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L16: competitive learning 

• Competitive learning 

• Adaptive resonance theory 

• Kohonen self-organizing maps 
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Competitive learning  

• A form of unsupervised training where output units are said 
to be in competition for input patterns 
– During training, the output unit that provides the highest activation to 

a given input pattern is declared the winner and is moved closer to the 
input pattern, whereas the rest of the neurons are left unchanged 

– This strategy is also called winner-take-all since only the winning 
neuron is updated 

• Output units may have lateral inhibitory connections so that a winner 
neuron can inhibit others by an amount proportional to its activation level 
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• Neuron weights and input patterns are typically normalized 

– With normalized vectors, the activation function of the 𝑖𝑡ℎ unit is the 
inner product of its weight vector 𝑤𝑖 and the input pattern 𝑥(𝑛 

𝑔𝑖 𝑥
(𝑛 = 𝑤𝑖

𝑇𝑥(𝑛 

– The neuron with largest activation is then adapted to be more like the 
input that caused the excitation 

𝑤𝑖 𝑡 + 1 = 𝑤𝑖 𝑡 + 𝜂𝑥
(𝑛 

– Following adaptation, the weight  
vector is renormalized (||𝑤|| = 1) 
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• If weights and input patters are un-normalized, the 
activation function becomes the Euclidean distance 

𝑔𝑖 𝑥
(𝑛 = 𝑤𝑖 − 𝑥

(𝑛  

– In a neural-network implementation, we would use radial units instead 
of the conventional inner-product unit 

– The learning rule then becomes 

𝑤𝑖 𝑡 + 1 = 𝑤𝑖 𝑡 + 𝜂 𝑥
(𝑛 − 𝑤𝑖 𝑡  
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• Two implementations of competitive learning are presented  
– A basic competitive learning scheme with fixed number of clusters 

– The Leader-Follower algorithm of Hartigan, which allows a variable 
number of neurons 

 

1. Normalize all input patterns 

2. Randomly select a pattern 𝑥(𝑛 
 2a.  Find the winner neuron 

𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗 𝑤𝑗
𝑇𝑥(𝑛  

 2.b. Update the winner neuron 

𝑤𝑖 = 𝑤𝑖 + 𝜂𝑥
(𝑛 

 2c.  Normalize the winner neuron 

𝑤𝑖 =
𝑤𝑖
𝑤𝑖

 

3. Go to step 2 until no changes occur in 𝑁𝐸𝑋 runs 

1. Normalize all input patterns 
2. Randomly select a pattern 𝑥(𝑛 
 2a Find the winner neuron 

𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗 𝑤𝑗
𝑇𝑥(𝑛  

 2.b If ||𝑥(𝑛 − 𝑤𝑖|| <  (cluster and example are close) 
  then update the winner neuron 

𝑤𝑖 = 𝑤𝑖 + 𝜂𝑥
(𝑛 

  else add a new neuron 

𝑤𝑛𝑒𝑤 = 𝑥
(𝑛 

 2c Normalize the neuron 

𝑤𝑘 =
𝑤𝑘
𝑤𝑘

 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ 𝑖, 𝑛𝑒𝑤  

3. Go to step 2 until no changes occur in 𝑁𝐸𝑋 runs 

Basic competitive learning Leader-follower clustering 
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Adaptive Resonance Theory 
• Adaptive Resonance Theory (ART) is a family of algorithms for 

unsupervised learning developed by Carpenter and Grossberg 
– ART is similar to many clustering algorithms where each pattern is processed by 

• finding the "nearest" cluster (a.k.a. prototype or template) to that example 

• updating that cluster to be "closer" to the example 

• What makes ART different is that it is capable of determining the 
number of clusters through adaptation 
– ART allows a training example to modify an existing cluster only if the cluster is 

sufficiently close to the example (the cluster is said to “resonate” with the 
example); otherwise a new cluster is formed to handle the example 

– To determine when a new cluster should be formed, ART uses a vigilance 
parameter as a threshold of similarity between patterns and clusters 

• There are several architectures in the ART family 
– ART1, designed for binary features 

– ART2, designed for analog features 

– ARTMAP, a supervised version of ART 

• We will describe the algorithm called ART2-A, a version of ART2 that is 
optimized for speed 
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The ART2 algorithm 
Let: 𝛼: positive number 𝛼 ≤ 1/ 𝑁𝐸𝑋 

 𝛽: small positive number 

 𝜃: normalization parameter 1 < 𝜃 < 1/ 𝑁𝐸𝑋 

 𝜌: vigilance parameter  0 ≤ 𝜌, 1  
0. For each example 𝑥(𝑛 in the database  
 0a. Normalize 𝑥(𝑛 to have magnitude 1 
 0b. Zero out coordinates 𝑥(𝑛 < 𝜃 (remove small noise signals) 
 0c. Re-normalize 𝑥(𝑛 
1. Start with no prototype vectors (clusters) 
2. Perform iterations until no example causes any change. At this point quit because stability has 

 been achieved. For each iteration, choose the next example 𝑥(𝑛 in cyclic order 

3. Find the prototype 𝑤𝑘(cluster) not yet tried during this iteration that maximizes 𝑤𝑘
𝑇𝑥(𝑛 

4. Test whether 𝑤𝑘 is sufficiently similar to 𝑥(𝑛 

𝑤𝑘
𝑇𝑥(𝑛 ≥ 𝛼 𝑥(𝑛 𝑗

𝑁𝐷𝐼𝑀
𝑗=1   

 4a. If not then 

  4a1. Make a new cluster with prototype set to 𝑥(𝑛 
  4a2. End this iteration and return to step 2 for the next example 

 4b. If sufficiently similar, then test for vigilance acceptability 𝑤𝑘
𝑇𝑥(𝑛 ≥ 𝜌 

  4b1. If acceptable then 𝑥(𝑛 belongs to 𝑤𝑘. Modify 𝑤𝑘  to be more like 𝑥(𝑛  

𝑤𝑘 =
1 − 𝛽 𝑤𝑘 + 𝛽𝑥

(𝑛

1 − 𝛽 𝑤𝑘 + 𝛽𝑥
(𝑛

 

   and go to step 2 for the next iteration with the next example 
  4b2. If not acceptable, then make a new cluster with prototype set to 𝑥(𝑛 

[Gallant, 1993] 
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• The “stability-plasticity” dilemma 
– A term coined by Grossberg that describes the problems endemic to 

competitive learning 

– The network’s adaptability or plasticity causes prior learning to be 
eroded by exposure to more recent input patterns 

• ART resolves this problem by creating a new cluster every 
time an example is very dissimilar from the existing clusters 
– Stability: previous learning is preserved since the existing clusters are 

not altered and 

– Plasticity: the new example is incorporated by creating a new cluster 

• However, ART lacks a mechanism to avoid overfitting 
– It has been shown that, in the presence of noisy data, ART has a 

tendency to create new clusters continuously, resulting in “category 
proliferation” 

– Notice that ART is very similar to the leader-follower algorithm! 
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• Unfortunately, ART also uses an obscure (biologically-inspired) 
terminology that clouds its simplicity 
– Data are called an "arbitrary sequence of input patterns” 

– The current training case stored in "short term memory" and clusters are 
"long term memory” 

– A cluster is called a "maximally compressed pattern recognition code" 

– The two stages of finding the nearest cluster are performed by an 
"Attentional Subsystem" and an "Orienting Subsystem” 
• The latter is said to perform "hypothesis testing", which simply refers to the 

comparison with the vigilance threshold, not to hypothesis testing in the 
statistical sense 

– "Stable learning" means that the algorithm converges 

– The claim that ART is "capable of rapid stable learning of recognition 
codes in response to arbitrary sequences of input patterns" simply means 
that ART converges to a solution 
• It does not mean that the clusters are insensitive to the sequence in which the 

training patterns are presented --quite the opposite is true.  Extracted from 
[comp.ai.neural-nets FAQ] 
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Kohonen Self Organizing Maps 
• Kohonen Self-Organizing Maps (SOMs) produce a mapping from a 

multidimensional input space onto a lattice of clusters 
– The key feature in SOMs is that the mapping is topology-preserving, in 

that neighboring neurons respond to “similar” input patterns 

– SOMs are typically organized as 1D or 2D lattices (i.e., a string or a mesh) 
for the purpose of visualization and dimensionality reduction 

• Unlike MLPs trained with back-propagation, SOMs have a strong 
neurobiological basis 
– On the mammalian brain, visual, auditory and tactile inputs are mapped 

into a number of “sheets” (folded planes) of cells [Gallant, 1993] 

– Topology is preserved in these sheets; for example, if we touch parts of 
the body that are close together, groups of cells will fire that are also close 
together 

• K-SOMs result from the synergy of three basic processes 
– Competition 

– Cooperation 

– Adaptation 
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• Competition 
– Each neuron in a SOM is assigned a weight vector with the same 

dimensionality N as the input space 

– Any given input pattern is compared to the weight vector of each 
neuron and the closest neuron is declared the winner 

– The Euclidean norm is commonly used to measure distance 

x1 x2 x1 x2 

Input pattern 

Neuron 
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• Cooperation 
– The activation of the winning neuron is spread to neurons in its 

immediate neighborhood 

• This allows topologically close neurons to become sensitive to similar 
patterns 

– The winner’s neighborhood is determined on the lattice topology  

• Distance in the lattice is a function of the number of lateral connections to 
the winner (as in city-block distance) 

– The size of the neighborhood  
is initially large, but shrinks over time 

• An initially large neighborhood  
promotes a topology-preserving  
mapping 

• Smaller neighborhoods allows  
neurons to specialize in the  
latter stages of training 
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• Adaptation 
– During training, the winner neuron and its topological neighbors are 

adapted to make their weight vectors more similar to the input 
pattern that caused the activation 

• The adaptation rule is similar to the one presented in slide 4 

• Neurons that are closer to the winner will adapt more heavily than 
neurons that are further away 

• The magnitude of the adaptation  
is controlled with a learning rate,  
which decays over time to ensure  
convergence of the SOM 

 
W IN N E RW IN N E R
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K-SOM algorithm 

• Define  

– A learning rate decay rule 𝜂 𝑡 = 𝜂0𝑒
−𝑡/𝜏1 

– A neighborhood kernel function ℎ𝑖𝑘 𝑡 = 𝑒
−

𝑑𝑖𝑘
2

2𝜎2 𝑡  

• where 𝑑𝑖𝑘 is the lattice distance between 𝑤𝑖 and 𝑤𝑘 

– A neighborhood size decay rule 𝜎 𝑡 = 𝜎0𝑒
−𝑡/𝜏2 
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1. Initialize weights to some small, random values 

2. Repeat until convergence 

 2a. Select the next input pattern 𝑥(𝑛 from the database 

  2a1. Find the unit 𝑤𝑖 that best matches the input pattern 𝑥(𝑛 

𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗 𝑥
(𝑛 − 𝑤𝑗  

  2a2. Update the weights of the winner 𝑤𝑖 and all its neighbors 𝑤𝑘 

𝑤𝑘 = 𝑤𝑘 + 𝜂 𝑡 ℎ𝑖𝑘 𝑡 𝑥(𝑛 −𝑤𝑘  

 2b. Decrease learning rate 𝜂 𝑡  

 2c. Decrease neighborhood size 𝜎 𝑡  
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K-SOM examples 
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