ℎ 𝑥 =  𝑤𝑘𝜑 𝑥 − 𝑥(𝑛𝑁
𝑘=1 = Φ𝑤  

– and compute the coefficients 𝑤𝑘 so that the “mixture model” has zero 
error at those examples 

 ℎ 𝑥(𝑖 =  𝑤𝑘𝜑 𝑥(𝑖 − 𝑥(𝑛𝑁
𝑘=1 = 𝑡(𝑖 ⇔ 𝑤 = Φ−1𝑡 
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Radial basis functions 

• Radial basis functions are feed-forward networks consisting of 

– A hidden layer of radial kernels and 

– An output layer of linear neurons 

• The two RBF layers carry entirely different roles [Haykin, 1999] 

– The hidden layer performs a non-linear transformation of input space 

• The resulting hidden space is typically of higher dimensionality than the input 
space 

– The output layer performs linear regression to predict the desired targets 

• Why use a non-linear transformation followed by a linear one? 

– Cover’s theorem on the separability of patterns 

• “A complex pattern-classification problem cast in a high-dimensional space 
non-linearly is more likely to be linearly separable than in a low-dimensional 
space” 

– As we will see in a few lectures, this very same argument is at the core of 
Support Vector Machines 

• RBFs are indeed one of the kernel functions most commonly used in SVMs! 
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Input-to-hidden mapping 

• Each hidden neuron in an RBF is tuned to respond to a rather local 
region of feature space by means of a radially symmetric function 

– Activation of a hidden unit is determined by the DISTANCE between the 
input vector 𝑥 and a prototype vector 𝜇 

𝜑𝑗 𝑥 = 𝑓 𝑥 − 𝜇𝑗  

• Choice of radial basis 

– Although several forms of radial basis may be used, Gaussian kernels are 
most commonly used  

• The Gaussian kernel may have a full-covariance structure, which requires 
𝐷(𝐷 + 3)/2 parameters to be learned 

𝜑𝑗 𝑥 = exp −
1

2
𝑥 − 𝜇𝑗

′
Σ−1 𝑥 − 𝜇𝑗   

• or a diagonal structure, with only (𝐷 + 1) independent parameters 

𝜑𝑗 𝑥 = exp −
𝑥−𝜇𝑗

2

2𝜎𝑗
2   

• In practice, a trade-off exists between using a small number of basis with 
many parameters or a larger number of less flexible functions [Bishop, 1995] 
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Hidden-to-output mapping 

• Output units form linear combinations of the hidden-unit 
activations to predict the output variable(s)  
– The activation of an output unit is determined by the DOT-PRODUCT 

between the hidden activation vector 𝜑 and the weight vector 𝑤 

 𝑦𝑘 =  𝑤𝑗𝑘𝜑𝑗 𝑥 − 𝜇𝑗
𝑁𝐻
𝑗=1 + 𝑤0𝑘 

– For convenience, an additional basis function 𝜑0 with a constant 
activation of 1 can be used to absorb the bias term 𝑤0𝑘   
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Hybrid training 

• RBFs are commonly trained following a hybrid procedure 
that operates in two stages or time scales [Haykin, 1999] 
– Unsupervised selection of RBF centers 

• RBF centers are selected so as to match the distribution of training 
examples in the input feature space 

• This is the critical step in training, normally performed in a slow iterative 
manner 

• Fortunately, a number of strategies presented in previous lectures can be 
used to solve this problem 

– Supervised computation of output vectors 

• Hidden-to-output weight vectors are determined so as to minimize the 
sum-squared error between the RBF outputs and the desired targets 

• Since the outputs are linear, the optimal weights can be computed using 
fast, linear matrix inversion  
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Unsupervised selection of RBF centers 
• Random selection of centers 

– The simplest approach is to randomly select a number of training 
examples as RBF centers 
• This method has the advantage of being very fast, but the network will likely 

require an excessive number of centers  

– Once the center positions have been selected, the spread parameters 𝜎𝑗  
can be estimated, for instance, from the average distance between 
neighboring centers  

• Clustering 
– Alternatively, RBF centers may be obtained with a clustering procedure 

such as k-means (L15) 

– The spread parameters can be computed as before, or from the sample 
covariance of the examples of each cluster 

• Density estimation 
– The position of the RB centers may also be obtained by modeling the 

feature space density with a GMM using EM (L14) 

– The spread parameters for each center are automatically obtained from 
the covariance matrices of the corresponding Gaussian components 
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Supervised training of output weights 

• Once the RBF centers have been selected, H-O weights are 
computed so as to minimize the MSE error at the output 

𝑊 = argmin
𝑊

  𝑡𝑘
(𝑛
− 𝑤𝑗𝑘𝜑𝑗 𝑥(𝑛

𝑁𝐻

𝑗=1

𝑁𝑂

𝑘=1

𝑁

𝑛=1

= argmin
𝑊

𝑇 − Φ𝑊  

– Now, since the hidden activation patterns Φ are fixed, the optimum 
weight vector 𝑊 can be obtained directly from the conventional 
pseudo-inverse solution (L17) 

𝑊 = Φ†𝑇 
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Drawbacks of unsupervised center selection 

• Hybrid RBF training procedures have one major 
disadvantage 
– Selection of RBF centers is not guided by the MSE objective function 

– RBF centers that are representative of the feature space density are 
not guaranteed to capture the structure that carries discriminatory 
information 

• To some extent, this is a similar argument to that of signal-representation 
(PCA) versus signal-classification (LDA) in dimensionality reduction 

• To avoid this problem, fully-supervised algorithms can also 
be used for RBF training 
– Orthogonal Least Squares (OLS) is the most widely used method, and 

will be covered next 

– Other approaches have also been proposed [Haykin, 1999] 
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Introduction to Orthogonal Least Squares 
• OLS is a forward stepwise regression procedure 

– Starting from a large pool of candidate centers (e.g., training examples), 
OLS sequentially selects the center that results in the largest reduction of 
sum-square-error at the output 
• A simple implementation of this idea is to perform sequential forward 

selection directly on the radial-basis internal representation 

 
 
 
 
 
 
 

– This implementation is, however, very inefficient since the pseudo-inverse 
𝑊 = Φ′Φ −1Φ′𝑇 needs to be computed 𝑁 −𝑀 times at step 𝑀 in the 
selection process 

– Instead, OLS constructs a set of orthogonal vectors 𝑄 for the space 
spanned by the candidate centers 

– In this orthogonal subspace, computation of the pseudo-inverse is 
effectively avoided since 𝑄′𝑄 becomes diagonal 

 

1) Start with 𝑁 candidate centers and 𝑀 = 0 centers 
2) For each of the 𝑘 = 𝑁 −𝑀 remaining candidates  
 a) Add the k-th center to the existing M centers 
 b) Compute the pseudo-inverse solution 
 c) Compute the resulting SSE at the output 
3) Choose the k-th candidate that yields lowest SSE 
4) Set 𝑀 = 𝑀 + 1 
5) Go to 2 
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Gram-Schmidt orthogonalization 

• Procedure 
– Assume that we have three (independent) vectors a, b and c, from 

which we wish to construct three orthogonal vectors A, B and C 

– Start with A=a 
• This gives the first direction 

 

– The second direction must be perpendicular to A 
• Start with B=b and subtract its projection along A 

• This leaves the perpendicular part, which is the  
orthogonal vector B 

 

 

– The third direction must be perpendicular to A and B  
• Start with C=c and subtract its projections along A and B 

 

– The resulting vectors {A,B,C} are orthogonal and  
span the same space as {a,b,c} 

 A 

C 

c 

C onto  
AB plane 

B 

A=a 
b 

B 
B onto A 

[Strang, 1998] 
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– For M basis vectors Φ = 𝜑1, 𝜑2…𝜑𝑀 , Gram-Schmidt generalizes to 

𝑞1 = 𝜑1                                       

𝛼𝑖𝑘 =
𝑞𝑖
′𝜑𝑘
𝑞𝑖
′𝑞𝑖

   1 ≤ i < 𝑘

𝑞𝑘 =  𝜑𝑘 − 𝛼𝑖𝑘𝑞𝑖        

𝑘−1

𝑖=1

𝑘 = 2…𝑀      𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝑬𝑸𝟏) 

– where it can be shown [Strang, 1998; Chen et al., 1991] that the 
orthogonal set Q = 𝑞1, 𝑞2…𝑞𝑀  is linearly related to the original set 
Φ by the following relationship 

↑ ↑ ↑
𝜑1 𝜑2 … 𝜑𝑀
↓ ↓ ↓

=
↑ ↑ ↑
𝑞1 𝑞2 … 𝑞𝑀
↓ ↓ ↓

1 𝛼12 … 𝛼1𝑀
0 1 ⋮
⋮ 𝛼𝑀−1,𝑀

0 … 0 1

 𝑜𝑟 Φ = 𝑄𝐴  

• To prove this relationship notice that, at every step, 𝜑𝑘 is a combination 
of the previous orthogonal vectors 𝑞1, 𝑞2…𝑞𝑘; later q’s are not involved 
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Geometric interpretation of the pseudo-inverse  

• Assume dataset 𝑿 = 𝒙(𝟏, 𝒕(𝟏 , 𝒙(𝟐, 𝒕(𝟐 … 𝒙(𝑵, 𝒕(𝑵  
– For convenience we will assume an RBF with a single output 

• Notice that the pseudo-inverse solution estimates each output independently 
anyways 

– The hidden-to-output regression can be expressed as 

𝑡(1

𝑡(2

𝑡(𝑁

=

𝜑1
(1

𝜑2
(1

𝜑𝑀
(1

𝜑1
(2

𝜑2
(2

𝜑𝑀
(2

𝜑1
(𝑁

𝜑2
(𝑁

𝜑𝑀
(𝑁

𝑤1
𝑤2

𝑤𝑀

+

𝜖(1

𝜖(2

𝜖(𝑁

⇔ 𝑇 = Φ𝑊 + 𝐸  

 

• where E is the vector of prediction errors, whose sum square we seek to 
minimize 

– Notice that the activation of a particular radial basis for all the training 

examples Φk = 𝜑𝑘
(1
, 𝜑𝑘

(2
…𝜑𝑘

(𝑁 ′
 can be treated as a vector 

– And the desired target T = 𝑡(1, 𝑡(2…𝑡(𝑁
′
 can also be treated as a vector 
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• The has a very nice geometric interpretation 
– The linear system is attempting to express the target vector 𝑇 as a 

linear combination of the M hidden vectors Φ𝑘  

𝑇 =  𝑤𝑘Φ𝑘
𝑀
𝑘=1   

– In the case of an over-determined system, an exact solution cannot be 
found since the vector 𝑇 lies outside of the space spanned by the 
vectors Φ𝑘  

– It can be shown [Bishop, 1995]  
that the least-squares (or pseudo-inverse)  
solution is the orthogonal projection  
of 𝑇 onto that space 
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Orthogonal Least Squares 

• Keeping in mind the geometric interpretation of LS and the GSO 
procedure, we are now ready to present the OLS algorithm 

– As mentioned earlier, OLS constructs a set of orthogonal vectors 𝑄 for the 
space spanned by basis vectors Φ𝑘 such that Φ = 𝑄𝐴 (𝐴 upper triangular) 

– Using this orthogonal representation, the RBF solution is expressed as 
𝑇 = Φ𝑊 = 𝑄𝐺 

– and the LS solution for the weight vector 𝐺 in the orthogonal space is 
𝐺 = 𝑄′𝑄 −1𝑄′𝑇 

– Now, since 𝑄 is orthogonal, 𝑄′𝑄 is then diagonal, and each component of 
𝐺 can be extracted independently without ever having to compute a 
pseudo-inverse matrix 

𝑔𝑖 =
𝑞𝑖
′𝑇

𝑞𝑖
𝑇𝑞𝑖

    𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝑬𝑸𝟐) 

– This is precisely what makes OLS a very efficient implementation of 
stepwise forward regression 

 
[Chen et al., 1991] 
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• How are basis functions selected? 
– The sum of squares or energy of the target vector 𝑇 is 

𝑇′𝑇 = 𝑔𝑖
2𝑞𝑖

′𝑞𝑖 + 𝐸′𝐸

𝑀

𝑖=1

 

– Assuming that the mean of 𝑇 has been removed, then the variance of 𝑇 is 

𝑁−1𝑇′𝑇 = 𝑁−1 𝑔𝑖
2𝑞𝑖

′𝑞𝑖 + 𝑁−1𝐸′𝐸

𝑀

𝑖=1

 

• The first term, 𝑁−1 𝑔𝑖
2𝑞𝑖

′𝑞𝑖
𝑀
𝑖=1 , is the part of the desired variance explained 

by the regressors, whereas 𝑁−1𝐸′𝐸 is the unexplained variance 
• Therefore, 𝑁−1𝑔𝑖

2𝑞𝑖
′𝑞𝑖 is the increment in the explained output variance 

achieved by adding regressor 𝑞𝑖, which contributes to a reduction of the error 
(relative to the total 𝑇′𝑇) by 

𝑒𝑟𝑟 𝑖 =
𝑔𝑖
2𝑞𝑖

′𝑞𝑖
𝑇′𝑇

   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (𝑬𝑸𝟑) 

– This ratio provides a simple measure that allows OLS to select a subset of 
regressors in a stepwise forward manner   

– The complete algorithm is included in the next page 
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OLS algorithm 
• At the first step, for 1 ≤ i ≤ 𝑀, compute 

– Orthogonalize vector (EQ1): 𝑞1
(𝑖)

= 𝜑𝑖   

– Compute LS solution (EQ2): 𝑔1
(𝑖)

= 𝑞1
(𝑖)𝑇

𝑇 𝑞1
(𝑖)′

𝑞1
(𝑖)

   

– Compute error reduction (EQ3): 𝑒𝑟𝑟 𝑖
(1)

= 𝑔1
(𝑖)2

𝑞1
(𝑖)′

𝑞1
(𝑖)

𝑇𝑇𝑇   

• and select ‘regressor that yields highest reduction in error 𝑞1 = argmax
𝑞1
(𝑖)

𝑒𝑟𝑟 1
(𝑖)

= 𝜑𝑖1  

• At the k-th step, for 1 ≤ i ≤ 𝑀, and 𝑖 not already selected 

– Orthogonalize vector (EQ1):  
𝛼𝑗𝑘
(𝑖)

= 𝑞𝑗
′𝜑𝑖 𝑞𝑗

′𝑞𝑗 , 1 ≤ 𝑗 < 𝑘

𝑞𝑘
(𝑖)

= 𝜑𝑖 −  𝛼𝑗𝑘
𝑖
𝑞𝑗
′𝑘−1

𝑗=1                    
 

– Compute LS solution (EQ2): 𝑔𝑘
(𝑖)

= 𝑞𝑘
(𝑖)′

𝑇 𝑞𝑘
(𝑖)′

𝑞𝑘
(𝑖)

   

– Compute error reduction (EQ3): 𝑒𝑟𝑟 𝑘
(𝑖)

= 𝑔𝑘
(𝑖)2

𝑞𝑘
(𝑖)′

𝑞𝑘
(𝑖)

𝑇′𝑇   

• and select regressor 𝑞𝑘 = argmax
𝑞𝑘
(𝑖)

𝑒𝑟𝑟 𝑘
(𝑖)

= 𝜑𝑖𝑘 −  𝛼𝑗𝑘𝑞𝑗
𝑘−1
𝑗=1     

• Stop at iteration 𝑀 if residual error falls below pre-specified tolerance 𝝆 
1 −  𝑒𝑟𝑟 𝑗

𝑀
𝑗=1 < 𝜌  

– The regressors 𝜑𝑖1 , 𝜑𝑖2 …𝜑𝑖𝑀  define the final subset of RBF centers 

[Chen et al., 1991] 




