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Lecture 4: Sensor interface circuits
g Review of circuit theory

n Voltage, current and resistance

n Capacitance and inductance
n Complex number representations

g Measurement of resistance
n Voltage dividers

n Wheatstone Bridge
n Temperature compensation for strain gauges

g AC bridges
n Measurement of capacitance
n Measurement of impedance
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Voltage, current, resistance and power
g Voltage

n The voltage between two points is the energy required to move a unit of positive 
charge from a lower to a higher potential. Voltage is measured in Volts (V)

g Current
n Current is the rate of electric charge through a point. The unit of measure is the 

Ampere or Amp (A)

g Resistance
n Given a piece of conducting material connected to a voltage difference V, which 

drives through it a current I, the resistance is defined as

g As you will recall, this is known as Ohm’s Law
g An element whose resistance is constant for all values of V is called an ohmic resistor

n Series and parallel resistors…

g Power
n The power dissipated by a resistor is
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Kirchhoff’s Laws
g 1st Law (for nodes)

n The algebraic sum of the currents into any node of a circuit is zero
g Or, the sum of the currents entering equals the sum of the currents leaving
g Thus, elements in series have the same current flowing through them

g 2nd Law (for loops)
n The algebraic sum of voltages in a loop is zero

g Thus, elements in parallel have the same voltage across them.
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Capacitors and inductors
g A capacitor is an element capable of storing charge

n The amount of charge is proportional to the voltage across the capacitor

g C is known as the capacitance (measured in Farads)

n Taking derivatives

n Therefore, a capacitor is an element whose rate of voltage change is 
proportional to the current through it

g Similarly, an inductor is an element whose rate of current 
change is proportional to the voltage applied across it

g L is called the inductance and is measured in Henrys
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Frequency analysis
g Consider a capacitor driven by a sine wave voltage

n The current through the capacitor is

g Therefore, the current phase-leads the voltage by 900 and the ratio of 
amplitudes is

g What happens when the voltage is a DC source?

C
V(t)=V0sin(ωt)

I(t)

C
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Voltages as complex numbers
g At this point it is convenient to switch to a complex-number 

representation of signals
n Recall that ejϕ=cosϕ+jsin ϕ

g Applying this to the capacitor V(t)/I(t) relationship

Circuit voltage 
versus time:
V(t)=V0cos(ωt+ϕ)

Complex number
representation:
V0ejϕ=a+jb

Multiply by ejϕ and 
take real part
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Impedance
g Impedance (Z) is a generalization of resistance for circuits that 

have capacitors and inductors
n Capacitors and inductors have reactance, while resistors have 

resistance

g Ohm’s Law generalized

g Impedance in series and parallel
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Example: High-pass filter
g High pass filter

n The current through cap and resistor is

n The output voltage is equal to the voltage differential across the resistor

n If we focus on amplitude and ignore phase

g Asymptotic behavior…
g Corner frequency
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Measurement circuits
g Resistance measurements

n Voltage divider (half-bridge)

n Wheatstone bridge

g A.C. bridges
n Measurement of capacitance
n Measurement of impedance
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Voltage divider
g Assumptions

n Interested in measuring the fractional change in 
resistance x of the sensor: RS=R0(1+x)

g R0 is the sensor resistance in the absence of a stimuli

n Load resistor expressed as RL=R0k for convenience

g The output voltage of the circuit is

g Questions
n What if we reverse RS and RL?
n How can we recover RS from Vout?
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Voltage divider
g What is the sensitivity of this 

circuit?

g For which RL do we achieve 
maximum sensitivity?

n This is, the sensitivity is maximum 
when RL=RS
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Wheatstone bridge
g A circuit that consists of two dividers

n A reference voltage divider (left)

n A sensor voltage divider 

g Wheatstone bridge operating modes
n Null mode

g R4 adjusted until the balance condition is 
met:

n Advantage: measurement is independent 
of fluctuations in VCC

n Deflection mode
g The unbalanced voltage Vout is used as 

the output of the circuit

n Advantage: speed
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Wheatstone bridge
g Assumptions

n Want to measure sensor fractional 
resistance changes RS=R0(1+x)

n Bridge is operating near the 
balance condition:

g The output voltage becomes
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Wheatstone bridge
g What is the sensitivity of the Wheatstone bridge?

n The sensitivity of the Wheatstone bridge is the same as that of a 
voltage divider

g You can think of the Wheatstone bridge as a DC offset removal circuit

g So what are the advantages, if any, of the Wheatstone bridge?
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Voltage divider vs. Wheatstone for small x
g The figures below show the output of both circuits for small fractional 

resistance changes
n The voltage divider has a large DC offset compared to the voltage swing, which 

makes the curves look “flat” (zero sensitivity)
g Imagine measuring the height of a person standing on top of a tall building by running 

a large tape measure from the street

n The sensitivity of both circuits is the same!
g However, the Wheatstone bridge sensitivity can be boosted with a gain stage

n Assuming that our DAQ hardware dynamic range is 0-5VDC, 0<x<0.01 and k=1, estimate the 
maximum gain that could be applied to each circuit
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Compensation in a Wheatstone bridge
g Strain gauges are quite sensitive to temperature

n A Wheatstone bridge and a dummy strain gauge may be used to 
compensate for this effect 

g The “active” gauge RA is subject to temperature (x) and strain (y) stimuli
g The dummy gauge RD, placed near the “active”gauge, is only subject to 

temperature

n The gauges are arranged according to the figures below
n The effect of (1+y) on the right divider cancels out

VCC

R0

R0 RA= R0(1+x)(1+y)

Vout

RD= R0(1+y)

From [Ram96]



Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University

17

AC bridges
g The structure of the Wheatstone bridge can be used to measure  

capacitive and inductive sensors
n Resistance replaced by generalized impedance

n DC bridge excitation replaced by an AC source

g The balance condition becomes

n which yields two equalities, for real and
imaginary components

g There is a large number of AC bridge arrangements
n These are named after their respective developer
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AC bridges
g Capacitance measurement

n Schering bridge

n Wien bridge

g Inductance measurement
n Hay bridge

n Owen bridge
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