
Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

1

Lecture 15: Memory and I/O interface

g Address space
g Memory organization
g Asynchronous data transfers

n Read and Write cycles

n DTACK* generation

g Synchronous data transfers
g Direct Memory Access
g System control signals

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

2

Address space

g The address bus of the 68000 consists of 23
independent address lines A0-A23

n Since the data bus is 16-bit wide, we have an
address space of 8M words

g Two additional control lines are used to select
individual bytes

n Upper Data Strobe (UDS*)
n Lower Data Strobe (LDS*)

g UDS* and LDS* are used to enable byte-wide
upper and lower data banks

n Upper data banks are selected by UDS* and
contain data bits D8-D15

n Lower data banks are selected by LDS* and
contain data bits D0-D7

g A01-A23 are shared by the two data banks and
are used to address individual bytes within
each bank

g This physical organization of memory
explains why words must be stored at even
memory addresses

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

3

Memory organization

g Dedicated and general use memory
n Memory locations 000000 to 0003FE have a dedicated function:

g storage of the interrupt vector table

n The rest of the memory space is for general use, it can be used to store data, instructions or address
information

g Three additional output pins on the 68000, the function code (FC0-FC2), indicate
whether the bus cycle is
n accessing data or program instructions
n being executed in user or supervisor mode

Function code
FC2 FC1 FC0

Reference class

0 0 0 (Unassigned)
0 0 1 User data
0 1 0 User program
0 1 1 (Unassigned)
1 0 0 (Unassigned)
1 0 1 Supervisor data
1 1 0 Supervisor program
1 1 1 Interrupt Acknowledge

Exception
vector table

General use
memory

00000016

0003FE16
00040016

FFFFFE16

g By using (FC0-FC2), the memory space can be further divided into
n User program segment
n User data segment
n Supervisor program segment
n Supervisor data segment

g As an example, (FC0-FC2) are decoded and used to assert the
appropriate chip select (CS*) signals

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

4

Asynchronous memory and I/O interface

g Asynchronous means that
n once a bus cycle is initiated to read or write

instructions or data, it is not completed until a
response is provided by the memory or I/O
subsystem

n This response is an acknowledgement signal
that tells the 68000 that the current bus cycle is
compete

g The basic asynchronous operation is
n The 68000 puts an address on the address bus

and asserts Address Strobe (AS*) to signal
memory and I/O devices that a valid address
information is available on the bus

n The memory or I/O device asserts Data
Transfer Acknowledge (DTACK*) to signal the
68000 that

g valid data is available on the data bus during a
read operation (the 68000 latches data when
DTACK* is asserted)

g data has been successfully written to the
memory or I/O device

g Asynchronous operation allows the 68000
to interface with slow memories or I/O
devices

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

5

READ cycle flowchart

g An asynchronous read cycle is
characterized by the interlocked
handshaking procedure that takes place
between

n the bus master (CPU) and
n the bus slave (memory or I/O device)

g The following steps take place
n The CPU indicates its intentions by

g forcing R/W* HIGH and
g setting up an address
g asserting AS*, UDS* and LDS*

n The slave detects that AS*, UDS* and LDS*
are asserted and then

g places data on the data bus
g asserts DTACK*

n Upon DTACK* assertion, the CPU
g latches data from data bus
g Negates AS*, UDS* and LDS*

n Upon negation of AS*, UDS* and LDS*, the
slave

g removes data from data bus
g Negates DTACK*

n At this point we can start a new bus cycle

Address the slave

1. Set R/W* to read
2. Place function code on FC0-FC2

3. Place address on A01-A23

4. Assert address strobe AS*
5. Assert UDS* and LDS*

Output the data

1. Decode the address
2. Place data on D0-D15

3. Assert DTACK*

Acquire the data

1. Latch data
2. Negate UDS* and LDS*
3. Negate address strobe AS*

Terminate the cycle

1. Remove data from D0-D15

2. Negate DTACK*

Start the next cycle

Bus master Bus slave

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

6

READ cycle timing diagram

g Each bus cycle consists of a minimum of 4
clock cycles, divided into eight states S0-S7

n A bus cycle starts in state S0 with the clock high
and ends in state S7 with the clock low

n This basic cycle can be extended by the insertion
of wait states between S4 and S5

g Narrative
n During S0 all signals are negated with the

exception of R/W*, which becomes high to
indicate a read operation

n In state S1, the address on A01-A23 becomes
valid and remains so until state S0 of next cycle

n In state S2 the address strobe AS* goes active-
low, indicating that the contents of the address
bus are valid

n At the same time, UDS* and LDS* go active-low
and initiate the memory access

n At the end of S4, the CPU tests DTACK*
g If DTACK* is inactive, the CPU inserts wait

states between S4 and S5 until DTACK* goes
active-low on the falling edge of S4

n During S7, the CPU
g negates AS*, UDS* and LDS*
g latches the data internally

n The negation of the 3 strobes causes the memory
to

g return its data output pins to high impedance
(floating) state

g negate DTACK*

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

7

WRITE cycle flowchart

g The asynchronous write cycle is very
similar to the read cycle we saw before

g There are two differences
n The CPU provides data at the start of the write

cycle
n The bus slave reads this data

Address the slave

Input the data

1. Decode address A01-A23

2. Store data from D00-D15

3. Assert DTACK*

Acquire the data

1. Negate UDS* and LDS*
2. Negate address strobe AS*
3. Remove data from D00-D15
4. Set R/W* to read

Terminate the cycle

1. Negate DTACK*

Start the next cycle

Bus master Bus slave

1. Place function code on FC0-FC2

2. Place address on A01-A23

3. Assert address strobe AS*
4. Set R/W* to write
5. Place data on D00-D15

6. Assert UDS* and LDS*

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

8

WRITE cycle timing diagram

g Narrative
n At the start of a cycle, an address is

placed on the address bus A01-A23 and
g AS* is asserted and R/W* set to logic 0

n After R/W* has set low to indicate a
write cycle, the CPU places data on the
data bus

n Once the contents of the data bus have
stabilized, UDS* and LDS* are asserted
(approximately 1 cycle after AS*
assertion)

g This allows the memory to use UDS*
and LDS* to latch data from the bus

n If DTACK* is asserted before the falling
edge of S4, the write cycle is terminated
normally

g Otherwise wait states are inserted until
DTACK* is asserted

n At the end of the write cycle
g AS*, UDS* and LDS* are negated

simultaneously
g R/W* is set high
g data bus is floated

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

9

DTACK* generation

g In the previous slides we assumed that DTACK* was generated by the memory block
n This is true for I/O devices such as the 68230 PI/T or the 68681 DUART, which support asynchronous data

transfers and have a DTACK* output pin
n For devices that do not have this facility (such as memory ICs), the DTACK* signal must be generated by

the systems designer with additional circuitry

g The circuit below can be used to generate the DTACK* signal with different delays
depending on the speed of the device that is being accessed

n QA can be used for devices that can operate at maximum (no-wait-state) bus speed
n QB can be used to delay DTACK* for one wait state (it will be set on the second rising edge of the clock)
n QC can be used to delay DTACK* for two wait states, and so on...

Fast memory

Medium memory

Slow memory

From
address
decoder

DTACK*

CLR

Shift register

AS*

System clock
QA QB QC QD

Jumpers

0 1 2 3Wait states:

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

10

Synchronous memory and I/O interface

g Synchronous bus operation is provided in
order to interface slower 8-bit peripherals as
those in the 6800 family

g This interface is similar to the asynchronous
interface except for

n DTACK* is NOT used
n Instead, three synchronous bus control signals are

used:
g Valid Peripheral Address (VPA*)
g Valid Memory Address (VMA*)
g Enable (E)

g Valid Peripheral Address (VPA*)
n When a synchronous peripheral detects that it is

being accessed, it asserts VPA* to request a
synchronous bus cycle

n When the CPU detects that VPA* has been
asserted, it initiates the synchronous transfer by
means of VMA* and E

g Valid Memory Address (VMA*)
n The CPU asserts VMA* to indicate the peripheral

that there is a valid address on the address bus
n The assertion of VMA* is a response of the CPU to

the peripheral’s assertion of VPA*

g Enable (E)
n A CPU output derived from the 68000 clock cycle
n One E cycle is equal to 10 CPU cycles
n E clock is non-symmetric it is low for 6 clock cycles

and high for 4 clock cycles

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

11

Synchronous transfer

g Sequence of operations (not detailed)
n During state S0, the CPU generates the function

codes FC0-FC2
n During S1, the CPU puts a valid address on the

address bus
n When the address is stable in S2

g AS* is asserted and R/W* set to 1 for a read or 0 for a
write

g If a write operation is performed, the data is output on
D0-D15 and maintained valid for the rest of the bus
cycle

n By the end of S4, external circuitry must have
decoded the address on the bus

g At this time, it asserts VPA*

n In response to the VPA* assertion, the CPU
synchronizes with falling edge of E and then asserts
VMA*

g This signals the peripheral that a valid address is on
the address bus

n The peripheral transfers data on the next rising
edge of E

g For a read cycle the CPU latches the data on the next
falling edge of E

n At this point the data transfer is complete and the
CPU negates VMA*, AS*, UDS* and LDS*

Initiate cycle

Define M6800 cycle

1. External hardware asserts VPA*

Synchronize with Enable

1. CPU monitors Enable (E) until it
goes low

2. CPU asserts VMA*

Transfer data

1. Slave waits until E is active and
then transfers the data

Terminate cycle

1. CPU waits until E goes low (on
a Read cycle data is latched as
E goes low internally)

2. CPU negates VMA*
3. CPU negates AS*, UDS* and

LDS*

Bus master Bus slave

1. CPU starts a normal Read or
Write cycle

Start next cycle

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

12

Direct Memory Access (DMA)

g DMA is a process in which a device (slave) requests the use of the master’s buses
(address, data and control) for its own use

n In a microprocessor-based system, the master is usually the CPU

g Once the slave device has control of the bus, it can read or write to the system memory as
necessary. When the slave device is finished, it releases control of the master’s buses, and
the system returns to normal

g DMA is used to achieve faster data transfer rates than those attainable with the CPU
g To perform DMA on the 68000, three signals are used

n Bus Request (BR*)
n Bus Grant (BG*)
n Bus Grant Acknowledge (BGACK*)

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

13

Why is DMA faster?

g Consider the problem of writing a block of memory to an output port, one byte at a time.
The following tasks must be performed

n Initialize memory and output port addresses
n Repeat until all bytes are transferred:

g Read byte from memory
g Write byte to output port
g Increment memory address
g Check to see if all bytes transferred
g Wait until output port ready for next byte

g With this approach, only a fraction of the memory cycles are used for the actual data
transfer

n the speed of the data transfer is much less than the maximum rate at which data can be read from the
memory

g DMA is performed with a device called DMA controller (DMAC), which can be thought of a
very specialized microprocessor, except for

n unlike a data transfer performed by the CPU, no instructions need to be fetched during the transfer to tell the
DMAC how to perform the transfer

n thus, all memory cycles are available for transferring data

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

14

DMAC operation

g A DMA transfer takes place in several stages
n Like with any other memory-mapped peripheral, the CPU first sets up the DMAC’s registers to define

g the quantity of data to be moved
g the type of DMA operation
g the direction of data transfer

n The DMAC is activated by a request for service from its associated peripheral
g When the peripheral asserts REQ*, the DMAC requests control of the bus by

n asserting its BR* output
n waiting for a BG* response from the bus master
n asserting BGACK*

n Once the DMAC has control of the
bus, it generates all timing signals
needed to transfer data between
peripheral and memory

n DMA transfers take place in one
of two modes

g Burst mode: several operands
are transferred in consecutive
bus cycles

g Cycle stealing mode: the DMA
relinquishes the system bus
between successive data
transfers allowing normal CPU
processing to be interleaved

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

15

MC6800 pinout

We have already
studied all the
pins except for
these three

Microprocessor-based System Design
Ricardo Gutierrez-Osuna
Wright State University

16

System control pins

g Bus Error (BERR*)
n When asserted, it indicates that something has gone wrong with the current bus cycle
n For example, an access to an invalid memory address is generated by faulty software

g The external logic detects this error and asserts BERR* to inform the 68000

n The action taken by the 68000 when it recognizes BERR* is rather complex and depends on the state of
HALT*. For simplicity we will state that it will either

g try to rerun the faulty cycle or
g will generate an exception, and the OS will deal with the bus error

g Halt (HALT*)
n This I/O pin can be used for three purposes

g Used as an input: to force the 6800 to execute one cycle at a time (for debugging purposes)
g Used as an input: to rerun a failed bus cycle (see BERR*)
g Used as an output: when the 68000 finds itself in a situation it cannot recover from, it stops further processing and asserts

HATL* to indicate this situation

g Reset (RESET*)
n Used as an input: the 68000 loads the SSP from M[$000000] and PC from M[$000004]

g The RESET* pin will be connected to the system’s hardware reset button

n Used as an output: when the processor executes the RESET command, it will assert RESET* pin to reset all
external devices

g This command does not affect the internal state of the 68000, so it allows peripherals to be reset without resetting the
CPU

