Lecture 12: Classification

- Discriminant functions
- The optimal Bayes classifier
- Quadratic classifiers
- Euclidean and Mahalanobis metrics
- K Nearest Neighbor Classifiers

Discriminant functions

A convenient way to represent a pattern classifier is in terms of a family of discriminant functions g_i(x) with a simple MAX gate as the classification rule

How do we choose the discriminant functions g_i(x)

- Depends on the objective function to minimize
 - Probability of error
 - Bayes Risk

Minimizing probability of error

- Probability of error P[error|x] is "the probability of assigning x to the wrong class"
 - For a two-class problem, P[error|x] is simply

 $P(\text{error} | \mathbf{x}) = \begin{cases} P(\omega_1 | \mathbf{x}) & \text{if we decide } \omega_2 \\ P(\omega_2 | \mathbf{x}) & \text{if we decide } \omega_1 \end{cases}$

 It makes sense that the classification rule be designed to minimize the average probability of error P[error] across all possible values of x

$$P(error) = \int_{-\infty}^{+\infty} P(error, x) dx = \int_{-\infty}^{+\infty} P(error \mid x) P(x) dx$$

 To ensure P(error) is minimum we minimize P(error|x) by choosing the class with maximum posterior P(ω_i|x) at each x

• This is called the MAXIMUM A POSTERIORI (MAP) RULE

And the associated discriminant functions become

$$g_i^{\text{MAP}}(x) = P(\omega_i \mid x)$$

Minimizing probability of error

We "prove" the optimality of the MAP rule graphically

- The right plot shows the posterior for each of the two classes
- The bottom plots shows the P(error) for the MAP rule and another rule
- Which one has lower P(error) (color-filled area) ?

THE MAP RULE

Quadratic classifiers

Let us assume that the likelihood densities are Gaussian

$$P(x \mid \omega_{i}) = \frac{1}{(2 \pi)^{n/2} |\Sigma_{i}|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu_{i})^{T} \Sigma_{i}^{-1} (x - \mu_{i})\right]$$

Using Bayes rule, the MAP discriminant functions become

$$g_{i}(x) = P(\omega_{i} \mid x) = \frac{P(x \mid \omega_{i})P(\omega_{i})}{P(x)} = \frac{1}{(2 \pi)^{n/2} |\Sigma_{i}|^{1/2}} exp\left[-\frac{1}{2}(x - \mu_{i})^{T} \Sigma_{i}^{-1}(x - \mu_{i})\right] P(\omega_{i}) \frac{1}{P(x)}$$

• Eliminating constant terms

$$g_{i}(x) = \left| \sum_{i} \right|^{-1/2} exp \left[-\frac{1}{2} (x - \mu_{i})^{T} \sum_{i}^{-1} (x - \mu_{i}) \right] P(\omega_{i})$$

• We take natural logs (the logarithm is monotonically increasing)

$$g_{i}(x) = -\frac{1}{2}(x - \mu_{i})^{T} \sum_{i=1}^{-1} (x - \mu_{i}) - \frac{1}{2} \log(|\Sigma_{i}|) + \log(P(\omega_{i}))$$

- This is known as a Quadratic Discriminant Function
- The quadratic term is know as the Mahalanobis distance

Mahalanobis distance

• The Mahalanobis distance can be thought of vector distance that uses a $\sum_i {}^{\text{-1}}$ norm

Mahalanobis Distance $\|\mathbf{x} - \mathbf{y}\|_{\Sigma_i^{-1}}^2 = (\mathbf{x} - \mathbf{y})^T \sum_i^{-1} (\mathbf{x} - \mathbf{y})$

- Σ^{-1} can be thought of as a stretching factor on the space
- Note that for an identity covariance matrix (Σ_i =I), the Mahalanobis distance becomes the familiar **Euclidean distance**
- In the following slides we look at special cases of the Quadratic classifier
 - For convenience we will assume equiprobable priors so we can drop the term $\text{log}(\text{P}(\omega_{i}))$

Special case I: $\Sigma_i = \sigma^2 I$

In this case, the discriminant becomes

$$g_{i}(x) = -(x - \mu_{i})^{T}(x - \mu_{i})$$

- This is known as a **MINIMUM DISTANCE CLASSIFIER**
- Notice the linear decision boundaries

Special case 2: $\Sigma_i = \Sigma (\Sigma \text{ diagonal})$

In this case, the discriminant becomes

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma^{-1}(x - \mu_i)$$

- This is known as a MAHALANOBIS DISTANCE CLASSIFIER
- Still linear decision boundaries

Special case 3: $\Sigma_i = \Sigma$ (Σ non-diagonal)

In this case, the discriminant becomes

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^T \sum_i^{-1}(x - \mu_i)$$

- This is also known as a
 MAHALANOBIS DISTANCE
 CLASSIFIER
- Still linear decision boundaries

Case 4: $\Sigma_i = \sigma_i^2 I$, example

Case 5: $\Sigma_i \neq \Sigma_i$ general case, example

- In this case there are no constraints so the quadratic expression cannot be simplified any further
- Notice that the decision boundaries are also quadratic

0.2 -

Limitations of quadratic classifiers

The fundamental limitation is the unimodal Gaussian assumption

 For non-Gaussian or multimodal Gaussian, the results may be significantly sub-optimal

A practical limitation is associated with the minimum required size for the dataset

- If the number of examples per class is less than the number of dimensions, the covariance matrix becomes singular and, therefore, its inverse cannot be computed
 - In this case it is common to assume the same covariance structure for all classes and compute the covariance matrix using all the examples, regardless of class

Conclusions

We can extract the following conclusions

- The Bayes classifier for normally distributed classes is quadratic
- The Bayes classifier for normally distributed classes with equal covariance matrices is a linear classifier
- The minimum Mahalanobis distance classifier is optimum for
 - normally distributed classes <u>and</u> equal covariance matrices <u>and</u> equal priors
- The minimum Euclidean distance classifier is optimum for
 - normally distributed classes <u>and</u> equal covariance matrices proportional to the identity matrix <u>and</u> equal priors
- Both Euclidean and Mahalanobis distance classifiers are linear
- The goal of this discussion was to show that some of the most popular classifiers can be derived from decision-theoretic principles and some simplifying assumptions
 - It is important to realize that using a specific (Euclidean or Mahalanobis) minimum distance classifier implicitly corresponds to certain statistical assumptions
 - The question whether these assumptions hold or don't can rarely be answered in practice; in most cases we are limited to posting and answering the question "does this classifier solve our problem or not?"

K Nearest Neighbor classifier

- The kNN classifier is based on non-parametric density estimation techniques
 - Let us assume we seek to estimate the density function P(x) from a dataset of examples
 - P(x) can be approximated by the expression

 $P(x) \cong \frac{k}{NV} \text{ where } \begin{cases} V \text{ is the volume surrounding } x \\ N \text{ is the total number of examples} \\ k \text{ is the number of examples inside } V \end{cases}$

 The volume V is determined by the D-dim distance R_k^D(x) between x and its k nearest neighbor

$$\mathsf{P}(\mathsf{x}) \cong \frac{\mathsf{k}}{\mathsf{N}\mathsf{V}} = \frac{\mathsf{k}}{\mathsf{N} \cdot \mathsf{c}_{\mathsf{D}} \cdot \mathsf{R}_{\mathsf{k}}^{\mathsf{D}}(\mathsf{x})}$$

 Where c_D is the volume of the unit sphere in D dimensions

K Nearest Neighbor classifier

We use the previous result to estimate the posterior probability

• The unconditional density is, again, estimated with

$$\mathsf{P}(\mathsf{x} | \boldsymbol{\omega}_{\mathsf{i}}) = \frac{\mathsf{k}_{\mathsf{i}}}{\mathsf{N}_{\mathsf{i}}\mathsf{V}}$$

• And the priors can be estimated by

$$P(\omega_i) = \frac{N_i}{N}$$

• The posterior probability then becomes

$$P(\omega_i \mid x) = \frac{P(x \mid \omega_i)P(\omega_i)}{P(x)} = \frac{\frac{k_i}{N_i V} \cdot \frac{N_i}{N}}{\frac{k_i}{N V}} = \frac{k_i}{k}$$

• Yielding discriminant functions

$$g_i(x) = \frac{k_i}{k}$$

• This is known as the k Nearest Neighbor classifier

K Nearest Neighbor classifier

The kNN classifier is a very intuitive method

- Examples are classified based on their similarity with training data
 - For a given unlabeled example x_u∈ ℜ^D, find the k "closest" labeled examples in the training data set and assign x_u to the class that appears most frequently within the k-subset

The kNN only requires

- An integer k
- A set of labeled examples
- A measure of "closeness"

kNN in action: example 1

- We generate data for a 2-dimensional 3class problem, where the class-conditional densities are multi-modal, and non-linearly separable
- We used kNN with
 - k = five
 - Metric = Euclidean distance

kNN in action: example 2

- We generate data for a 2-dim 3-class problem, where the likelihoods are unimodal, and are distributed in rings around a common mean
 - These classes are also non-linearly separable

We used kNN with

- k = five
- Metric = Euclidean distance

kNN versus 1NN

1-NN

20-NN

Characteristics of the kNN classifier

Advantages

- Analytically tractable, simple implementation
- Nearly optimal in the large sample limit $(N \rightarrow \infty)$
 - P[error]_{Bayes} >P[error]_{1-NNR}<2P[error]_{Bayes}
- Uses local information, which can yield highly adaptive behavior
- Lends itself very easily to parallel implementations

Disadvantages

- Large storage requirements
- Computationally intensive recall
- Highly susceptible to the curse of dimensionality

INN versus kNN

- The use of large values of k has two main advantages
 - Yields smoother decision regions
 - Provides probabilistic information: The ratio of examples for each class gives information about the ambiguity of the decision
- However, too large values of k are detrimental
 - It destroys the locality of the estimation
 - In addition, it increases the computational burden

