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Lecture 2: Sensor characteristics
g Transducers, sensors and measurements
g Calibration, interfering and modifying inputs
g Static sensor characteristics
g Dynamic sensor characteristics
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Transducers: sensors and actuators
g Transducer

n A device that converts a signal from one physical form to a 
corresponding signal having a different physical form

g Physical form: mechanical, thermal, magnetic, electric, optical, chemical…

n Transducers are ENERGY CONVERTERS or MODIFIERS

g Sensor 
n A device that receives and responds to a signal or stimulus

g This is a broader concept that includes the extension of our perception 
capabilities to acquire information about physical quantities

g Transducers: sensors and actuators
n Sensor: an input transducer (i.e., a microphone)
n Actuator: an output transducer (i.e., a loudspeaker)
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Measurements
g A simple instrument model

n A observable variable X is obtained from the measurand
g X is related to the measurand in some KNOWN way (i.e., measuring mass)

n The sensor generates a signal variable that can be manipulated:
g Processed, transmitted or displayed

n In the example above the signal is passed to a display, where a 
measurement can be taken

g Measurement
n The process of comparing an unknown quantity with a standard of the 

same quantity (measuring length) or standards of two or more related 
quantities (measuring velocity)
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Calibration
g The relationship between the physical measurement variable 

(X) and the signal variable (S)
n A sensor or instrument is calibrated by applying a number of KNOWN 

physical inputs and recording the response of the system
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Additional inputs
g Interfering inputs (Y)

n Those that the sensor to respond as the linear superposition with the 
measurand variable X 

g Linear superposition assumption: S(aX+bY)=aS(X)+bS(Y)

g Modifying inputs (Z)
n Those that change the behavior of the 

sensor and, hence, the calibration curve
g Temperature is a typical modifying input
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Sensor characteristics [PAW91, Web99]

g Static characteristics
n The properties of the system after all transient effects have settled to 

their final or steady state
g Accuracy
g Discrimination
g Precision
g Errors
g Drift

g Sensitivity
g Linearity
g Hystheresis (backslash)

g Dynamic characteristics
n The properties of the system transient response to an input

g Zero order systems
g First order systems

g Second order systems
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Accuracy, discrimination and precision
g Accuracy is the capacity of a measuring instrument to give 

RESULTS close to the TRUE VALUE of the measured quantity
n Accuracy is related to the bias of a set of measurements

n (IN)Accuracy is measured by the absolute and relative errors

g More on errors in a later slide

g Discrimination is the minimal change of the input necessary to 
produce a detectable change at the output
n Discrimination is also known as RESOLUTION 
n When the increment is from zero, it is called THRESHOLD
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Precision
g The capacity of a measuring instrument to give the same 

reading when repetitively measuring the same quantity under 
the same prescribed conditions
n Precision implies agreement between successive readings, NOT 

closeness to the true value
g Precision is related to the variance of a set of measurements

n Precision is a necessary but not sufficient condition for accuracy

g Two terms closely related to precision
n Repeatability

g The precision of a set of measurements taken over a short time interval

n Reproducibility
g The precision of a set of measurements BUT 

n taken over a long time interval or 

n Performed by different operators or

n with different instruments or

n in different laboratories
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Example

gShooting darts
n Discrimination

g The size of the hole produced by a dart

n Which shooter is more accurate? 
n Which shooter is more precise?

mean
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Accuracy and errors
g Systematic errors

n Result from a variety of factors
g Interfering or modifying variables (i.e., temperature)

g Drift (i.e., changes in chemical structure or mechanical stresses)

g The measurement process changes the measurand (i.e., loading errors)

g The transmission process changes the signal (i.e., attenuation)

g Human observers (i.e., parallax errors)

n Systematic errors can be corrected with COMPENSATION methods (i.e., 
feedback, filtering)

g Random errors
n Also called NOISE: a signal that carries no information
n True random errors (white noise) follow a Gaussian distribution

n Sources of randomness:
g Repeatability of the measurand itself (i.e., height of a rough surface)

g Environmental noise (i.e., background noise picked by a microphone)
g Transmission noise (i.e., 60Hz hum)

n Signal to noise ratio (SNR) should be >>1
g With knowledge of the signal characteristics it may be possible to interpret a signal with 

a low SNR (i.e., understanding speech in a loud environment)
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Example: systematic and random errors
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More static characteristics
g Input range

n The maximum and minimum value of the physical variable that can be measured 
(i.e., -40F/100F in a thermometer)

n Output range can be defined similarly

g Sensitivity
n The slope of the calibration curve y=f(x)

g An ideal sensor will have a large and constant sensitivity

n Sensitivity-related errors: saturation and “dead-bands”

g Linearity
n The closeness of the calibration curve to a specified straight line (i.e., theoretical 

behavior, least-squares fit)

g Monotonicity
n A monotonic curve is one in which the dependent variable always increases or 

decreases as the independent variable increases

g Hystheresis
n The difference between two output values that correspond to the same input 

depending on the trajectory followed by the sensor (i.e., magnetization in 
ferromagnetic materials)

g Backslash: hystheresis caused by looseness in a mechanical joint
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Dynamic characteristics
g The sensor response to a variable input is different from that 

exhibited when the input signals are constant (the latter is 
described by the static characteristics)

g The reason for dynamic characteristics is the presence of 
energy-storing elements
n Inertial: masses, inductances

n Capacitances: electrical, thermal

g Dynamic characteristics are determined by analyzing the 
response of the sensor to a family of variable input waveforms:
n Impulse, step, ramp, sinusoidal, white noise…
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Dynamic models
g The dynamic response of the sensor is (typically) assumed to 

be linear 
n Therefore, it can be modeled by a constant-coefficient linear differential 

equation

n In practice, these models are confined to zero, first and second order.  
Higher order models are rarely applied

g These dynamic models are typically analyzed with the Laplace 
transform, which converts the differential equation into a 
polynomial expression
n Think of the Laplace domain as an extension of the Fourier transform

g Fourier analysis is restricted to sinusoidal signals 
n x(t) = sin(ωt) = e-jωt

g Laplace analysis can also handle exponential behavior
n x(t) = e-σtsin(ωt) = e-(σ +jω)t
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The Laplace Transform (review)
g The Laplace transform of a time signal y(t) is denoted by

n L[y(t)] = Y(s)
g The s variable is a complex number s=σ+jω

n The real component σ defines the real exponential behavior
n The imaginary component defines the frequency of oscillatory behavior

g The fundamental relationship is the one that concerns the 
transformation of differentiation

g Other useful relationships are
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The Laplace Transform (review)
g Applying the Laplace transform to the sensor model yields

n G(s) is called the transfer function of the sensor

g The position of the poles of G(s) -zeros of the denominator- in 
the s-plane determines the dynamic behavior of the sensor 
such as
n Oscillating components
n Exponential decays

n Instability
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Pole location and dynamic behavior
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Zero-order sensors
g Input and output are related by an equation of the type

n Zero-order is the desirable response of a sensor
g No delays
g Infinite bandwidth

g The sensor only changes the amplitude of the input signal

n Zero-order systems do not include energy-storing elements
n Example of a zero-order sensor

g A potentiometer used to measure linear and rotary displacements
n This model would not work for fast-varying displacements
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First-order sensors
g Inputs and outputs related by a first-order differential equation

n First-order sensors have one element that stores energy and one that 
dissipates it

n Step response
g y(t) = Ak(1-e-t/τ)

n A is the amplitude of the step

n k (=1/a0) is the static gain, which determines the static response

n τ (=a1/a0) is the time constant, which determines the dynamic response

n Ramp response 
g y(t) = Akt - Akτu(t) + Akτe-t/τ

n Frequency response
g Better described by the amplitude and phase shift plots
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First-order sensor response
g Step response

g Ramp response

g Frequency response
n Corner frequency ωc=1/τ
n Bandwidth

From [PAW91]
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Example of a first-order sensor
g A mercury thermometer immersed into a fluid

n What type of input was applied to the sensor?
n Parameters

g C: thermal capacitance of the mercury

g R: thermal resistance of the glass to heat transfer

g θF: temperature of the fluid

g θ(t): temperature of the thermometer

n The equivalent circuit is an RC network

g Derivation
n Heat flow through the glass

n Temperature of the thermometer rises as
n Taking the Laplace transform
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Second-order sensors
g Inputs and outputs are related by a second-order differential 

equation

n We can express this second-order transfer function as

n Where
g k is the static gain

g ζ is known as the damping coefficient

g ωn is known as the natural frequency
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Second-order step response
g Response types

n Underdamped (ζ<1)

n Critically damped (ζ=1)
n Overdamped (ζ>1)

g Response parameters
n Rise time (tr)

n Peak overshoot (Mp)
n Time to peak (tp)
n Settling time (ts)

From [PAW91]
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Second-order response (cont)
g Ramp response g Frequency response

From [PAW91]
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Example of second-order sensors
g A thermometer covered for protection

n Adding the heat capacity and thermal resistance of the protection yields a 
second-order system with two real poles (overdamped)

g Spring-mass-dampen accelerometer
n The armature suffers an acceleration

g We will assume that this acceleration is 

orthogonal to the direction of gravity

n x0 is the displacement of the mass M with 
respect to the armature

n The equilibrium equation is:
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