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L12: randomized feature selection 

• Exponential search methods 
– Branch and Bound 

– Approximate monotonicity with Branch and Bound 

– Beam Search 

• Randomized algorithms 
– Random generation plus sequential selection 

– Simulated annealing 

– Genetic algorithms 
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Branch and Bound (B&B) 

• Properties 
– B&B [Narendra and Fukunaga, 1977]  is guaranteed to find the optimal 

feature subset under the monotonicity assumption 

• The monotonicity assumption states that the addition of features can only 
increase the value of the objective function, that is 

𝐽 𝑥𝑖1 < 𝐽 𝑥𝑖1 , 𝑥𝑖2 < 𝐽 𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 < ⋯ 

– Branch and Bound starts from the full set  
and removes features using a depth-first strategy 

• Nodes whose objective function are lower than  
the current best are not explored since the  
monotonicity assumption ensures that their  
children will not contain a better solution 
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• Algorithm [Fukunaga, 1990] 
– The algorithm is better explained by considering the subsets of  

𝑀’ = 𝑁 −𝑀 features already discarded, where 𝑁 is the problem 
dimensionality and 𝑀 is the desired number of features 

– Since the order of the features is irrelevant, we will only consider an 
increasing ordering 𝑖1 < 𝑖2 < ⋯𝑖𝑀′ of the feature indices, this will 
avoid exploring states that differ only in the ordering of their features 

– The Branch and Bound tree for 𝑁 = 6 and 𝑀 = 2 is shown below 
(numbers indicate features that are being removed) 

• Notice that at the level directly below  
the root we only consider removing  
features 1, 2 or 3, since a higher  
number would not allow  
sequences with four indices 
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1. Initialize 𝛼 = −∞, 𝑘 = 1 
2. Generate successors of the current node and store them in 𝐿𝐼𝑆𝑇 𝑘  
3. Select new node 
 if 𝐿𝐼𝑆𝑇 𝑘  is empty 
  go to 5 
 else 

  𝑖𝑘 = arg max
𝑗∈𝐿𝐼𝑆𝑇 𝑘

𝐽 𝑥𝑖1 , 𝑥𝑖2 …𝑥𝑖𝑘−1 , 𝑗  

  delete 𝑖𝑘  from 𝐿𝐼𝑆𝑇(𝑘)  
4. Check bound 

 if 𝐽 𝑥𝑖1 , 𝑥𝑖2 …𝑥𝑖𝑘 < 𝛼 

  go to 5 
 else if 𝑘 = 𝑀′ (we have the desired number of features) 
  go to 6 
 else 
  𝑘 = 𝑘 + 1 
  go to 2 
5. Backtrack to lower level 
  𝑘 = 𝑘 − 1 
  if 𝑘 = 0  
   terminate algorithm 
  else 
   go to 3 
6. Last level 

  Set 𝛼 = 𝐽 𝑥𝑖1 , 𝑥𝑖2 …𝑥𝑖𝑘−1 , 𝑗  and 𝑌𝑀′
∗ = 𝑥𝑖1 , 𝑥𝑖2 …𝑥𝑖𝑘  

  go to 5 
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Approximate monotonicity B&B (AMB&B) 
• A variation of the classical B&B algorithm  

– AMB&B allows non-monotonic functions to be used, typically classifiers, 
by relaxing the cutoff that terminates the search on a specific node 

– Assume that we run B&B by setting a threshold error rate 𝐸(𝑌) = 𝜏 rather 
than a number of features 𝑀 

– Under AMB&B, a given feature subset 𝑌 will be considered 
• Feasible if 𝐸 𝑌 ≤ 𝜏 
• Conditionally feasible if 𝐸 𝑌 ≤ 𝜏 1 + Δ  
• Unfeasible if 𝐸 𝑌 ≥ 𝜏 1 + Δ  

– where Δ is a tolerance placed on the threshold  
to accommodate for non-monotonic functions 

– Rather than limiting the search to feasible nodes  
(as B&B does), AMB&B allows the search to  
explore conditionally feasible nodes in hopes  
that these will lead to a feasible solution  

– However, AMB&B will not return conditionally  
feasible nodes as solutions, it only allows the  
search to go through them! 
• Otherwise it would not be any different  

than B&B with threshold 𝜏 1 + Δ  
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Beam search 

• Beam Search is a variation of best-first search with a 
bounded queue to limit the scope of the search 
– The queue organizes states from best to worst, with the best states 

placed at the head of the queue 

– At every iteration, BS evaluates all possible states that result from 
adding a feature to the feature subset, and the results are inserted 
into the queue in their proper locations 

– Notice that BS degenerates to exhaustive  
search if there is no limit on queue size  
Similarly, if the queue size is set to one,  
BS is equivalent to SFS 
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• Example: Run BS on a 4D search space and queue size = 3 
– BS cannot guarantee that the optimal subset is found:  

• In the example, the optimal is 2-3-4 (𝐽 = 9), which is never explored 

• However, with the proper queue size, BS can avoid getting trapped in local 
minimal by preserving solutions from varying regions in the search space 
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Random generation plus sequential selection 

• Approach 
– An attempt to introduce randomness into SFS and SBS in order to 

escape local minima 

– The algorithm is self-explanatory 
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Full feature set 

1. Repeat for a number of iterations 
 - Generate a random feature subset 
 - Perform SFS on the subset 
 - Perform SBS on the subset 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 9 

Simulated annealing 

• A stochastic optimization method that derives its name from 
the annealing process used to re-crystallize metals 
– During the annealing process in metals, the alloy is cooled down 

slowly to allow its atoms to reach a configuration of minimum energy 
(a perfectly regular crystal) 

• If the alloy is annealed too fast, such an organization cannot propagate 
throughout the material 

• The result will be a material with regions of regular structure separated by 
boundaries 

• These boundaries are potential fault-lines where fractures are most likely 
to occur when the material is stressed 

– The laws of thermodynamics state that, at temperature 𝑇, the 
probability of an increase in energy Δ𝐸 in the system is given by the 
expression 

𝑃 Δ𝐸 = 𝑒−
Δ𝐸
𝑘𝑇  

• where k is known as Boltzmann’s constant 
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– SA is a straightforward implementation of these ideas 

 

1. Determine an annealing schedule 𝑇𝑖 
2. Create an initial solution 𝑌0 
3. While 𝑇𝑖 > 𝑇𝑀𝐼𝑁  
 - Generate a new solution 𝑌𝑖+1 as a local search on 𝑌𝑖  
 - Compute Δ𝐸 = 𝐽 𝑌𝑖 − 𝑌𝑖+1  
 - If Δ𝐸 < 0 
  then 
   always accept the move from 𝑌𝑖  to 𝑌𝑖+1 
  else 

   accept the move with probability 𝑃 = 𝑒−Δ𝐸 𝑇𝑖  

Empty feature set 

Full feature set 
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• SA is summarized with the following idea 
– “When optimizing a very large and complex system (i.e., a system with 

many degrees of freedom) , instead of always going downhill, try to go 
downhill most of the times” [Haykin, 1999] 

• The previous formulation of SA can be used for any type of 
minimization problem and it only requires specification of 
– A transform to generate a local neighbor from the current solution (i.e. 

add a random vector) 
• For FSS, the transform will consist of adding or removing features, typically 

implemented as a random mutation with low probability 

– An annealing schedule, typically 𝑇𝑖+1 = 𝑟𝑇𝑖, with 0 ≤ 𝑟 ≤ 1 

– An initial temperature 𝑇0 

• Selection of the annealing schedule is critical 
– If 𝑟 is too large, the temperature decreases very slowly, allowing moves to 

higher energy states to occur more frequently; this slows convergence 

– If 𝑟 is too small, the temperature decreases very fast, and the algorithm is 
likely to converge to a local minima 

 



CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU 12 

– A unique feature of simulated annealing is its adaptive nature 

– At high temperature the algorithm is only looking at the gross features 
of the optimization surface, while at low temperatures, the finer 
details of the surface start to appear 
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Genetic algorithms 

• GAs are an optimization technique inspired by evolution  
(survival of the fittest) 
– Starting with an initial random population of solutions, evolve new 

populations by mating (crossover) pairs of solutions and mutating 
solutions according to their fitness (objective function) 

– The better solutions are more likely to be selected for the mating and 
mutation operations and therefore carry their “genetic code” from 
generation to generation 

• For FSS, solutions are simply represented with an  
indicator variable [Holland in 1974] 
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1. Create an initial random population 
2. Evaluate initial population 
3. Repeat until convergence (or a number of generations) 
 - Select the fittest individuals in the population 
 - Create offsprings through crossover on selected individuals 
 - Mutate selected individuals 
 - Create new population from the old population and the offspring 
 - Evaluate the new population 
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• Single-point crossover 
– Select two individuals (parents) according to their fitness 

– Select a crossover point  

– With probability 𝑃𝐶 (0.95 is reasonable) create two offspring by 
combining the parents 

 

 

 

 

• Binary mutation 
– Select an individual according to its fitness 

– With probability 𝑃𝑀 (0.01 is reasonable) mutate each one of its bits  
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Selection methods 

• The selection of individuals is based on their fitness value 
– We will describe a selection method called Geometric selection 

– Other methods are available: Roulette Wheel, Tournament Selection … 

• Geometric selection 
– The probability of selecting the  

𝑟𝑡ℎ best individual is given by  
the geometric distribution 

  𝑃 𝑟 = 𝑞 1 − 𝑞 𝑟−1 

• where 𝑞 is the probability of  
selecting the best individual  
(0.05 being a reasonable value) 

– Therefore, the geometric distribution  
assigns higher probability to individuals  
ranked better, but also allows unfit individuals to be selected 

– In addition, it is typical to carry the best individual of each population 
to the next one; this is called the Elitist Model 
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GA parameter choices for FSS 

• The choice of crossover rate 𝑃𝐶  is important 

– You will want a value close to 1.0 to have a large number of offspring 

– The optimal value is inversely proportional to population size [Doak, 1992] 

• The choice of mutation rate 𝑃𝑀 is very critical 

– An optimal choice will allow the GA to explore the more promising regions 
while avoiding getting trapped in local minima 

• A large value (i.e., 𝑃𝑀 > 0.25) will not allow the search to focus on the better 
regions, and the GA will perform like random search 

• A small value (i.e., 𝑃 ≈ 0) will not allow the search to escape local minima 

• The choice of 𝑞, the probability of selecting the best individual, is 
also critical 

– An optimal value of 𝑞 will allow the GA to explore the most promising 
solution, and at the same time provide sufficient diversity to avoid early 
convergence of the algorithm 

• In general, poorly selected control parameters will result in sub-
optimal solutions due to early convergence 
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Search strategies –summary 

 

 

 

 

 

 

 
– A highly recommended review of the material presented in these two 

lectures is 

 

 Accuracy Complexity Advantages Disadvantages 

Exhaustive 
Always finds the 
optimal solution 

Exponential High accuracy High complexity 

Sequential 
Good if no 

backtracking 
needed 

Quadratic O(NEX
2) Simple and fast Cannot backtrack 

Randomized 
Good with proper 

control 
parameters 

Generally low 
Designed to 
escape local 

minima 

Difficult to choose 
good parameters 

 

Justin Doak 
“An evaluation of feature selection methods and their application to Computer Security” 
University of California at Davis, Tech Report CSE-92-18 




