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Lecture 12: Classification
g Discriminant functions
g The optimal Bayes classifier
g Quadratic classifiers
g Euclidean and Mahalanobis metrics
g K Nearest Neighbor Classifiers
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Discriminant functions
g A convenient way to represent a pattern classifier is in terms of 

a family of discriminant functions gi(x) with a simple MAX gate 
as the classification rule

g How do we choose the discriminant functions gi(x)
n Depends on the objective function to minimize

g Probability of error
g Bayes Risk
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Minimizing probability of error
g Probability of error P[error|x] is “the probability of assigning x 

to the wrong class”
n For a two-class problem, P[error|x] is simply

g It makes sense that the classification rule be designed to minimize the 
average probability of error P[error] across all possible values of x

g To ensure P(error) is minimum we minimize P(error|x) by choosing the 
class with maximum posterior P(ωi|x) at each x

n This is called the MAXIMUM A POSTERIORI (MAP) RULE
g And the associated discriminant functions become
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Minimizing probability of error
g We “prove” the optimality of the 

MAP rule graphically
n The right plot shows the posterior 

for each of the two classes
n The bottom plots shows the  

P(error) for the MAP rule and 
another rule

n Which one has lower P(error) 
(color-filled area) ? x
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Quadratic classifiers
g Let us assume that the likelihood densities are Gaussian

g Using Bayes rule, the MAP discriminant functions become

n Eliminating constant terms

n We take natural logs (the logarithm is monotonically increasing)

g This is known as a Quadratic Discriminant Function
g The quadratic term is know as the Mahalanobis distance
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Mahalanobis distance
g The Mahalanobis distance can be thought of vector distance that uses 

a ∑i
-1 norm

n ∑-1 can be thought of as a stretching factor on the space
n Note that for an identity covariance matrix (∑i=I), the Mahalanobis distance 

becomes the familiar Euclidean distance

g In the following slides we look at special cases of the Quadratic 
classifier

n For convenience we will assume equiprobable priors so we can drop the term 
log(P(ωi))
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Special case I: Σi=σ2I
g In this case, the discriminant 

becomes

n This is known as a MINIMUM 
DISTANCE CLASSIFIER

n Notice the linear decision 
boundaries
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Special case 2: Σi= Σ (Σ diagonal)
g In this case, the discriminant 

becomes

n This is known as a MAHALANOBIS 
DISTANCE CLASSIFIER

n Still linear decision boundaries
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Special case 3: Σi=Σ (Σ non-diagonal)
g In this case, the discriminant 

becomes

n This is also known as a 
MAHALANOBIS DISTANCE 
CLASSIFIER

n Still linear decision boundaries
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g In this case the quadratic 
expression cannot be simplified 
any further

g Notice that the decision 
boundaries are no longer linear 
but quadratic

Case 4: Σi=σi
2I, example

Zoom
out
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g In this case there are no 
constraints so the quadratic 
expression cannot be 
simplified any further

g Notice that the decision 
boundaries are also quadratic

Case 5: Σi≠Σj general case, example

Zoom
out
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Limitations of quadratic classifiers

g The fundamental limitation is the unimodal Gaussian 
assumption
n For non-Gaussian or multimodal 

Gaussian, the results may be 
significantly sub-optimal

g A practical limitation is associated with the minimum 
required size for the dataset
n If the number of examples per class is less than the number of 

dimensions, the covariance matrix becomes singular and, 
therefore, its inverse cannot be computed
g In this case it is common to assume the same covariance structure 

for all classes and compute the covariance matrix using all the 
examples, regardless of class
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Conclusions
g We can extract the following conclusions

n The Bayes classifier for normally distributed classes is quadratic
n The Bayes classifier for normally distributed classes with equal

covariance matrices is a linear classifier
n The minimum Mahalanobis distance classifier is optimum for

g normally distributed classes and equal covariance matrices and equal priors

n The minimum Euclidean distance classifier is optimum for
g normally distributed classes and equal covariance matrices proportional to 

the identity matrix and equal priors

n Both Euclidean and Mahalanobis distance classifiers are linear

g The goal of this discussion was to show that some of the most 
popular classifiers can be derived from decision-theoretic 
principles and some simplifying assumptions
n It is important to realize that using a specific (Euclidean or Mahalanobis) 

minimum distance classifier implicitly corresponds to certain statistical 
assumptions

n The question whether these assumptions hold or don’t can rarely be 
answered in practice; in most cases we are limited to posting and 
answering the question “does this classifier solve our problem or not?”
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K Nearest Neighbor classifier
g The kNN classifier is based on non-parametric density 

estimation techniques
n Let us assume we seek to estimate the density function P(x) from a 

dataset of examples
n P(x) can be approximated by the expression

n The volume V is determined by the
D-dim distance Rk

D(x) between x
and its k nearest neighbor

g Where cD is the volume of the 
unit sphere in D dimensions







≅
Vinsideexamplesofnumbertheisk

examplesofnumbertotaltheisN

xgsurroundinvolumetheisV

where
NV
k

P(x)

R

V=πR2

x
2

RN

k
P(x) =

(x)RcN
k

NV
k

P(x) D
kD ⋅⋅

=≅



Intelligent Sensor Systems
Ricardo Gutierrez-Osuna
Wright State University

15

K Nearest Neighbor classifier
g We use the previous result to estimate the posterior probability

n The unconditional density is, again, estimated with

n And the priors can be estimated by

n The posterior probability then becomes

n Yielding discriminant functions

g This is known as the k Nearest Neighbor classifier
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K Nearest Neighbor classifier
g The kNN classifier is a very intuitive method 

n Examples are classified based on their similarity with training data
g For a given unlabeled example xu∈ℜ D, find the k “closest” labeled examples in the 

training data set and assign xu to the class that appears most frequently within the k-
subset

g The kNN only requires
n An integer k
n A set of labeled examples
n A measure of “closeness”
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kNN in action: example 1
g We generate data for a 2-dimensional 3-

class problem, where the class-conditional 
densities are multi-modal, and non-linearly 
separable

g We used kNN with
n k = five

n Metric = Euclidean distance
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kNN in action: example 2
g We generate data for a 2-dim 3-class 

problem, where the likelihoods are 
unimodal, and are distributed in rings 
around a common mean 
n These classes are also non-linearly separable

g We used kNN with
n k = five
n Metric = Euclidean distance
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kNN versus 1NN
1-NN 5-NN 20-NN
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Characteristics of the kNN classifier
g Advantages

n Analytically tractable, simple implementation
n Nearly optimal in the large sample limit (N→∞)

g P[error]Bayes >P[error]1-NNR<2P[error]Bayes

n Uses local information, which can yield highly adaptive behavior
n Lends itself very easily to parallel implementations

g Disadvantages
n Large storage requirements
n Computationally intensive recall
n Highly susceptible to the curse of dimensionality

g 1NN versus kNN
n The use of large values of k has two main advantages

g Yields smoother decision regions
g Provides probabilistic information: The ratio of examples for each class 

gives information about the ambiguity of the decision

n However, too large values of k are detrimental
g It destroys the locality of the estimation
g In addition, it increases the computational burden


