Lecture 1: Introduction

Class organization

- Instructor contact
- Course objectives and outcomes
- Lectures outline
- Laboratory outline
- Grading system
- Tentative schedule
- Lab schedule

Intelligent sensor systems (ISS)

- Systems, sensors and intelligence
- Definitions of ISS
- Building blocks of ISS

Instructor contact and meeting times

Instructor

- Ricardo Gutierrez-Osuna
 - Office: 401 Russ
 - Tel:
 - E-mail:
 - Office hours:

Meeting times

- Lectures
 - MW 5:35-6:50PM
 - Russ 406
- Labs
 - To be determined
 - Russ 339

- 775-5120
- rgutier@cs.wright.edu
- MW 4:30-5:30 PM or by appointment

Course Objectives and Outcomes

The objectives of the course are to

- Introduce the fundamentals of intelligent sensor systems: sensors, instrumentation and pattern analysis
- Provide the students with an integrative and multidisciplinary experience by building a complete multi-sensor intelligent system
- Allow the students to develop instrumentation, data acquisition and pattern analysis software using modern equipment and software tools

The outcome of the course is the ability to design, analyze and implement

- Basic instrumentation and signal conditioning circuits for sensors
- Virtual instrumentation and data acquisition software for sensors and actuators
- Pattern analysis algorithms for multi-sensor systems

Lecture outline

SENSORS

- Primary sensing principles and measurement variables
- Sensor performance characteristics and terminology

INSTRUMENTATION

- Transducer measurement circuits
- Signal conditioning circuits
- Data conversion: DAC, ADC
- Virtual instrumentation with LabVIEW

PATTERN ANALYSIS

- Introduction to Statistical Pattern Recognition
- Dimensionality reduction
- Classification
- Validation
- Data analysis with MATLAB

INTELLIGENT SENSOR SYSTEMS

- Structure, definitions and concepts
- Advanced processing and control techniques
- Smart sensors
- Case study: the "electronic nose"
- The future of intelligent sensor systems

Laboratory outline

LAB I: Sensor interfacing

- Temperature sensor calibration
- Gas sensor isothermal excitation

LAB II: Data acquisition

- Virtual instrument and GUI design
- Analog and digital I/O
- File I/O

LAB III: System integration

- Control of electromechanical actuators
- Flow injection assembly
- Integration of control, DAQ and GUI modules

LAB IV: Pattern analysis

- Signal preprocessing
- Dimensionality reduction
- Classification

LAB V: Advanced sensor excitation

- Pulse Width Modulation
- Temperature cycling
- Analysis of performance

Grading System

Grading will be straight scale

- 90-100 A, 80-89 B, 70-79 C, 60-69 D, below 60 F
- Course grade will be the weighted sum of three grades
 - Laboratory (60%)
 - Midterm exam (15%)
 - Final exam (25%)

Exams

- Closed-books, closed-notes
- One double-sided, hand-written sheet (8.5 x 11") will be allowed
- Tests will emphasize new material

Tentative schedule (1)

	Date	Topic (Calendar)	Assignments
Week 1	1/1	New Year's Day (No class)	
	1/3	Course Introduction	
Week 2	1/8	Sensors I	
	1/10	Sensors II	
Week 3	1/15	Martin Luther King, Jr. Day (No class)	
	1/17	Instrumentation I	
Week 4	1/22	Instrumentation II	Lab 1 Sensor interfacing
	1/24	Instrumentation III	
Week 5	1/29	LabVIEW	Lab 2 Data acquisition
	1/31	Instrumentation IV	
Week 6	2/5	Midterm Review	
	2/7	Midterm Exam	Lab3 System integration

R

Week 7	2/12	Pattern analysis I	
	2/14	Pattern analysis II	
Week 8	2/19	MATLAB	Lab4 Pattern analysis
	2/21	Pattern analysis III	
Week 9	2/26	Pattern analysis IV	
	2/28	Pattern analysis V	
Week 10	3/5	Intelligent Sensor Systems I	Lab 5 Advanced sensor excitation
	3/7	Intelligent Sensor Systems II	
Week 11	3/12	Intelligent Sensor Systems III (Last day of class)	
	3/14	Exams Week* (No class)	

*Final exam will be held Friday, March 16, 2001, from 5:30 to 7:30PM in Russ 406

Intelligent Sensor Systems

System

- A combination of two or more elements, subsystems and parts necessary to carry out one or more functions [PAW91]
- To interact with the real world, a system requires
 - Sensors: inputs devices
 - Actuators: output devices
 - Processing: signals, information and knowledge

Sensor

- A device that receives and responds to a stimulus [Fdn97]
 - Stimulus: mechanical, thermal, magnetic, electric, optical, chemical...
 - Response: an electrical signal (in most cases)

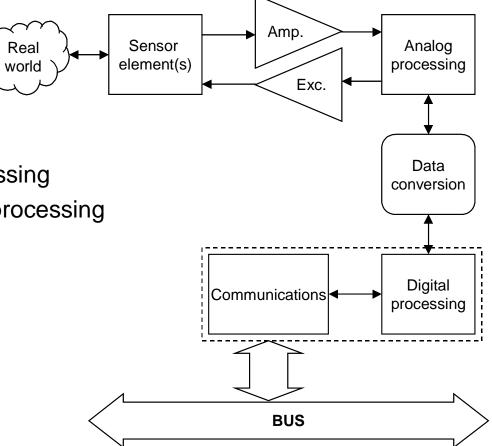
Intelligence

- The ability to combine
 - A priori knowledge (available before experience) and
 - Adaptive learning (from experience)

Intelligent Sensor Systems

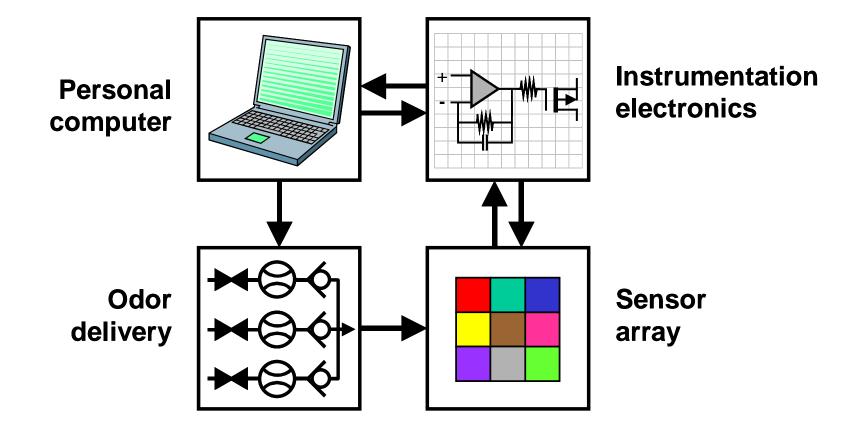
Several definitions are available

- A sensor that is capable of modifying its internal behavior to optimize the collection of data from the external world [Whi97]
 - The concepts of <u>adaptation</u> and <u>compensation</u> are central to the Intelligent Sensor philosophy
- A device that combines a sensing element and a signal processor on a single integrated circuit [PY95a]
 - The minimum requirements of the signal processor are not clear [PY95b]
 - Basic integrated electronics (signal conditioning, ADC)
 - A micro-processor
 - Logic functions and decision making
- A smart sensor is a sensor that provides functions beyond those necessary for generating a correct representation of a sensed or controlled quantity (IEEE 1451.2) [Fnk00]
 - This function typically simplifies the integration of the transducer into applications in a networked environment


Intelligent" or "Smart" Sensors?

Building blocks of Intelligent Sensors

The principal sub-systems within an ISS are [BW96]


- Primary sensing element(s)
- Excitation control
- Amplification
- Analogue filtering
- Data conversion
- Compensation
- Digital information processing
- Digital communications processing

Intelligent Sensor Systems Ricardo Gutierrez-Osuna Wright State University

The E-nose: a model ISS

Intelligent Sensor Systems Ricardo Gutierrez-Osuna Wright State University

References

- [PAW91] R. Pallas-Areny and J. G. Webster, 1991, Sensors and Signal Conditioning, Wiley, New York
- [Fdn97] J. Fraden, 1997, Handbook of Modern Sensors. Physics, Designs and Applications, AIP, Woodbury, NY
- [Whi97] N. White, 1997, "Intelligent Sensors" in Sensor Review 17(2), pp. 97-98
- [PY95a] E. T. Powner and F. Yalcinkaya, 1995, "Intelligent sensors: structure and system," in Sensor Review 15(3), pp. 31-34
- [PY95b] E. T. Powner and F. Yalcinkaya, 1995, "From basic sensors to intelligent sensors: definitions and examples," in Sensor Review 15(4), pp. 19-22
- [Fnk00] R. Frank, 2000, Understanding Smart Sensors, Artech, Boston, MA.
- [BW96] J. Brignell and N. White, 1996, Intelligent Sensor Systems, 2nd Ed., IOP, Bristol, UK.

