
Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

1

Lecture 9: Exception processing

g Privilege states and exceptions
g Exception taxonomy
g Exception processing in detail
g Hardware-initiated exceptions
g Interrupts

n Vectored interrupts
n Auto-vectored interrupts

g Software-initiated exceptions

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

2

Privilege states

g The MC68000 provides two states of privilege
n Supervisor (S-bit in SR is 1)
n User (S-bit in SR is 0)

g Each state has its own stack pointer and stack
n User Stack Pointer
n Supervisor Stack Pointer

g A few instructions are only available in supervisor mode
- AND #data,SR - MOVE An,SSP

- EOR #data,SR - RESET

- OR #data,SR - RTE

- MOVE <ea>, SR - STOP

- MOVE SSP, An

User
Mode

Supervisor
Mode

Transition may occur only
during exception processing

Transition may occur through four instructions:
• MOVE to SR
• ANDI to SR
• EOR to SR
• RTE

Any exception

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

3

Function code output pins

g The state of the CPU is indicated to external circuitry by three function
code output pins: FC0, FC1, FC2

FC2 FC1 FC0 Memory access type
0 0 0 Undefined --reserved
0 0 1 User data
0 1 0 User Program
0 1 1 Undefined --reserved
1 0 0 Undefined --reserved
1 0 1 Supervisor data*
1 1 0 Supervisor program**
1 1 1 1ACK space (CPU space)

* System is in supervisor mode and accessing data from memory
** System is in supervisor mode and accessing an instruction from memory

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

4

Exceptions

g Exceptions can be viewed as operating system calls
g Exceptions can be made by either

n the programmer requesting an OS service (I/O for instance) or
n the 68000 in response to certain kinds of SW or HW errors

g Each type of exception as its own exception handler to deal with the condition
that triggered the exception

g Exception handlers are very similar to subroutines BUT
n Exceptions don’t require an explicit address (it is determined by a vector #)

n Exceptions save PC and SR (and more) to the Supervisor Stack

n Exceptions set the S-bit to 1, and subroutines do not alter the SR

n A RTE is used to return instead from the usual RTS

n Nesting of exceptions is prioritized
n Exceptions are typically written by the systems programmer

g Exceptions can be external or internal

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

5

Exception taxonomy

Normal Spurious Un-initialized Normal Spurious
Divide-
by-zero

Illegal
instruction

Privilege
violation

Address
error

Line A
Line F

TRAP #n

TRAPV

CHK

Vectored
Auto-

vectored

TRACE Errors
Programmer

initiated
CoprocessorRESET Interrupts Bus error

Hardware
(external)

Software
(internal)

All
exceptions

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

6

Exception processing

…

instruction i

instruction i+1

instruction i+2

instruction i+3

…

Program
being executed

…

…

RTE

Exception
handling routine

Exception request
occurs while
instruction i
is being executed

Resume program execution
after returning from exception
handler routine

Jump to the exception handler
routine after finishing* execution
of instruction i

*With the exception of RESET, BUS ERROR or ADDRESS
ERROR exceptions, which initiate exception processing within
two clock cycles

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

7

Exception processing in more detail

[temp_register] ← [SR]

[S] ← [1]

[T] ← [0]

get_vector_number

exception_vector ← vector_number×4
handler_address ← [M(exception_vector)]

[SSP] ← [SSP]-4

[M(SSP)] ← [PC]

[SSP] ← [SSP]-2

[M(SSP)] ← [temp_register]

[PC] ← handler_address

[SR] ← [M(SSP)]

[SSP] ← [SSP]+2

[PC] ← [M(SSP)]

[SSP] ← [SSP]+4

Jump to an exception handler

Return from an exception handler

Vector
number

Memory
address Memory contents

0 $0000

1 $0004

…

N (N)×4

N+1 (N+1)×4

N+2 (N+2)×4

Reset, initial program counter value

Reset, initial supervisor stack pointer

Starting address of the (N+1)th handler

Starting address of the Nth handler

Starting address of the (N+2)th handler

g When the 68000 receives an exception, the
following procedure is performed

n Save PC and SR to the Supervisor Stack
n Determine the address of the exception

handler
n Execute the exception
n Restore PC and SR from the Supervisor Stack

g To determine the address of the exception
handler, the 68000 uses a VECTOR TABLE

n The vector table is stored at $00 0000 to $00
03FF

n Each element in the vector table consists of 4
bytes that specify the address of the exception
handler

n Each exception is associated with an index of
the vector table called a vector number

n The handler address is stored in a memory
location pointed by the vector number × 4

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

8

The vector table

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

9

Exception types and priorities

g The exceptions in the 68000 are divided into three
groups, according to their priority and characteristics

n Group 0 exceptions processed before Groups 1 and 2
n Group 1 exceptions processed before Group 2

g GROUP 0 exceptions
n Basically mean that something has gone seriously wrong with

the system
n For this reason, more detailed information is saved on the

stack to assist diagnosis
n You cannot return from a Group 0 exception with the RTE

command since the information stored on the stack is
different than what RTE expects!

g GROUP 1 exceptions
n generated by traces, interrupts, illegal op-codes or privilege

violations

g GROUP 2 exceptions
n Occur as part of the normal instruction-execution sequence of

a program

Memory access type and function code

Access address (high word)

Access address (low word)

Instruction register

Status register

Program counter (high word)

Program counter (low word)

SSP

7 w
ords

16 bits

Information saved on stack for Group 0

Status register

Program counter (high word)

Program counter (low word)

SSP

3 w
ords

16 bits

Information saved on stack for Groups 1,2

Group Exception Time at which
processing begins

0
Reset
Bus error
Address error

Exception processing begins
within two clock cycles

1

Trace
Interrupt
Illegal op-code
Privilege

Exception processing begins
before the next instruction

2

TRAP
TRAPV
CHK
Divide-by-zero

Exception processing is started
by normal instruction execution

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

10

Hardware-initiated interrupts

g RESET
n Takes place only under two circumstances

g Power-up
g Total and irrecoverable system collapse

n RESET has the highest priority and will be processed before ANY other exception that is pending or being
processed

n Detected by a low RESET* pin on the 68000
n On a RESET exception, the 68000 performs the following operations

g [SR] ← $2700 (S=1, T=0 and interrupt mask level set to 7)
g [SSP] ← [$0000] (initialize Supervisor Stack with the first element in the vector table)
g [PC] ← [$0004] (Initialize PC with the second element in the vector table)

g Resume execution at the position pointed by PC

g BUS ERROR
n Raised by failure of the system to complete a bus cycle

g Illegal memory access: the processor tried to access an address not populated by memory
g Fault to memory access: if error-detecting memory is used
g Failure to assert VPA*: used for auto-vectored interrupts (details later)
g Memory privilege violation: when the 68000 uses some form of memory management

n Detected by a low BERR* pin on the 68000

g INTERRUPTS… next slides

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

11

Interrupts

g The 68000 provides two interrupt schemes
n Vectored: intended for modern 16-bit peripherals
n Auto-vectored: intended for older 8-bit peripherals

g There are seven levels of interrupts available
g The sequence of operations during an

interrupt request is the following
n A peripheral requires attention by asserting its

interrupt request output (IRQ*)
n The priority encoder produces a 3-bit code with the

highest IRQ* line active and passes it to the 68000
on the IPL0*-IPL3* inputs

n The 68000 compares the level of the interrupt with
the interrupt mask flag (I2I1I0) in the SR.

n If the requested input is greater than (I2I1I0), the
interrupt is serviced, otherwise it is ignored

n If the 698000 decides to service the interrupt:
g The code 111 is placed on (FC2FC1FC0) to

inform the system that an interrupt is about to
be serviced

g The priority of the interrupt is placed on
(A3A2A1)

g (FC2FC1FC0) and (A3A2A1) are passed to an
interrupt acknowledge decoder which asserts
one of the seven IACK* lines

n The asserted IACK* line informs the interrupting
device that it is about to be serviced

n The remaining steps are dependent on the type of
interrupting device (vectored or auto-vectored) and
are detailed in the next two slides

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

12

Vectored interrupts

g Vectored interrupts are intended for peripherals
that can provide an 8-bit vector number (256
values) to the 68000

n This vector number is stored in register in the
peripheral (IVEC)

n It is the programmer’s responsibility to initialize
the device with the appropriate vector number!

g After the appropriate IACK* line is asserted by
the 68000, the following operations are
performed

n The peripheral whose interrupt level matches the
asserted IACK* will “know” that it is going to be
serviced

n The peripheral then writes the IVEC vector onto the
data bus (D7D0) and asserts the DTACK* line
(DTACK stands for Data Transfer Acknowledge)

n the active DTACK* terminates the IACK cycle and the
68000 will execute the interrupt handler pointed by
the vector fetched from (D7D0)

g There are two variations to this procedure
n If DTACK* is not asserted, BERR* (Bus Error) must

be asserted by the external hardware to force a
spurious interrupt exception

n If the peripheral has not been initialized with an
appropriate vector, it should place $0F on the data
bus to force an uninitialized interrupt vector exception

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

13

Auto-vectored interrupts

g Auto-vectored interrupts are intended for earlier
peripherals designed for 8-bit processors that
cannot provide a vector during an IACK cycle

g After the appropriate IACK* line is asserted by the
68000, the following operations are performed

n The interrupting device will assert the VPA* line (Valid
Peripheral Address)

n Upon receiving an asserted VPA* line, the 68000
assumes the peripheral is a 6800-series and then

g ignores the contents of (D0-D7)
g internally generates an interrupt vector from the

priority level of the IRQ* line that was asserted
g the 68000 reserves vector numbers $19-$1F for auto-

vectored interrupts on IRQ1*-IRQ7*:

n When several peripherals are assigned to the same IRQ*
level, then the 68000 cannot distinguish between then
and the appropriate auto-vectored handler routine MUST
poll each of the possible requesters and read their
interrupt status registers

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

14

Software-initiated interrupts

g TRACE
n Forced when the T-bit of the SR is set to 1

n When T=1 a trace exception is generated after each execution of an instruction

n This enables the programmer to step through the execution of a program

g Address error:
n Occurs when the 68000 attempts to access a 16- or 32-bit longword at an odd address

g Privilege violation
n Occurs when the processor is in user mode and attempts to execute a instruction reserved

for the supervisor state

g Illegal instruction
n Occurs when the CPU fetches an op-code from memory that corresponds to an

unimplemented instruction
g This typically occurs when the effective address of a branch instruction is computed wrong

g Divide-by-zero
n Occurs when a number is divided by zero

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

15

Software-initiated interrupts

g CHK
n Used to check against bounds

g For example, checking of array indexes against the boundaries of the array

n Generated by the assembly instruction CHK <ea>,Dn

n For example, the instruction CHK D1,D0 will generate a CHK exception if
g [D0(0:15)]<0 or
g [D0(0:15)]>[D1(0:15)]

g TRAPV
n Generated by the assembly instruction TRAPV, which forces the exception if the V-bit of the

CCR is set to 1

g Emulators
n Op-codes whose four MSBs (bits 12 to 15) are %1010 ($A) or %1111 ($F) are

unimplemented in the 68000, but they are not treated as illegal instructions!
n Line A instructions

g Used to emulate instructions missing in the 68000

n Line F instructions
g Similar to Line A, but is associated with a different vector number
g Typically used in 68020 to emulate a co-processor when one is not present in hardware

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

16

Software-initiated interrupts: TRAPS

g TRAPS are the most useful software user-initiated exceptions available
g TRAPS are not different from line A or line F exceptions except for the vector

number associated with them
g Generated with the instruction TRAP #0 to TRAP #15, which are associated

with vector numbers 32 to 47 decimal
g TRAP is normally used to provide portable code between 68000-based systems

with different peripherals
g At first it may seem that the 68000 is limited to 16 TRAP operations

n This is not the case since it is possible to pass a integer to the trap handler in a data register

n Within the trap handler, the integer is used as an index into a jump table that points to the
desired routine

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

17

Exception processing flowchart

