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L15: statistical clustering 

• Similarity measures 

• Criterion functions 

• Cluster validity 

• Flat clustering algorithms 
– k-means 

– ISODATA 

• Hierarchical clustering algorithms 
– Divisive 

– Agglomerative 
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Non-parametric unsupervised learning 
• In L14 we introduced the concept of unsupervised learning 

– A collection of pattern recognition methods that “learn without a teacher” 

– Two types of clustering methods were mentioned: parametric and non-
parametric 

• Parametric unsupervised learning 
– Equivalent to density estimation with a mixture of (Gaussian) components 

– Through the use of EM, the identity of the component that originated 
each data point was treated as a missing feature 

• Non-parametric unsupervised learning 
– No density functions are considered in these methods 

– Instead, we are concerned with finding natural groupings (clusters) in a 
dataset 

• Non-parametric clustering involves three steps 
– Defining a measure of (dis)similarity between examples 

– Defining a criterion function for clustering 

– Defining an algorithm to minimize (or maximize) the criterion function 

 

 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 3 

Proximity measures 

• Definition of metric 
– A measuring rule 𝑑(𝑥, 𝑦) for the distance between two vectors 𝑥 and 
𝑦 is considered a metric if it satisfies the following properties 

𝑑 𝑥, 𝑦 ≥ 𝑑0 
𝑑 𝑥, 𝑦 = 𝑑0 𝑖𝑓𝑓 𝑥 = 𝑦 
𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥  
𝑑 𝑥, 𝑦 ≤ 𝑑 𝑥, 𝑧 + 𝑑 𝑧, 𝑦  

• If the metric has the property 𝑑 𝑎𝑥, 𝑎𝑦 = 𝑎 𝑑 𝑥, 𝑦  then it is called a 
norm and denoted 𝑑 𝑥, 𝑦 = 𝑥 − 𝑦  

• The most general form of distance metric is the power norm 

𝑥 − 𝑦 𝑝/𝑟 =  𝑥𝑖 − 𝑦𝑖
𝑝

𝐷

𝑖=1

1/𝑟

 

– 𝑝 controls the weight placed on any dimension dissimilarity, whereas 𝑟 
controls the distance growth of patterns that are further apart 

– Notice that the definition of norm must be relaxed, allowing a power 
factor for |𝑎| 

 [Marques de Sá, 2001] 
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• Most commonly used metrics are derived from the power norm 

– Minkowski metric (𝐿𝑘 norm) 

 𝑥 − 𝑦 𝑘 =  𝑥𝑖 − 𝑦𝑖
𝑘𝐷

𝑖=1

1/𝑘
 

• The choice of an appropriate value of 𝑘 depends on the amount of emphasis 
that you would like to give to the larger differences between dimensions 

– Manhattan or city-block distance (𝐿1 norm) 

𝑥 − 𝑦 𝑐−𝑏 = 𝑥𝑖 − 𝑦𝑖

𝐷

𝑖=1

 

• When used with binary vectors, the L1 norm  
is known as the Hamming distance 

– Euclidean norm (𝐿2 norm)  

 𝑥 − 𝑦 𝑒 =  𝑥𝑖 − 𝑦𝑖
2𝐷

𝑖=1

1/2
 

– Chebyshev distance (𝐿∞ norm) 
𝑥 − 𝑦 𝑐 = max

1≤𝑖≤𝐷
𝑥𝑖 − 𝑦𝑖  
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• Other metrics are also popular  
– Quadratic distance 

𝑑 𝑥, 𝑦 = 𝑥 − 𝑦 𝑇𝐵 𝑥 − 𝑦  
• The Mahalanobis distance is a particular case of this distance 

– Canberra metric (for non-negative features) 

𝑑𝑐𝑎 𝑥, 𝑦 =  
𝑥𝑖−𝑦𝑖

𝑥𝑖+𝑦𝑖

𝐷
𝑖=1   

– Non-linear distance 

𝑑𝑁 𝑥, 𝑦 =  
0   𝑖𝑓 𝑑𝑒 𝑥, 𝑦 < 𝑇
𝐻   𝑜. 𝑤.                   

 

• where 𝑇 is a threshold and 𝐻 is a distance 

• An appropriate choice for 𝐻 and 𝑇 for feature selection is that they should 
satisfy 

𝐻 =
Γ
𝑝
2

𝑇𝑃2 𝜋𝑃
 

• and that 𝑇 satisfies the unbiasedness and consistency conditions of the 
Parzen estimator: 𝑇𝑃𝑁 → ∞,𝑇 → 0 𝑎𝑠 𝑁 → ∞  

 [Webb, 1999] 
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• The above distance metrics are measures of dissimilarity 

• Some measures of similarity also exist 
– Inner product 

𝑠𝐼𝑁𝑁𝐸𝑅 𝑥, 𝑦 = 𝑥
𝑇𝑦 

• The inner product is used when the vectors 𝑥 and 𝑦 are normalized, so 
that they have the same length  

– Correlation coefficient 

𝑠𝐶𝑂𝑅𝑅 𝑥, 𝑦 =
 𝑥𝑖 − 𝑥 𝑦𝑖 − 𝑦 
𝐷
𝑖=1

 𝑥𝑖 − 𝑥 
2𝐷

𝑖=1  𝑦𝑖 − 𝑦 
2𝐷

𝑖=1

1/2
 

– Tanimoto measure (for binary-valued vectors) 

𝑠𝑇 𝑥, 𝑦 =
𝑥𝑇𝑦

𝑥 2 + 𝑦 2 − 𝑥𝑇𝑦
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Criterion function for clustering 

• Once a (dis)similarity measure has been determined, we 
need to define a criterion function to be optimized 
– The most widely used clustering criterion is the sum-of-square-error  

𝐽𝑀𝑆𝐸 =  𝑥 − 𝜇𝑖
2

𝑥∈𝜔𝑖

𝐶

𝑖=1

   where   𝜇𝑖 =
1

𝑁𝑖
 𝑥

𝑥∈𝜔𝑖

 

• This criterion measures how well the data set 𝑋 = {𝑥(1…𝑥(𝑁} is 

represented by the cluster centers 𝜇 = {𝜇(1…𝜇(𝐶} (𝐶 < 𝑁) 

• Clustering methods that use this criterion are called minimum variance 

– Other criterion functions exist, based on the scatter matrices used in 
Linear Discriminant Analysis 

• For details, refer to [Duda, Hart and Stork, 2001] 
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Cluster validity 
• The validity of the final cluster solution is highly subjective 

– This is in contrast with supervised training, where a clear objective function is 
known: Bayes risk 

– Note that the choice of (dis)similarity measure and criterion function will have a 
major impact on the final clustering produced by the algorithms 

• Example 
– Which are the meaningful clusters in these cases? 
– How many clusters should be considered? 

 
 
 
 
 
 
 
 
 

 
– A number of quantitative methods for cluster validity are proposed in [Theodoridis 

and Koutrombas, 1999] 
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Iterative optimization 
• Once a criterion function has been defined, we must find a 

partition of the data set that minimizes the criterion 
– Exhaustive enumeration of all partitions, which guarantees the optimal 

solution, is unfeasible 
• For example, a problem with 5 clusters and 100 examples yields 1067 

partitionings 

• The common approach is to proceed in an iterative fashion 
1) Find some reasonable initial partition and then  
2) Move samples from one cluster to another in order to reduce the 

criterion  function 

• These iterative methods produce sub-optimal solutions but are 
computationally tractable 

• We will consider two groups of iterative methods 
– Flat clustering algorithms 

• These algorithms produce a set of disjoint clusters 
• Two algorithms are widely used: k-means and ISODATA 

– Hierarchical clustering algorithms:  
• The result is a hierarchy of nested clusters 
• These algorithms can be broadly divided into agglomerative and divisive 

approaches 
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The k-means algorithm 

• Method 
– k-means is a simple clustering procedure that attempts to minimize 

the criterion function 𝐽𝑀𝑆𝐸  in an iterative fashion 

  𝐽𝑀𝑆𝐸 =   𝑥 − 𝜇𝑖
2

𝑥∈𝜔𝑖
𝐶
𝑖=1    where   𝜇𝑖 =

1

𝑁𝑖
 𝑥𝑥∈𝜔𝑖  

 

 

 
 

 

– It can be shown (L14) that k-means is a particular case of the EM 
algorithm for mixture models 

 

 

 

1. Define the number of clusters 
2. Initialize clusters by 

• an arbitrary assignment of examples to clusters or  
• an arbitrary set of cluster centers (some examples used as centers) 

3. Compute the sample mean of each cluster 
4. Reassign each example to the cluster with the nearest mean 
5. If the classification of all samples has not changed, stop, else go to step 3 
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• Vector quantization 
– An application of k-means to signal 

processing and communication 

– Univariate signal values are usually 
quantized into a number of levels  
• Typically a power of 2 so the signal 

can be transmitted in binary format 

– The same idea can be extended for 
multiple channels 
• We could quantize each separate 

channel  

• Instead, we can obtain a more 
efficient coding if we quantize the 
overall multidimensional vector by 
finding a number of multidimensional 
prototypes (cluster centers) 

• The set of cluster centers is called a 
codebook, and the problem of finding 
this codebook is normally solved using 
the k-means algorithm 
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ISODATA 

• Iterative Self-Organizing Data Analysis (ISODATA)  
– An extension to the k-means algorithm with some heuristics to 

automatically select the number of clusters 

• ISODATA requires the user to select a number of parameters 

– 𝑁𝑀𝐼𝑁_𝐸𝑋 minimum number of examples per cluster 

– 𝑁𝐷 desired (approximate) number of clusters 

– 𝜎𝑆
2 maximum spread parameter for splitting 

– 𝐷𝑀𝐸𝑅𝐺𝐸 maximum distance separation for merging 

– 𝑁𝑀𝐸𝑅𝐺𝐸  maximum number of clusters that can be merged 

• The algorithm works in an iterative fashion 
1) Perform k-means clustering 

2) Split any clusters whose samples are sufficiently dissimilar 

3) Merge any two clusters sufficiently close 

4) Go to 1) 
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1. Select an initial number of clusters 𝑁𝐶 and use the first 𝑁𝐶 examples as cluster centers 𝑘, 𝑘 = 1. . 𝑁𝐶  

2. Assign each example to the closest cluster 

  a. Exit the algorithm if the classification of examples has not changed 

3. Eliminate clusters that contain less than 𝑁𝑀𝐼𝑁_𝐸𝑋 examples and  

  a. Assign their examples to the remaining clusters based on minimum distance  

  b. Decrease 𝑁𝐶 accordingly 

4. For each cluster 𝑘,  

  a. Compute the center k as the sample mean of all the examples assigned to that cluster 
  b. Compute the average distance between examples and cluster centers 

𝑑𝑎𝑣𝑔 =
1

𝑁
 𝑁𝑘𝑑𝑘
𝑁𝐶
𝑘=1  and 𝑑𝑘 =

1

𝑁𝑘
 𝑥 − 𝜇𝑘𝑥∈𝜔𝑘  

  c. Compute the variance of each axis and find the axis 𝑛∗ with maximum variance 𝜎𝑘
2 𝑛∗  

6. For each cluster k with 𝜎𝑘
2 𝑛∗ > 𝑆

2, if {𝑑𝑘 > 𝑑𝐴𝑉𝐺 𝑎𝑛𝑑 𝑁𝑘 > 2𝑁𝑀𝐼𝑁_𝐸𝑋 + 1} or {𝑁𝐶 < 𝑁𝐷/2} 

  a. Split that cluster into two clusters where the two centers k1 and k2 differ only in the coordinate 𝑛∗ 

    i. 𝑘1(
𝑛 ∗)  =  𝑘(𝑛 ∗)  +  𝑘(𝑛 ∗) (all other coordinates remain the same, 0 <  < 1) 

    ii.  𝑘2(𝑛 ∗)  =  𝑘(𝑛 ∗)  −  𝑘(𝑛 ∗) (all other coordinates remain the same, 0 <  < 1) 

  b. Increment 𝑁𝐶 accordingly 

  c. Reassign the cluster’s examples to one of the two new clusters based on minimum distance to cluster 

centers 

7. If 𝑁𝐶 > 2𝑁𝐷 then 

  a. Compute all distances 𝐷𝑖𝑗 = 𝑑(𝑖, 𝑗) 

  b. Sort 𝐷𝑖𝑗 in decreasing order 

  b. For each pair of clusters sorted by 𝐷𝑖𝑗, if (1) neither cluster has been already merged, (2) 𝐷𝑖𝑗 <

𝐷𝑀𝐸𝑅𝐺𝐸 and (3) not more than NMERGE pairs of clusters have been merged in this loop, then 

    i. Merge ith and jth clusters 

    ii. Compute the cluster center 𝜇′ =
𝑁𝑖𝜇𝑖+𝑁𝑗𝜇𝑗

𝑁𝑖+𝑁𝑗
 

    iii. Decrement NC accordingly 

8. Go to step 1 [Therrien, 1989] 
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• ISODATA has been shown to be an extremely powerful heuristic 

• Some of its advantages are  
– Self-organizing capabilities 

– Flexibility in eliminating clusters that have very few examples 

– Ability to divide clusters that are too dissimilar 

– Ability to merge clusters that are sufficiently similar 

• However, it suffers from the following limitations 
– Data must be linearly separable (long narrow or curved clusters are not 

handled properly) 

– It is difficult to know a priori the “optimal” parameters  

– Performance is highly dependent on these parameters 

– For large datasets and large number of clusters, ISODATA is less efficient 
than other linear methods 

– Convergence is unknown, although it appears to work well for non-
overlapping clusters 

• In practice, ISODATA is run multiple times with different values of 
the parameters and the clustering with minimum SSE is selected 
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Hierarchical clustering 

• k-means and ISODATA create disjoint clusters, resulting in a 
flat data representation 
– However, sometimes it is desirable to obtain a hierarchical 

representation of data, with clusters and sub-clusters arranged in a 
tree-structured fashion 

– Hierarchical representations are commonly used in the sciences (e.g., 
biological taxonomy) 

• Hierarchical clustering methods can be grouped in two 
general classes 
–  Agglomerative  

• Also known as bottom-up or merging 

• Starting with N singleton clusters, successively merge clusters until one 
cluster is left 

– Divisive  
• Also known as top-down or splitting 

• Starting with a unique cluster, successively split the clusters until N 
singleton examples are left 
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Dendrograms 

• A binary tree that shows the structure of the clusters 
– Dendrograms are the preferred representation for hierarchical clusters 

• In addition to the binary tree, the dendrogram provides the similarity 
measure between clusters (the vertical axis) 

– An alternative representation is based on sets 
{{𝑥1, {𝑥2, 𝑥3}}, {{{𝑥4, 𝑥5}, {𝑥6, 𝑥7}}, 𝑥8}}  

• However, unlike the dendrogram, sets cannot express quantitative 
information 
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Divisive clustering 

• Define 
– 𝑁𝐶  Number of clusters 

– 𝑁𝐸𝑋  Number of examples 

• How to choose the “worst” cluster 
– Largest number of examples 

– Largest variance 

– Largest sum-squared-error… 

• How to split clusters 
– Mean-median in one feature direction 

– Perpendicular to the direction of largest variance… 

• The computations required by divisive clustering are more 
intensive than for agglomerative clustering methods  
– For this reason, agglomerative approaches are more popular 

 

1. Start with one large cluster 

2. Find “worst” cluster 

3. Split it 

4. If 𝑁𝐶 < 𝑁𝐸𝑋 go to 2 
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Agglomerative clustering 
• Define 

– 𝑁𝐶  Number of clusters 

– 𝑁𝐸𝑋  Number of examples 

 

 

 

 

 

• How to find the “nearest” pair of clusters 

– Minimum distance   dmin 𝜔𝑖 , 𝜔𝑗 = min𝑥∈𝜔𝑖
𝑦∈𝜔𝑗

𝑥 − 𝑦  

– Maximum distance   dmax 𝜔𝑖 , 𝜔𝑗 = max𝑥∈𝜔𝑖
𝑦∈𝜔𝑗

𝑥 − 𝑦  

– Average distance   davg 𝜔𝑖 , 𝜔𝑗 =
1

𝑁𝑖𝑁𝑗
  𝑥 − 𝑦𝑦∈𝜔𝑗𝑥∈𝜔𝑖   

– Mean distance   dmean 𝜔𝑖 , 𝜔𝑗 = 𝜇𝑖 − 𝜇𝑗   

1. Start with 𝑁𝐸𝑋 singleton clusters 

2. Find nearest clusters 

3. Merge them 

4. If 𝑁𝐶 > 1 go to 2 
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• Minimum distance 
– When 𝑑𝑚𝑖𝑛 is used to measure distance between clusters, the algorithm is 

called the nearest-neighbor or single-linkage clustering algorithm 
– If the algorithm is allowed to run until only one cluster remains, the result 

is a minimum spanning tree (MST) 
– This algorithm favors elongated classes 

• Maximum distance 
– When 𝑑𝑚𝑎𝑥 is used to measure distance between clusters, the algorithm 

is called the farthest-neighbor or complete-linkage clustering algorithm 
– From a graph-theoretic point of view, each cluster constitutes a complete 

sub-graph  
– This algorithm favors compact classes 

• Average and mean distance 
– 𝑑𝑚𝑖𝑛 and 𝑑𝑚𝑎𝑥 are extremely sensitive to outliers since their 

measurement of between-cluster distance involves minima or maxima 
– 𝑑𝑎𝑣𝑒  and 𝑑𝑚𝑒𝑎𝑛 are more robust to outliers 
– Of the two, 𝑑𝑚𝑒𝑎𝑛 is more attractive computationally  

• Notice that 𝑑𝑎𝑣𝑒 involves the computation of 𝑁𝑖𝑁𝑗 pairwise distances 
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• Example 
– Perform agglomerative clustering on 𝑋 using the single-linkage metric  

𝑋 =  {1, 3, 4, 9, 10, 13, 21, 23, 28, 29} 

• In case of ties, always merge the pair of clusters with the largest mean 

• Indicate the order in which the merging operations occur 
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𝑑𝒎𝒊𝒏 vs. 𝑑𝒎𝒂𝒙 
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