Lecture 6: Data Acquisition |

m Architecture of DAQ systems
m Signal conditioning
m Aliasing
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Architecture of data acquisition systems
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Signal conditioning

m Instrumentation amplifiers
m Filters
m Integrators/differentiators (previous lecture)
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Instrumentation amplifiers

m Consider the difference amplifier we saw in the previous lecture
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s We define COMMON-MODE and DIFFERENCE-MODE voltage as
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Instrumentation amplifiers

m As aresult of a mismatch in the resistors (R, # R,), the
differential inputs may not have the same gain
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s We define COMMON-MODE REJECTION RATIO as
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¢ CMRR is, in practice, a function of frequency, and its magnitude
decreases with increasing frequency
m An additional shortcoming of the difference amplifier is its LOW
INPUT IMPEDANCE
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Instrumentation amplifiers

s The term INSTRUMENTATION AMPLIFIER is used to denote a
difference amplifier with

e High gain (recall INA2126 in Lab I)
e Single-ended output

e High input impedance

e High CMRR

= High input impedance may be
achieved by buffering the

differential inputs #>

From [HH89]

e This solution, however, requires high CMRR both in the followers and in the final
op-amp
m Otherwise, since the input buffers have unity gain, all the CM rejection must come in
the output op-amp, requiring precise resistor matching
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Common mode rejection ratio

m A better solutions is the
“standard” instrumentation
amplifier shown below

e Input stage provides high G, and
unity Ggy,

m Close resistor (R,) matching is
NOT critical

e As aresult, the output op-amp (U,)
does not require exceptional
CMRR and resistor matching in U,
IS not critical

e Offset trimming can be done at
one of the input op-amps

(+)

From [HH89]

trim
offset
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Filters

m Filters are used to remove unwanted bandwidths from a signal

m Filter classification according to implementation

e Active filters include RC networks and op-amps
= Suitable for low frequency, small signal

m Active filters are preferred since avoid the bulk and non-linearity of
inductors and can have gains greater than 0dB

m However, active filters require a power supply
e Passive filters consist of RCL networks

m Simple, more suitable for frequencies above audio range, where active
filters are limited by the op-map bandwidth

e Digital filters
s DSP is beyond the scope of this course
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Filters

m Filter classification according to frequency response
e Low-pass filter
e High-pass filter
e Band-pass filter
e Band-stop (Notch)

dB I Y |- | I dB dB

log f | log f log f log f

Low-pass High-pass Band-pass Notch
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Low- and high-pass filters

m Low pass filters m High pass filters
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Band-pass and band-stop filters

m Band-pass

e High-pass and low pass in series

m High-pass should usually precede
e Corner frequency of low-pass must then be higher

m If these are passive filters they should be buffered in between

dB dB

Input | > Output

log f Buffer log f

dB

m Band-stop
e High-pass and low-pass in

parallel followed by a summer Input
m Corner frequency of high-pass dB
must be higher

log f

+ Output

log f
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State-variable filters

m Also known as a Universal Active Filter
e Consists of one amplifier and two integrators
e High-pass, low-pass and band-pass in the same IC
e Example below: Burr Brown UAF42

High-Pass Band-Pass Low-Pass
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R 1
R 1000pF™ 1000pF™ —O V+

In, & : \/\/\/\ ® @ H H '

—O
In, O + + + +
R R ’7

Ing O VWA .

O
R = 50kQ +0.5% NOTE: (1) +0.5% GND
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Anti-aliasing

m The sampling theorem

e A continuous signal can be represented completely by, and
reconstructed from, a set of instantaneous measurements or samples of
its voltage which are made at equally-spaced times. The interval
T(=1/Fg) between such samples must be less than one-half the period
of the highest-frequency component F,,, in the signal

e In other words: you must sample at least twice the rate of the maximum
frequency in your signal to prevent aliasing (Fg=2F,,,y )

e The sampling rate F¢=2F,,,, is called the Nyquist rate

Fleconstmcted aliased signal

il /W\M
WUV

Original signal Sample points
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Anti-aliasing

m The effects of aliasing can also be observed on the frequency

spectrum of the signal

= In the figures below
e F, appears correctly since F;< F¢/2

e F,, F; and F, have aliases at 30, 40 and 10Hz, respectively
e You can compute these aliased frequencies by folding the spectrum around Fg/2

or with the expression

Alias frequency F = minkF; — F|
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FIGURE 117.5 Spectral of signal with multiple frequen-
cies.
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FIGURE 117.6 Spectral of signal with multiple frequen-
cies after sampled at fs = 100 Hz.
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Anti-aliasing filters

m An anti-aliasing filter is a low-pass filter designed to filter out
frequencies higher than the sampling frequency
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e An anti-aliasing filter should have w o
= Steep cut-off and gfﬁ -
= Flat response in the frequency band % 5.3
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m Typical filters are:

e Butterworth: flattest response in the frequency band but phase shifts
well below the break frequency

e Bessel: phase shift proportional to frequency, so the signal is not
distorted by the filter
s Recommended for anti-aliasing if it is important to preserve the waveform

e Chebyshev: steepest cut-off but it has ripples in the band-pass
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