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Abstract

Growing interest in ambitious multiple-issue machines and heavily-
pipelined machines requires a careful examination of how much instruction-
level parallelism exists in typical programs.  Such an examination is compli-
cated by the wide variety of hardware and software techniques for increasing
the parallelism that can be exploited, including branch prediction, register
renaming, and alias analysis.  By performing simulations based on instruc-
tion traces, we can model techniques at the limits of feasibility and even
beyond. Our study shows a striking difference between assuming that the
techniques we use are perfect and merely assuming that they are impossibly
good. Even with impossibly good techniques, average parallelism rarely ex-
ceeds 7, with 5 more common.
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1. Introduction

There is growing interest in machines that exploit, usually with compiler assis-
tance, the parallelism that programs have at the instruction level. Figure 1 shows an
example of this parallelism. The code fragment in 1(a) consists of three instructions
that can be executed at the same time, because they do not depend on each other’s
results. The code fragment in 1(b) does have dependencies, and so cannot be executed
in parallel. In each case, the parallelism is the number of instructions divided by the
number of cycles required.

r1 := 0[r9] r1 := 0[r9]
r2 := 17 r2 := r1 + 17
4[r3] := r6 4[r2] := r6

(a) parallelism=3 (b) parallelism=1

Figure 1. Instruction-level parallelism (and lack thereof).

Architectures to take advantage of this kind of parallelism have been proposed. A
superscalar machine [1] is one that can issue multiple independent instructions in the
same cycle. A superpipelined machine [7] issues one instruction per cycle, but the
cycle time is set much less than the typical instruction latency. A VLIW machine [11]
is like a superscalar machine, except the parallel instructions must be explicitly packed

A slightly shorter version of this paper will appear in the Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems, Copyright
1991, Association for Computing Machinery, Inc.
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LIMITS OF INSTRUCTION-LEVEL PARALLELISM

by the compiler into very long instruction words.

But how much parallelism is there to exploit? Popular wisdom, supported by a
few studies [7,13,14], suggests that parallelism within a basic block rarely exceeds 3 or
4 on the average. Peak parallelism can be higher, especially for some kinds of numeric
programs, but the payoff of high peak parallelism is low if the average is still small.

These limits are troublesome. Many machines already have some degree of pipe-
lining, as reflected in operations with latencies of multiple cycles. We can compute the
degree of pipelining by multiplying the latency of each operation by its dynamic fre-

quency in typical programs; for the DECStation 5000,* load latencies, delayed
branches, and floating-point latencies give the machine a degree of pipelining equal to
about 1.5. Adding a superscalar capability to a machine with some pipelining is
beneficial only if there is more parallelism available than the pipelining already
exploits.

To increase the instruction-level parallelism that the hardware can exploit, people
have explored a variety of techniques. These fall roughly into two categories. One
category includes techniques for increasing the parallelism within a basic block, the
other for using parallelism across several basic blocks. These techniques often interact
in a way that has not been adequately explored. We would like to bound the
effectiveness of a technique whether it is used in combination with impossibly good
companion techniques, or with none. A general approach is therefore needed. In this
paper, we will describe our use of trace-driven simulation to study the importance of
register renaming, branch and jump prediction, and alias analysis. In each case we can
model a range of possibilities from perfect to non-existent.

We will begin with a survey of ambitious techniques for increasing the exploitable
instruction-level parallelism of programs.

1.1. Increasing parallelism within blocks.

Parallelism within a basic block is limited by dependencies between pairs of
instructions. Some of these dependencies are real, reflecting the flow of data in the pro-
gram. Others are false dependencies, accidents of the code generation or results of our
lack of precise knowledge about the flow of data.

Allocating registers assuming a traditional scalar architecture can lead to a false
dependency on a register. In the code sequence

r1 := 0[r9]
r2 := r1 + 1
r1 := 9

we must do the second and third instructions in that order, because the third changes
the value of r1. However, if the compiler had used r3 instead of r1 in the third instruc-
tion, these two instructions would be independent.

* DECStation is a trademark of Digital Equipment Corporation.
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LIMITS OF INSTRUCTION-LEVEL PARALLELISM

A smart compiler might pay attention to its allocation of registers, so as to maxim-
ize the opportunities for parallelism. Current compilers often do not, preferring instead
to reuse registers as often as possible so that the number of registers needed is minim-
ized.

An alternative is the hardware solution of register renaming, in which the
hardware imposes a level of indirection between the register number appearing in the
instruction and the actual register used. Each time an instruction sets a register, the
hardware selects an actual register to use for as long as that value is needed. In a sense
the hardware does the register allocation dynamically, which can give better results than
the compiler’s static allocation, even if the compiler did it as well as it could. In addi-
tion, register renaming allows the hardware to include more registers than will fit in the
instruction format, further reducing false dependencies. Unfortunately, register renam-
ing can also lengthen the machine pipeline, thereby increasing the branch penalties of
the machine, but we are concerned here only with its effects on parallelism.

False dependencies can also involve memory. We assume that memory locations
have meaning to the programmer that registers do not, and hence that hardware renam-
ing of memory locations is not desirable. However, we may still have to make conser-
vative assumptions that lead to false dependencies on memory. For example, in the
code sequence

r1 := 0[r9]
4[r16] := r3

we may have no way of knowing whether the memory locations referenced in the load
and store are the same. If they are the same, then there is a dependency between these
two instructions: we cannot store a new value until we have fetched the old. If they are
different, there is no dependency. Alias analysis can help a compiler decide when two
memory references are independent, but even that is imprecise; sometimes we must
assume the worst. Hardware can resolve the question at run-time by determining the
actual addresses referenced, but this may be too late to affect parallelism decisions. If
the compiler or hardware are not sure the locations are different, we must assume con-
servatively that they are the same.

1.2. Crossing block boundaries.

The number of instructions between branches is usually quite small, often averag-
ing less than 6. If we want large parallelism, we must be able to issue instructions
from different basic blocks in parallel. But this means we must know in advance
whether a conditional branch will be taken, or else we must cope with the possibility
that we do not know.

Branch prediction is a common hardware technique. In the scheme we used
[12,9], the branch predictor maintains a table of two-bit entries. Low-order bits of a
branch’s address provide the index into this table. Taking a branch causes us to incre-
ment its table entry; not taking it causes us to decrement. We do not wrap around
when the table entry reaches its maximum or minimum. We predict that a branch will
be taken if its table entry is 2 or 3. This two-bit prediction scheme correctly handles
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loops, whose branch is usually taken but not always. Two branches that map to the
same table entry interfere with each other; no ‘‘key’’ identifies the owner of the entry.
A good initial value for table entries is 2, just barely predicting that each branch will be
taken.

Branch prediction is often used to keep a pipeline full: we fetch and decode
instructions after a branch while we are executing the branch and the instructions before
it. To use branch prediction to increase parallel execution, we must be able to execute
instructions across an unknown branch speculatively. This may involve maintaining
shadow registers, whose values are not committed until we are sure we have correctly
predicted the branch. It may involve being selective about the instructions we choose:
we may not be willing to execute memory stores speculatively, for example. Some of
this may be put partly under compiler control by designing an instruction set with
explicitly squashable instructions. Each squashable instruction would be tied explicitly
to a condition evaluated in another instruction, and would be squashed by the hardware
if the condition turns out to be false.

Rather than try to predict the destinations of branches, we might speculatively exe-
cute instructions along both possible paths, squashing the wrong path when we know
which it is. Some of our parallelism capability is guaranteed to be wasted, but we will
never miss out by taking the wrong path. Unfortunately, branches happen quite often in
normal code, so for large degrees of parallelism we may encounter another branch
before we have resolved the previous one. A real architecture may have limits on the
amount of fanout we can tolerate before we must assume that new branches are not
explored in parallel.

Many architectures have two or three kinds of instructions to change the flow of
control. Branches are conditional and have a destination some specified offset from the
PC. Jumps are unconditional, and may be either direct or indirect. A direct jump is
one whose destination is given explicitly in the instruction, while an indirect jump is
one whose destination is expressed as an address computation involving a register. In
principle we can know the destination of a direct jump well in advance. The same is
true of a branch, assuming we know how its condition will turn out. The destination of
an indirect jump, however, may require us to wait until the address computation is pos-
sible. Little work has been done on predicting the destinations of indirect jumps, but it
might pay off in instruction-level parallelism. This paper considers a very simple (and,
it turns out, fairly accurate) jump prediction scheme. A table is maintained of destina-
tion addresses. The address of a jump provides the index into this table. Whenever we
execute an indirect jump, we put its address in the table entry for the jump. We predict
that an indirect jump will be to the address in its table entry. As with branch predic-
tion, we do not prevent two jumps from mapping to the same table entry and interfering
with each other.

Loop unrolling is an old compiler optimization technique that can also increase
parallelism. If we unroll a loop ten times, thereby removing 90% of its branches, we
effectively increase the basic block size tenfold. This larger basic block may hold
parallelism that had been unavailable because of the branches.
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Software pipelining [8] is a compiler technique for moving instructions across
branches to increase parallelism. It analyzes the dependencies in a loop body, looking
for ways to increase parallelism by moving instructions from one iteration into a previ-
ous or later iteration. This way the dependencies within one iteration can be stretched
out across several, effectively executing several iterations in parallel without the code
expansion of unrolling.

Trace scheduling [4] was developed for VLIW machines, where global scheduling
by the compiler is needed to exploit the parallelism of the long instruction words. It
uses a profile to find a trace (a sequence of blocks that are executed often), and
schedules the instructions for these blocks as a whole. In effect, trace scheduling
predicts a branch statically, based on the profile. To cope with occasions when this
prediction fails, code is inserted outside the sequence of blocks to correct the state of
registers and memory whenever we enter or leave the sequence unexpectedly. This
added code may itself be scheduled as part of a later and less heavily executed trace.

2. This and previous work.

To better understand this bewildering array of techniques, we have built a simple
system for scheduling instructions produced by an instruction trace. Our system allows
us to assume various kinds of branch and jump prediction, alias analysis, and register
renaming. In each case the option ranges from perfect, which could not be imple-
mented in reality, to non-existent. It is important to consider the full range in order to
bound the effectiveness of the various techniques. For example, it is useful to ask how
well a realistic branch prediction scheme could work even with impossibly good alias
analysis and register renaming.

This is in contrast to the 1989 study of Jouppi and Wall [7], which worked by
scheduling static program executables rather than dynamic instruction traces. Since
their compiler did scheduling only within basic blocks, they did not consider more
ambitious scheduling.

The methodology of our paper is more like that of Tjaden and Flynn [14], which
also scheduled instructions from a dynamic trace. Like Jouppi and Wall, however,
Tjaden and Flynn did not move instructions across branches. Their results were similar
to those of Jouppi and Wall, with parallelism rarely above 3, even though the two stu-
dies assumed quite different architectures.

Nicolau and Fisher’s trace-driven study [11] of the effectiveness of trace schedul-
ing was more liberal, assuming perfect branch prediction and perfect alias analysis.
However, they did not consider more realistic assumptions, arguing instead that they
were interested primarily in programs for which realistic implementations would be
close to perfect.

The study by Smith, Johnson, and Horowitz [13] was a realistic application of
trace-driven simulation that assumed neither too restrictive nor too generous a model.
They were interested, however, in validating a particular realistic machine design, one
that could consistently exploit a parallelism of only 2. They did not explore the range of
techniques discussed in this paper.
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We believe our study can provide useful bounds on the behavior not only of
hardware techniques like branch prediction and register renaming, but also of compiler
techniques like software pipelining and trace scheduling. Unfortunately, we could think
of no good way to model loop unrolling. Register renumbering can cause much of the
computation in a loop to migrate backward toward the beginning of the loop, providing
opportunities for parallelism much like those presented by unrolling. Much of the com-
putation, however, like the repeated incrementing of the loop index, is inherently
sequential. We address loop unrolling in an admittedly unsatisfying manner, by unrol-
ling the loops of some numerical programs by hand and comparing the results to those
of the normal versions.

3. Our experimental framework.

To explore the parallelism available in a particular program, we execute the pro-
gram to produce a trace of the instructions executed. This trace also includes data
addresses referenced, and the results of branches and jumps. A greedy algorithm packs
these instructions into a sequence of pending cycles.

In packing instructions into cycles, we assume that any cycle may contain as many
as 64 instructions in parallel. We further assume no limits on replicated functional
units or ports to registers or memory: all 64 instructions may be multiplies, or even
loads. We assume that every operation has a latency of one cycle, so the result of an
operation executed in cycle N can be used by an instruction executed in cycle N+1.
This includes memory references: we assume there are no cache misses.

We pack the instructions from the trace into cycles as follows. For each instruc-
tion in the trace, we start at the end of the cycle sequence, representing the latest pend-
ing cycle, and move earlier in the sequence until we find a conflict with the new
instruction. Whether a conflict exists depends on the precise model we are considering.
If the conflict is a false dependency (in models allowing them), we assume that we can
put the instruction in that cycle but no farther back. Otherwise we assume that we can-
not put the instruction in that cycle, but we can put it in the cycle that follows. If the
correct cycle is full, we put the instruction in the next non-full cycle. If we cannot put
the instruction in any pending cycle, we start a new pending cycle at the end of the
sequence.

As we add more and more cycles, the sequence gets longer. We assume that
hardware and software techniques will have some limit on how many instructions they
will consider at once. When the total number of instructions in the sequence of pend-
ing cycles reaches this limit, we remove the first cycle from the sequence, whether it is
full of instructions or not. This corresponds to retiring the cycle’s instructions from the
scheduler, and passing them on to be executed.

When we have exhausted the trace, we divide the number of instructions by the
number of cycles we created. The result is the parallelism.

6
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3.1. Parameters.

We can do three kinds of register renaming: perfect, finite, and none. For perfect
renaming, we assume that there are an infinite number of registers, so that no false
register dependencies occur. For finite renaming, we assume a finite register set
dynamically allocated using an LRU discipline: when we need a new register we select
the register whose most recent use (measured in cycles rather than in instruction count)
is earliest. Finite renaming is normally done with 256 integer registers and 256
floating-point registers. It is also interesting to see what happens when we reduce this
to 64 or even 32, the number on our base machine. To simulate no renaming, we sim-
ply use the registers specified in the code; this is of course highly dependent on the
register strategy of the compiler we use.

We can assume several degrees of branch prediction. One extreme is perfect pred-
iction: we assume that all branches are correctly predicted. Next we can assume a
two-bit prediction scheme as described before. The two-bit scheme can be either
infinite, with a table big enough that two different branches never have the same table
entry, or finite, with a table of 2048 entries. To model trace scheduling, we can also
assume static branch prediction based on a profile from an identical run; in this case we
predict that a branch will always go the way that it goes most frequently. And finally,
we can assume that no branch prediction occurs; this is the same as assuming that every
branch is predicted wrong.

The same choices are available for jump prediction. We can assume that indirect
jumps are perfectly predicted. We can assume infinite or finite hardware prediction as
described above (predicting that a jump will go where it went last time). We can
assume static prediction based on a profile. And we can assume no prediction. In any
case we are concerned only with indirect jumps; we assume that direct jumps are
always predicted correctly.

The effect of branch and jump prediction on scheduling is easy to state. Correctly
predicted branches and jumps have no effect on scheduling (except for register depen-
dencies involving their operands). Instructions on opposite sides of an incorrectly
predicted branch or jump, however, always conflict. Another way to think of this is
that the sequence of pending cycles is flushed whenever an incorrect prediction is made.
Note that we generally assume no other penalty for failure. This assumption is optimis-
tic; in most real architectures, a failed prediction causes a bubble in the pipeline, result-
ing in one or more cycles in which no execution whatsoever can occur. We will return
to this topic later.

We can also allow instructions to move past a certain number of incorrectly
predicted branches. This corresponds to architectures that speculatively execute instruc-
tions from both possible paths, up to a certain fanout limit. None of the experiments
described here involved this ability.

Four levels of alias analysis are available. We can assume perfect alias analysis,
in which we look at the actual memory address referenced by a load or store; a store
conflicts with a load or store only if they access the same location. We can also
assume no alias analysis, so that a store always conflicts with a load or store. Between
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these two extremes would be alias analysis as a smart vectorizing compiler might do it.
We don’t have such a compiler, but we have implemented two intermediate schemes
that may give us some insight.

One intermediate scheme is alias by instruction inspection. This is a common
technique in compile-time instruction-level code schedulers. We look at the two
instructions to see if it is obvious that they are independent; the two ways this might
happen are shown in Figure 2.

r1 := 0[r9] r1 := 0[fp]
4[r9] := r2 0[gp] := r2

(a) (b)

Figure 2. Alias analysis by inspection.

The two instructions in 2(a) cannot conflict, because they use the same base register but
different displacements. The two instructions in 2(b) cannot conflict, because one is
manifestly a reference to the stack and the other is manifestly a reference to the global
data area.

The other intermediate scheme is called alias analysis by compiler even though
our own compiler doesn’t do it. Under this model, we assume perfect analysis of stack
and global references, regardless of which registers are used to make them. A store to
an address on the stack conflicts only with a load or store to the same address. Heap
references, on the other hand, are resolved by instruction inspection.

The idea behind our alias analysis by compiler is that references outside the heap
can often be resolved by the compiler, by doing dataflow analysis and possibly by solv-
ing diophantine equations over loop indexes, whereas heap references are often less
tractable. Neither of these assumptions is particularly defensible. Many languages
allow pointers into the stack and global areas, rendering them as difficult as the heap.
Practical considerations such as separate compilation may also keep us from analyzing
non-heap references perfectly. On the other side, even heap references are not as hope-
less as this model assumes [2,6]. Nevertheless, our range of four alternatives provides
some intuition about the effects of alias analysis on instruction-level parallelism.

The window size is the maximum number of instructions that can appear in the
pending cycles at any time. By default this is 2048 instructions. We can manage the
window either discretely or continuously. With discrete windows, we fetch an entire
window of instructions, schedule them into cycles, and then start fresh with a new win-
dow. A missed prediction also causes us to start over with a full-size new window.
With continuous windows, new instructions enter the window one at a time, and old
cycles leave the window whenever the number of instructions reaches the window size.
Continuous windows are the norm for the results described here, although to implement
them in hardware is more difficult. Smith, Johnson, and Horowitz [13] assumed
discrete windows.
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dynamic

lines instructions remarks

Livermore 268 22294030 Livermore loops 1-14

Whetstones 462 24479634 Floating-point

Linpack 814 174883597 Linear algebra [3]

Stanford 1019 20759516 Hennessy’s suite [5]

sed 1751 1447717 Stream editor

egrep 844 13910586 File search

yacc 1856 30948883 Compiler-compiler

metronome 4287 70235508 Timing verifier

grr 5883 142980475 PCB router

eco 2721 26702439 Recursive tree comparison

ccom 10142 18465797 C compiler front end

gcc1 83000 22745232 first pass of GNU C compiler, run on uexp.i

espresso 12000 135317102 boolean function minimizer, run on opa.in

li 7000 1247190509 Lisp interpreter, run on eight queens problem

fpppp 2600 244124171 quantum chemistry benchmark, run on four atoms

doduc 5200 284697827 hydrocode simulation, run on input.small

tomcatv 180 1986257545 vectorized mesh generation

Figure 3. The seventeen test programs.

3.2. Programs measured.

As test cases we used four toy benchmarks, seven real programs used at WRL, and
six SPEC benchmarks. These programs are shown in Figure 3. The SPEC benchmarks
were run on accompanying test data, but the data was usually an official ‘‘short’’ data
set rather than the reference data set. The programs were compiled for a DECStation

5000, which has a MIPS R3000* processor. The Mips version 1.31 compilers were
used.

4. Results.

We ran these test programs for a wide range of configurations. The results we
have are tabulated in the appendix, but we will extract some of them to show some
interesting trends. To provide a framework for our exploration, we defined a series of
five increasingly ambitious models spanning the possible range. These five are
specified in Figure 4; the window size in each is 2K instructions. Many of the results
we present will show the effects of variations on these standard models. Note that even
the Fair model is quite ambitious.

* R3000 is a trademark of MIPS Computer Systems, Inc.
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branch jump reg alias
predict predict renaming analysis

Stupid none none none none

Fair infinite infinite 256 inspection

Good infinite infinite 256 perfect

Great infinite infinite perfect perfect

Perfect perfect perfect perfect perfect

Figure 4. Five increasingly ambitious models.

b r a n c h e s j u m p s branch jump

infinite finite static infinite finite static freq freq

Linpack 96% 96% 95% 99% 99% 96% 3% 0.09%

Livermore 98% 98% 98% 19% 19% 77% 7% 0%

Stanford 90% 90% 89% 69% 69% 71% 16% 1.3%

Whetstones 90% 90% 92% 80% 80% 88% 7% 2.8%

sed 97% 97% 97% 96% 96% 97% 25% 1.3%

egrep 90% 90% 91% 98% 98% 98% 20% 0.09%

yacc 95% 95% 92% 75% 75% 71% 24% 0.5%

met 92% 92% 92% 77% 77% 65% 14% 2.1%

grr 85% 84% 82% 67% 66% 64% 13% 1.5%

eco 92% 92% 91% 47% 47% 56% 17% 2.3%

ccom 90% 90% 90% 55% 54% 64% 14% 2.2%

li 90% 90% 90% 56% 55% 70% 18% 3.7%

tomcatv 99% 99% 99% 58% 58% 72% 2% 0.002%

doduc 95% 95% 95% 39% 39% 62% 7% 0.9%

espresso 89% 89% 87% 65% 65% 53% 16% 0.5%

fpppp 92% 91% 88% 84% 84% 80% 1% 0.09%

gcc1 90% 89% 90% 55% 54% 60% 17% 1.6%

mean 92% 92% 92% 67% 67% 73% 13% 1.2%

Figure 5. Success rates of branch and jump prediction.

4.1. Branch and jump prediction.

The success of the two-bit branch prediction has been reported elsewhere [9,10].
Our results were comparable and are shown in Figure 5; the last two columns are the
fraction of instructions executed that were branches or jumps. It makes little difference
whether we use an infinite table or one with only 2K entries, even though several of the
programs are more than twenty thousand instructions long. Static branch prediction
based on a profile does almost exactly as well as hardware prediction across all of the
tests. It would be interesting to explore how small the hardware table can be before
performance starts to degrade, and to explore how well static prediction does if the
profile is from a non-identical run of the program.
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Figure 6. Parallelism under the five models.

4.2. Parallelism under the five models.

Figure 6 shows the parallelism of each program for each of the five models. The
numeric programs are shown as dotted lines. Unsurprisingly, the Stupid model rarely
gets above 2; the lack of branch prediction means that it finds only intra-block parallel-
ism, and the lack of renaming and alias analysis means it won’t find much of that. The
Fair model is better, with parallelism between 2 and 4 common. Even the Great model,
however, rarely has parallelism above 8. A study that assumed perfect branch predic-
tion, perfect alias analysis, and perfect register renaming would lead us down a
dangerous garden path. So would a study that included only fpppp and tomcatv, unless
that’s really all we want to run on our machine.

It is interesting that Whetstones and Livermore, two numeric benchmarks, do
poorly even under the Perfect model. This is the result of Amdahl’s Law: if we com-
pute the parallelism for each Livermore loop independently, the values range from 2.4
to 29.9, with a median around 5. Speeding up a few loops 30-fold simply means that
the cycles needed for less parallel loops will dominate the total.

4.3. Effects of unrolling.

Loop unrolling should have some effect on the five models. We explored this by
unrolling two benchmarks by hand. The normal Linpack benchmark is already unrolled
four times, so we made a version of it unrolled ten times, and a version in which we
rolled the loops back up, removing the normal unrolling by four. We also unrolled the
Livermore benchmark ten times. We did the unrolling in two different ways. One is
naive unrolling, in which the loop body is simply replicated ten times with suitable
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Figure 7. Unrolling under the five models.

adjustments to array indexes and so on. The other is careful unrolling, in which com-
putations involving accumulators (like scalar product) are reassociated to increase paral-
lelism, and in which assignments to array members are delayed until after all the calcu-
lations are complete, so that false memory conflicts do not interfere with doing the cal-
culations in parallel.

Figure 7 shows the result. The dotted lines are the 10-unrolled versions. Unrol-
ling helps both Livermore and Linpack in the more ambitious models, although unrol-
ling Linpack by 10 doesn’t make it much more parallel than unrolling by 4. The
difference between unrolling by 4 or 10 disappears altogether in the Perfect model,
because the saxpy routine, which accounts for 75% of the executed instructions,
achieves a parallelism just short of our maximum of 64 in each case. The aggregate
parallelism stays lower because the next most frequently executed code is the loop in
the matgen routine. This loop includes an embedded random-number generator, and
each iteration is thus very dependent on its predecessor. This confirms the importance
of using whole program traces; studies that considered only the parallelism in saxpy
would be quite misleading.

Naive unrolling actually hurts the parallelism slightly under the Fair model. The
reason is fairly simple. The Fair model uses alias analysis by inspection, which is not
always sufficient to resolve the conflict between a store at the end of one iteration and
the loads at the beginning of the next. In naive unrolling, the loop body is simply repli-
cated, and these memory conflicts impose the same rigid framework to the dependency
structure as they did before unrolling. The unrolled versions have slightly less to do
within that framework, however, because 3/4 or 9/10 of the loop overhead has been

12
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removed. As a result, the parallelism goes down slightly. Even when alias analysis by
inspection is adequate, unrolling the loops either naively or carefully sometimes causes
the compiler to spill some registers. This is even harder for the alias analysis to deal
with because these references usually have a different base register than the array refer-
ences.

Loop unrolling is a good way to increase the available parallelism, but it is clear
we must integrate the unrolling with the rest of our techniques better than we have been
able to do here.

4.4. Effects of window size.

Our standard models all have a window size of 2K instructions: the scheduler is
allowed to keep that many instructions in pending cycles at one time. Typical super-
scalar hardware is unlikely to handle windows of that size, but software techniques like
trace scheduling for a VLIW machine might. Figure 8 shows the effect of varying the
window size from 2K instructions down to 4. Under the Great model, which does not
have perfect branch prediction, most programs do as well with a 32-instruction window
as with a larger one. Below that, parallelism drops off quickly. Unsurprisingly, the
Perfect model does better the bigger its window. The Good model is not shown, but
looks almost identical to the Great model, except that Linpack’s curve drops down to
join the rest.

4.5. Effects of using discrete windows.

A less ambitious parallelism manager would get a window full of instructions,
schedule them relative to each other, execute them, and then start over with a fresh win-
dow. This would tend to have less parallelism than the continuous window model we
used above. Figure 9 shows the same models as Figure 8, except assuming discrete
windows rather than continuous. Under the Great model, discrete windows do nearly as
well as continuous when the window is 2K instructions, but the difference increases as
the window size decreases; we must use discrete windows of 128 instructions before the
curves level off. If we have very small windows, it might pay off to manage them con-
tinuously; in other words, continuous management of a small window is as good as
multiplying the window size by 4. As before, the Perfect model does better the larger
the window, but the parallelism is only two-thirds that of continuous windows.
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Figure 8(a). Size of continuous windows under Great model.

Figure 8(b). Size of continuous windows under Perfect model.
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Figure 9(a). Size of discrete windows under Great model.

Figure 9(b). Size of discrete windows under Perfect model.
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Figure 10. Effect of branch and jump prediction with
perfect alias analysis and register renaming

4.6. Effects of branch and jump prediction.

We have several levels of branch and jump prediction. Figure 10 shows the
results of varying these while register renaming and alias analysis stay perfect. Reduc-
ing the level of jump prediction can have a large effect, but only if we have perfect
branch prediction. Otherwise, removing jump prediction altogether has little effect.
This graph does not show static or finite prediction: it turns out to make little difference
whether prediction is infinite, finite, or static, as they have nearly the same success rate.

That jump prediction has little effect on the parallelism under non-Perfect models
does not mean that jump prediction is useless. In a real machine, a branch or jump
predicted incorrectly (or not at all) may result in a bubble in the pipeline. This bubble
is a series of one or more cycles in which no execution can occur, during which the
correct instructions are fetched, decoded, and started down the execution pipeline.
Depending on the penalty, this may have a serious effect on performance. Figure 11
shows the degradation of parallelism under the Great model, assuming that each
mispredicted branch or jump adds N cycles with no instructions in them. If we assume
instead that all indirect jumps (but not all branches) are mispredicted, the right ends of
these curves drop by 10% to 30%.

Livermore and Linpack stay relatively horizontal over the entire range. This is
because they make fewer branches and jumps, and their branches are comparatively
predictable. Tomcatv and fpppp are above the range of this graph, but their curves
have slopes about equal to the others.
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Figure 11. Effect of a misprediction cycle penalty on the Great model.

4.7. Effects of alias analysis and register renaming.

We also ran several experiments varying alias analysis in isolation, and varying
register renaming in isolation.

Figure 12 shows the effect of varying the alias analysis under the Perfect and
Great models. We can see that ‘‘alias analysis by inspection’’ isn’t very powerful; it
rarely increased parallelism by more than 0.5. ‘‘Alias analysis by compiler’’ was (by
definition) indistinguishable from perfect alias analysis on programs that did not use the
heap, but was somewhat helpful on the rest. There remains a big gap between this
analysis and perfection, which suggests that the payoff of further work on heap disam-
biguation may be significant.

Figure 13 shows the effect of varying the register renaming under the Perfect and
Great models. Dropping from infinitely many registers to 256 CPU and 256 FPU regis-
ters rarely had a large effect unless the other parameters were perfect. Under the Great
model, register renaming with 32 registers, the number on the actual machine, yielded
parallelisms roughly halfway between no renaming and perfect renaming.
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Perfect model Great model

alias none inspection compiler perfect none inspection compiler perfect

Linpack 3.4 3.5 27.4 27.4 3.4 3.5 14.3 14.3

Livermore 2.3 2.4 6.5 6.5 2.3 2.3 4.9 4.9

Stanford 4.9 5.7 18.0 18.0 3.1 3.3 4.2 4.2

Whetstones 2.9 3.5 7.4 7.4 2.5 3.0 4.6 4.6

sed 4.4 5.0 24.2 24.2 3.8 4.2 7.4 7.4

egrep 7.3 7.4 34.1 34.1 3.4 3.4 4.1 4.1

yacc 6.0 6.9 14.6 22.0 4.4 4.8 5.8 6.7

metronome 2.9 3.4 15.3 22.9 2.6 3.0 5.5 6.2

grr 3.0 3.7 17.5 27.8 2.4 2.8 4.3 4.4

eco 2.7 3.6 7.6 16.8 2.4 2.9 3.8 4.5

ccom 2.4 2.7 18.7 37.4 2.1 2.4 4.9 5.4

doduc 3.9 6.7 56.8 56.8 3.4 5.3 8.3 8.3

gcc 3.3 4.2 10.1 26.5 2.7 3.1 4.0 4.8

li 3.1 4.6 12.8 16.3 2.5 3.3 4.3 4.8

espresso 5.1 5.6 8.2 40.6 3.6 3.8 4.4 5.5

fpppp 3.4 4.8 60.4 60.4 3.4 4.7 34.9 35.0

tomcatv 3.5 4.9 59.7 59.7 3.5 4.9 51.6 51.6

Figure 12. Effect of alias analysis on Perfect and Great models.

4.8. Conclusions.

Good branch prediction by hardware or software is critical to the exploitation of
more than modest amounts of instruction-level parallelism. Jump prediction can reduce
the penalty for indirect jumps, but has little effect on the parallelism of non-penalty
cycles. Register renaming is important as well, though a compiler might be able to do
an adequate job with static analysis, if it knows it is compiling for parallelism.

Even ambitious models combining the techniques discussed here are disappointing.
Figure 14 shows the parallelism achieved by a quite ambitious hardware-style model,
with branch and jump prediction using infinite tables, 256 FPU and 256 CPU registers
used with LRU renaming, perfect alias analysis, and windows of 64 instructions main-
tained continuously. The average parallelism is around 7, the median around 5. Figure
15 shows the parallelism achieved by a quite ambitious software-style model, with
static branch and jump prediction, 256 FPU and 256 CPU registers used with LRU
renaming, perfect alias analysis, and windows of 2K instructions maintained continu-
ously. The average here is closer to 9, but the median is still around 5. A consistent
speedup of 5 would be quite good, but we cannot honestly expect more (at least without
developing techniques beyond those discussed here).

We must also remember the simplifying assumptions this study makes. We have
assumed that all operations have latency of one cycle; in practice an instruction with
larger latency uses some of the available parallelism. We have assumed unlimited
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Figure 13(a). Effect of register renaming on the Perfect model.

Figure 13(b). Effect of register renaming on the Great model.
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Figure 14. The parallelism from an ambitious hardware model.

resources, including a perfect cache; as the memory bottleneck gets worse it may be
more helpful to have a bigger on-chip cache than a lot of duplicate functional units.
We have assumed that there is no penalty for a missed prediction; in practice the
penalty may be many empty cycles. We have assumed a uniform machine cycle time,
though adding superscalar capability will surely not decrease the cycle time and may in
fact increase it. We have assumed uniform technology, but an ordinary machine may
have a shorter time-to-market and therefore use newer, faster technology. Sadly, any
one of these considerations could reduce our expected parallelism by a third; together
they could eliminate it completely.
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Figure 15. The parallelism from an ambitious software model.
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Appendix. Parallelism under many models.

On the next two pages are the results of running the test programs under more
than 100 different configurations. The columns labelled ‘‘livcu10’’ and ‘‘lincu10’’ are
the Livermore and Linpack benchmarks unrolled carefully 10 times. The configurations
are keyed by the following abbreviations:

bPerf perfect branch prediction, 100% correct.
bInf 2-bit branch prediction with infinite table.
b2K 2-bit branch prediction with 2K-entry table.
bStat static branch prediction from profile.
bNone no branch prediction.

jPerf perfect indirect jump prediction, 100% correct.
jInf indirect jump prediction with infinite table.
j2K indirect jump prediction with 2K-entry table.
jStat static indirect jump prediction from profile.
jNone no indirect jump prediction.

rPerf perfect register renaming: infinitely many registers.
rN register renaming with N cpu and N fpu registers.
rNone no register renaming: use registers as compiled.

aPerf perfect alias analysis: use actual addresses to decide.
aComp ‘‘compiler’’ alias analysis.
aInsp ‘‘alias analysis ‘‘by inspection.’’
aNone no alias analysis.

wN continuous window of N instructions, default 2K.
dwN discrete window of N instructions, default 2K.
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gcc espresso li  fpppp doduc tomcat sed  egrep  ccom   eco  yacc   met   grr  Stan  Whet  Liv Livcu10 Lin Lincu10
bPerf jPerf rPerf aPerf        26.5  40.6  16.3  60.4  56.8  59.7  24.2  34.1  37.4  16.8  22.0  22.9  27.8  18.0   7.4   6.5  10.8  27.4  27.5
bPerf jPerf rPerf aPerf w512   23.4  30.7  15.7  51.5  42.5  54.8  23.9  22.0  32.4  16.1  15.6  19.4  24.0  11.1   7.4   5.4   8.5  21.8  24.1
bPerf jPerf rPerf aPerf w256   20.5  23.3  15.6  44.6  29.9  52.3  21.3  17.0  25.1  15.4  13.6  17.1  20.1   8.8   7.4   5.2   8.0  18.7  22.2
bPerf jPerf rPerf aPerf w128   16.0  16.7  15.5  32.8  19.7  37.4  15.8  12.9  18.9  13.8  11.9  14.4  15.2   7.5   7.0   5.1   7.5  17.4  17.5
bPerf jPerf rPerf aPerf w64    11.9  11.7  14.2  21.6  13.3  23.8  11.2  10.0  13.8  11.2  10.5  11.9  10.7   6.7   6.6   5.0   6.5  12.9  13.0
bPerf jPerf rPerf aPerf w32     8.6   8.1  10.7  13.4   9.2  14.7   9.0   7.5   9.7   8.4   8.9   9.2   7.5   5.9   6.0   4.7   5.2   8.7   9.0
bPerf jPerf rPerf aPerf w16     6.2   5.8   7.0   8.3   6.4   8.9   7.2   5.3   7.1   5.8   6.7   6.1   5.2   5.1   5.1   4.3   4.3   5.4   5.9
bPerf jPerf rPerf aPerf w8      4.1   3.9   4.6   5.2   4.3   5.6   4.8   3.8   4.8   4.1   4.1   4.0   3.5   3.9   3.7   3.5   3.3   3.2   3.6
bPerf jPerf rPerf aPerf w4      2.6   2.5   2.9   3.2   2.8   3.3   2.9   2.2   2.9   2.7   2.5   2.5   2.4   2.6   2.5   2.5   2.4   2.0   2.2
bPerf jPerf rPerf aPerf dw     21.0  25.4  15.1  56.4  44.7  54.0  23.3  24.0  26.8  14.5  15.1  16.6  19.8  10.8   7.4   5.2   7.7  21.8  23.9
bPerf jPerf rPerf aPerf dw512  13.2  15.3  13.4  39.9  16.0  46.8  14.4  11.8  15.9  11.4  11.1  11.6  12.4   7.0   6.7   4.9   6.8  15.1  18.2
bPerf jPerf rPerf aPerf dw256   9.7  11.6  11.7  24.9  10.5  19.4  10.3   9.3  12.0   9.0   9.4   9.5   8.8   6.1   5.9   4.7   6.1  12.2  14.0
bPerf jPerf rPerf aPerf dw128   7.4   8.4   9.6  10.9   7.4  12.4   8.1   7.1   8.9   7.0   8.0   7.5   6.6   5.3   5.2   4.4   5.1   9.0   9.9
bPerf jPerf rPerf aPerf dw64    5.7   5.9   7.0   7.5   5.5   8.9   6.6   5.2   6.7   5.5   6.5   5.6   5.0   4.6   4.5   3.9   4.2   6.1   6.6
bPerf jPerf rPerf aPerf dw32    4.3   4.2   5.1   5.3   4.2   5.9   5.2   3.8   5.1   4.3   4.8   4.1   3.7   3.8   3.6   3.3   3.5   3.7   4.1
bPerf jPerf rPerf aPerf dw16    3.3   3.0   3.8   3.9   3.3   4.1   4.0   2.8   3.8   3.3   3.3   3.1   2.8   2.9   2.9   2.7   2.8   2.3   2.5
bPerf jPerf rPerf aPerf dw8     2.5   2.2   2.8   3.1   2.7   3.2   2.7   2.0   2.8   2.5   2.3   2.4   2.1   2.3   2.3   2.2   2.2   1.7   1.9
bPerf jPerf rPerf aPerf dw4     1.9   1.7   2.0   2.4   2.2   2.6   2.0   1.5   2.0   1.9   1.7   1.8   1.7   1.7   1.9   1.7   1.8   1.5   1.6
bPerf jPerf rPerf aComp        10.1   8.2  12.8  60.4  56.8  59.7  24.2  34.1  18.7   7.6  14.6  15.3  17.5  18.0   7.4   6.5  10.8  27.4  27.5
bPerf jPerf rPerf aInsp         4.2   5.6   4.6   4.8   6.7   4.9   5.0   7.4   2.7   3.6   6.9   3.4   3.7   5.7   3.5   2.4   2.1   3.5   6.7
bPerf jPerf rPerf aNone         3.3   5.1   3.1   3.4   3.9   3.5   4.4   7.3   2.4   2.7   6.0   2.9   3.0   4.9   2.9   2.3   1.8   3.4   6.0
bPerf jPerf r256 aPerf         21.3  24.1  15.6  46.6  24.2  45.8  22.1  19.0  28.8  15.6  14.2  17.6  21.0   9.5   5.5   5.2   6.9  19.6  23.6
bPerf jPerf r64 aPerf          11.5  10.9  14.6  19.6  12.9  26.6  11.4  10.0  14.4  11.4  10.6  11.8  10.0   6.7   5.4   5.0   6.5  13.9  14.7
bPerf jPerf r32 aPerf           5.1   4.8   6.2   5.4   5.1   6.6   7.5   5.7   5.7   5.8   5.8   5.8   4.4   4.9   4.6   4.5   5.0   3.2   4.6
bPerf jPerf rNone aPerf         4.6   4.0   5.4   3.5   4.5   4.9   6.0   5.5   4.5   4.8   5.3   4.9   4.3   4.3   3.5   3.6   3.2   4.8   5.8
bPerf jPerf rNone aNone         2.8   3.1   2.8   2.6   3.1   3.0   3.4   4.3   2.3   2.5   3.9   2.6   2.5   3.3   2.4   2.2   1.7   3.4   4.0
bPerf jInf rPerf aPerf          7.7  18.1   6.6  50.8  10.3  59.3  21.5  33.8   8.8   5.9  15.1  10.0   9.5  12.8   4.9   6.5  10.8  27.3  27.5
bPerf jNone rPerf aPerf         5.6  11.2   4.7  34.8   8.4  59.2   6.6  15.3   5.5   4.5   9.4   5.4   5.3   5.0   3.7   6.5  10.8  16.3  20.9
bPerf jNone rNone aNone         2.5   3.0   2.4   2.6   3.0   3.0   3.1   4.3   2.0   2.3   3.8   2.3   2.4   3.1   2.2   2.2   1.7   3.4   4.0

bInf jPerf rPerf aPerf          5.7   5.7   6.2  35.9  12.5  51.7   7.5   4.1   6.7   6.1   6.9   7.0   4.7   4.4   6.6   4.9   7.6  14.3  17.1
bInf jInf rPerf aPerf           4.8   5.5   4.8  35.0   8.3  51.6   7.4   4.1   5.4   4.5   6.7   6.2   4.4   4.2   4.6   4.9   7.6  14.3  17.0
bInf jInf rPerf aPerf w512      4.8   5.5   4.8  33.8   8.3  51.4   7.4   4.1   5.4   4.5   6.7   6.2   4.4   4.2   4.6   4.9   7.6  14.3  17.0
bInf jInf rPerf aPerf w256      4.8   5.5   4.8  31.9   8.2  50.0   7.4   4.1   5.4   4.5   6.7   6.2   4.4   4.2   4.6   4.9   7.6  14.3  16.6
bInf jInf rPerf aPerf w128      4.8   5.4   4.8  26.8   8.0  36.5   7.4   4.1   5.4   4.5   6.7   6.2   4.3   4.2   4.6   4.9   7.3  14.3  14.4
bInf jInf rPerf aPerf w64       4.7   5.4   4.8  19.4   7.5  23.5   7.3   4.1   5.4   4.5   6.7   6.2   4.3   4.1   4.6   4.9   6.4  11.4  11.6
bInf jInf rPerf aPerf w32       4.6   5.0   4.7  12.7   6.6  14.7   7.0   4.0   5.3   4.4   6.5   6.0   4.2   4.1   4.6   4.7   5.2   8.1   8.4
bInf jInf rPerf aPerf w16       4.3   4.4   4.3   8.1   5.5   8.9   6.4   3.7   5.1   4.2   5.5   4.8   3.8   4.0   4.4   4.2   4.3   5.2   5.7
bInf jInf rPerf aPerf w8        3.4   3.4   3.7   5.1   4.1   5.6   4.5   3.1   4.1   3.5   3.8   3.7   3.0   3.4   3.4   3.4   3.3   3.2   3.6
bInf jInf rPerf aPerf w4        2.5   2.3   2.7   3.2   2.8   3.3   2.9   2.0   2.7   2.5   2.4   2.4   2.2   2.4   2.5   2.5   2.4   2.0   2.2
bInf jInf rPerf aPerf dw        4.8   5.5   4.8  34.7   8.3  50.7   7.4   4.1   5.4   4.5   6.7   6.2   4.4   4.2   4.6   4.9   7.4  14.3  17.0
bInf jInf rPerf aPerf dw512     4.8   5.4   4.8  31.1   8.3  45.3   7.4   4.1   5.4   4.5   6.6   6.1   4.3   4.1   4.6   4.8   6.7  12.6  15.2
bInf jInf rPerf aPerf dw256     4.7   5.3   4.8  22.6   7.4  19.2   7.3   4.1   5.3   4.4   6.4   6.0   4.3   4.1   4.6   4.7   6.0  10.9  12.9
bInf jInf rPerf aPerf dw128     4.6   5.1   4.8  10.6   6.2  12.4   6.9   4.0   5.2   4.4   6.1   5.6   4.2   4.0   4.4   4.4   5.0   8.6   9.4
bInf jInf rPerf aPerf dw64      4.3   4.4   4.4   7.5   5.0   8.9   5.8   3.8   4.9   4.1   5.5   4.8   3.8   3.8   4.1   3.8   4.2   5.9   6.4
bInf jInf rPerf aPerf dw32      3.6   3.6   4.0   5.3   4.1   5.9   5.0   3.1   4.2   3.7   4.4   3.8   3.2   3.3   3.4   3.3   3.4   3.6   4.1
bInf jInf rPerf aPerf dw16      2.9   2.7   3.3   3.9   3.3   4.1   3.9   2.5   3.5   3.0   3.2   2.9   2.6   2.7   2.7   2.7   2.8   2.3   2.5
bInf jInf rPerf aPerf dw8       2.3   2.1   2.6   3.1   2.6   3.2   2.7   2.0   2.7   2.4   2.3   2.3   2.0   2.2   2.2   2.2   2.2   1.7   1.9
bInf jInf rPerf aPerf dw4       1.8   1.7   2.0   2.4   2.1   2.6   1.9   1.5   2.0   1.9   1.7   1.8   1.7   1.7   1.9   1.7   1.7   1.4   1.6
bInf jInf rPerf aComp           4.0   4.4   4.3  34.9   8.3  51.6   7.4   4.1   4.9   3.8   5.8   5.5   4.3   4.2   4.6   4.9   7.6  14.3  17.0
bInf jInf rPerf aInsp           3.1   3.8   3.3   4.7   5.3   4.9   4.2   3.4   2.4   2.9   4.8   3.0   2.8   3.3   3.0   2.3   2.1   3.5   6.5
bInf jInf rPerf aNone           2.7   3.6   2.5   3.4   3.4   3.5   3.8   3.4   2.1   2.4   4.4   2.6   2.4   3.1   2.5   2.3   1.8   3.4   5.9
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gcc espresso li  fpppp doduc tomcat sed  egrep  ccom   eco  yacc   met   grr  Stan  Whet  Liv Livcu10 Lin Lincu10
bInf jInf r256 aPerf            4.8   5.5   4.8  32.4   7.6  43.8   7.4   4.1   5.4   4.5   6.7   6.2   4.4   4.2   4.2   4.9   6.4  14.3  17.0
bInf jInf r256 aPerf w512       4.8   5.5   4.8  32.2   7.6  43.8   7.4   4.1   5.4   4.5   6.7   6.2   4.4   4.2   4.2   4.9   6.4  14.3  17.0
bInf jInf r256 aPerf w256       4.8   5.5   4.8  31.6   7.6  43.3   7.4   4.1   5.4   4.5   6.7   6.2   4.4   4.2   4.2   4.9   6.4  14.3  16.6
bInf jInf r256 aPerf w128       4.8   5.4   4.8  26.8   7.5  32.9   7.4   4.1   5.4   4.5   6.7   6.2   4.3   4.2   4.2   4.9   6.3  14.2  14.3
bInf jInf r256 aPerf w64        4.7   5.4   4.8  19.4   7.0  21.8   7.3   4.1   5.4   4.5   6.7   6.2   4.3   4.1   4.2   4.8   5.9  11.4  11.6
bInf jInf r256 aPerf w32        4.6   5.0   4.7  12.7   6.3  14.0   7.0   4.0   5.3   4.4   6.5   6.0   4.2   4.1   4.2   4.5   5.2   8.1   8.4
bInf jInf r256 aPerf w16        4.3   4.4   4.3   8.1   5.4   8.9   6.4   3.7   5.1   4.2   5.5   4.8   3.8   4.0   4.1   4.1   4.3   5.2   5.7
bInf jInf r256 aPerf w8         3.4   3.4   3.7   5.1   4.0   5.6   4.5   3.1   4.1   3.5   3.8   3.7   3.0   3.4   3.3   3.3   3.3   3.2   3.6
bInf jInf r256 aPerf w4         2.5   2.3   2.7   3.2   2.7   3.3   2.9   2.0   2.7   2.5   2.4   2.4   2.2   2.4   2.4   2.5   2.4   2.0   2.2
bInf jInf r256 aComp            4.0   4.4   4.3  32.4   7.6  43.8   7.4   4.1   4.9   3.8   5.8   5.5   4.3   4.2   4.2   4.9   6.4  14.3  17.0
bInf jInf r256 aInsp            3.1   3.8   3.3   4.7   5.0   4.8   4.2   3.4   2.4   2.9   4.8   3.0   2.8   3.3   2.8   2.3   2.1   3.5   6.5
bInf jInf r256 aNone            2.7   3.6   2.5   3.4   3.3   3.4   3.8   3.4   2.1   2.4   4.4   2.6   2.4   3.0   2.3   2.2   1.8   3.4   5.9
bInf jInf r64 aPerf             4.7   5.3   4.8  17.8   6.8  25.9   7.4   4.1   5.4   4.5   6.7   6.2   4.3   4.2   4.2   4.9   6.3  12.1  12.5
bInf jInf r64 aComp             4.0   4.3   4.3  17.8   6.8  26.8   7.4   4.1   4.9   3.8   5.8   5.5   4.2   4.2   4.2   4.9   6.3  12.1  12.5
bInf jInf r64 aInsp             3.1   3.8   3.3   4.7   4.8   4.8   4.1   3.4   2.4   2.9   4.8   3.0   2.8   3.3   2.8   2.3   2.1   3.5   6.4
bInf jInf r32 aPerf             3.9   3.8   4.2   5.4   4.6   7.4   6.3   3.8   4.3   4.1   4.9   4.7   3.4   3.8   3.8   4.0   4.9   3.1   4.5
bInf jInf r32 aComp             3.4   3.2   3.9   5.4   4.6   7.5   6.3   3.8   4.1   3.6   4.5   4.3   3.4   3.8   3.8   4.0   4.9   3.1   4.5
bInf jInf r32 aInsp             2.9   3.0   3.2   3.9   3.9   4.4   3.8   3.2   2.4   2.8   3.9   2.9   2.6   3.2   2.6   2.3   2.1   2.7   3.6
bInf jInf rNone aPerf           3.5   3.3   3.9   3.4   4.2   4.9   5.3   3.8   3.6   3.7   4.5   4.2   3.2   3.5   3.3   3.6   3.2   4.6   5.6
bInf jInf rNone aComp           3.2   2.9   3.8   3.4   4.2   4.9   5.3   3.8   3.5   3.3   4.3   4.0   3.2   3.5   3.3   3.6   3.2   4.6   5.6
bInf jInf rNone aInsp           2.8   2.8   3.1   3.2   3.7   3.8   3.5   3.3   2.3   2.7   3.8   2.7   2.5   3.0   2.6   2.2   1.9   3.4   4.2
bInf jStat rPerf aPerf          4.8   5.4   5.2  34.3   8.8  51.6   7.4   4.1   5.5   4.8   6.6   5.8   4.4   4.2   4.8   4.9   7.6  14.3  17.0
bInf jNone rPerf aPerf          4.1   5.2   3.9  30.6   7.3  51.5   5.5   4.1   4.5   3.9   6.2   4.5   3.8   3.8   3.5   4.9   7.6  14.1  16.8
bInf jNone r256 aPerf           4.1   5.2   3.9  29.5   6.8  43.7   5.5   4.1   4.5   3.9   6.2   4.5   3.8   3.8   3.3   4.9   6.4  14.1  16.8
bInf jNone r256 aComp           3.6   4.3   3.7  29.5   6.8  43.7   5.5   4.1   4.2   3.5   5.5   4.3   3.7   3.8   3.3   4.9   6.4  14.1  16.8
bInf jNone r256 aInsp           2.9   3.7   3.0   4.7   4.8   4.8   3.6   3.4   2.2   2.8   4.6   2.7   2.6   3.2   2.7   2.3   2.1   3.4   6.5

b2K j2K rPerf aPerf             4.6   5.4   4.8  32.4   8.2  51.6   7.4   4.1   5.3   4.4   6.7   6.2   4.3   4.2   4.6   4.9   7.6  14.3  17.0
b2K j2K r256 aPerf              4.6   5.4   4.8  30.5   7.5  43.8   7.4   4.1   5.3   4.4   6.7   6.2   4.3   4.2   4.2   4.9   6.4  14.3  17.0
b2K j2K r256 aComp              3.9   4.4   4.3  30.5   7.5  43.8   7.4   4.1   4.8   3.8   5.8   5.5   4.2   4.2   4.2   4.9   6.4  14.3  17.0
b2K j2K r256 aInsp              3.1   3.8   3.3   4.7   5.0   4.8   4.2   3.4   2.4   2.9   4.8   3.0   2.8   3.3   2.8   2.3   2.1   3.5   6.5
b2K j2K r64 aPerf               4.5   5.3   4.8  17.6   6.8  26.3   7.4   4.1   5.3   4.4   6.7   6.2   4.3   4.2   4.2   4.9   6.3  12.1  12.5
b2K j2K r32 aPerf               3.8   3.8   4.2   5.3   4.5   7.5   6.3   3.8   4.3   4.1   4.9   4.7   3.4   3.8   3.8   4.0   4.9   3.1   4.5
b2K j2K rNone aPerf             3.5   3.3   3.9   3.4   4.1   4.9   5.3   3.8   3.6   3.6   4.5   4.2   3.2   3.5   3.3   3.6   3.2   4.6   5.6

bStat jInf rPerf aPerf          4.7   5.0   4.8  31.6   8.2  51.4   7.4   4.3   5.4   4.4   5.3   6.1   4.0   4.0   4.8   4.9   7.6  13.6  16.6
bStat jInf r256 aPerf           4.7   5.0   4.8  29.8   7.5  43.7   7.4   4.3   5.4   4.4   5.3   6.1   4.0   4.0   4.3   4.9   6.4  13.6  16.6
bStat jStat rPerf aPerf         4.8   5.0   5.2  31.6   8.7  51.4   7.4   4.3   5.5   4.7   5.3   5.7   4.0   4.0   4.9   4.9   7.6  13.6  16.6
bStat jStat r256 aPerf          4.8   5.0   5.2  29.7   8.0  43.7   7.4   4.3   5.5   4.7   5.3   5.7   4.0   4.0   4.4   4.9   6.4  13.6  16.6

bNone jPerf rPerf aPerf         1.8   1.7   2.1  17.5   3.2   8.7   1.7   1.3   2.3   2.0   1.3   1.9   1.8   1.6   2.6   2.7   4.1   4.2   5.5
bNone jPerf rNone aNone         1.5   1.5   1.6   2.5   2.0   2.7   1.5   1.2   1.6   1.5   1.3   1.5   1.4   1.5   1.8   1.7   1.6   2.4   2.9
bNone jInf rPerf aPerf          1.8   1.7   2.0  17.5   3.1   8.7   1.7   1.3   2.2   1.9   1.3   1.9   1.8   1.6   2.6   2.7   4.1   4.2   5.5
bNone jInf r256 aComp           1.7   1.6   2.0  17.0   3.1   8.7   1.7   1.3   2.2   1.8   1.3   1.9   1.8   1.6   2.5   2.5   3.8   4.2   5.5
bNone jInf r256 aInsp           1.6   1.5   1.8   4.5   2.7   3.9   1.6   1.3   1.7   1.7   1.3   1.6   1.6   1.5   2.0   1.8   2.0   2.6   4.2
bNone jNone rPerf aPerf         1.8   1.7   1.9  16.9   3.0   8.7   1.6   1.3   2.1   1.9   1.3   1.8   1.8   1.6   2.2   2.7   4.1   4.2   5.5
bNone jNone rPerf aNone         1.5   1.5   1.5   3.3   2.1   3.0   1.5   1.3   1.5   1.5   1.3   1.4   1.4   1.5   1.9   1.8   1.7   2.5   4.0
bNone jNone r256 aPerf          1.8   1.7   1.9  16.4   3.0   8.7   1.6   1.3   2.1   1.9   1.3   1.8   1.8   1.6   2.2   2.5   3.8   4.2   5.5
bNone jNone r256 aComp          1.7   1.6   1.9  16.4   3.0   8.7   1.6   1.3   2.1   1.8   1.3   1.8   1.7   1.6   2.2   2.5   3.8   4.2   5.5
bNone jNone r256 aInsp          1.6   1.5   1.7   4.4   2.7   3.9   1.5   1.3   1.6   1.6   1.3   1.5   1.5   1.5   1.9   1.8   2.0   2.6   4.2
bNone jNone r256 aNone          1.5   1.5   1.5   3.3   2.1   3.0   1.5   1.3   1.5   1.5   1.3   1.4   1.4   1.5   1.8   1.8   1.7   2.5   4.0
bNone jNone rNone aPerf         1.7   1.6   1.9   3.3   2.4   4.1   1.6   1.3   2.1   1.8   1.3   1.8   1.7   1.5   2.1   2.4   2.7   2.8   3.6
bNone jNone rNone aComp         1.7   1.5   1.9   3.3   2.4   4.1   1.6   1.3   2.1   1.8   1.3   1.8   1.7   1.5   2.1   2.4   2.7   2.8   3.6
bNone jNone rNone aInsp         1.6   1.5   1.7   3.1   2.3   3.3   1.5   1.2   1.6   1.6   1.3   1.5   1.5   1.5   1.8   1.7   1.8   2.5   3.0
bNone jNone rNone aNone         1.5   1.5   1.5   2.5   2.0   2.7   1.4   1.2   1.5   1.4   1.3   1.4   1.4   1.4   1.8   1.7   1.6   2.4   2.9

L
IM

IT
S O

F IN
ST

R
U

C
T

IO
N-L

E
V

E
L

 P
A

R
A

L
L

E
L

ISM

25



26



WRL Research Reports

‘‘Titan System Manual.’’ ‘‘MultiTitan: Four Architecture Papers.’’

Michael J. K. Nielsen. Norman P. Jouppi, Jeremy Dion, David Boggs, Mich-

WRL Research Report 86/1, September 1986. ael J. K. Nielsen.

WRL Research Report 87/8, April 1988.
‘‘Global Register Allocation at Link Time.’’

David W. Wall. ‘‘Fast Printed Circuit Board Routing.’’

WRL Research Report 86/3, October 1986. Jeremy Dion.

WRL Research Report 88/1, March 1988.
‘‘Optimal Finned Heat Sinks.’’

William R. Hamburgen. ‘‘Compacting Garbage Collection with Ambiguous

WRL Research Report 86/4, October 1986. Roots.’’

Joel F. Bartlett.
‘‘The Mahler Experience: Using an Intermediate WRL Research Report 88/2, February 1988.

Language as the Machine Description.’’

David W. Wall and Michael L. Powell. ‘‘The Experimental Literature of The Internet:  An

WRL Research Report 87/1, August 1987. Annotated Bibliography.’’

Jeffrey C. Mogul.
‘‘The Packet Filter: An Efficient Mechanism for WRL Research Report 88/3, August 1988.

User-level Network Code.’’

Jeffrey C. Mogul, Richard F. Rashid, Michael ‘‘Measured Capacity of an Ethernet:  Myths and

J. Accetta. Reality.’’

WRL Research Report 87/2, November 1987. David R. Boggs, Jeffrey C. Mogul, Christopher

A. Kent.
‘‘Fragmentation Considered Harmful.’’ WRL Research Report 88/4, September 1988.
Christopher A. Kent, Jeffrey C. Mogul.

WRL Research Report 87/3, December 1987. ‘‘Visa Protocols for Controlling Inter-Organizational

Datagram Flow:  Extended Description.’’
‘‘Cache Coherence in Distributed Systems.’’ Deborah Estrin, Jeffrey C. Mogul, Gene Tsudik,
Christopher A. Kent. Kamaljit Anand.
WRL Research Report 87/4, December 1987. WRL Research Report 88/5, December 1988.

‘‘Register Windows vs. Register Allocation.’’ ‘‘SCHEME->C A Portable Scheme-to-C Compiler.’’
David W. Wall. Joel F. Bartlett.
WRL Research Report 87/5, December 1987. WRL Research Report 89/1, January 1989.

‘‘Editing Graphical Objects Using Procedural ‘‘Optimal Group Distribution in Carry-Skip
Representations.’’ Adders.’’

Paul J. Asente. Silvio Turrini.
WRL Research Report 87/6, November 1987. WRL Research Report 89/2, February 1989.

‘‘The USENET Cookbook: an Experiment in ‘‘Precise Robotic Paste Dot Dispensing.’’
Electronic Publication.’’ William R. Hamburgen.

Brian K. Reid. WRL Research Report 89/3, February 1989.
WRL Research Report 87/7, December 1987.

27



‘‘Simple and Flexible Datagram Access Controls for ‘‘Link-Time Code Modification.’’

Unix-based Gateways.’’ David W. Wall.

Jeffrey C. Mogul. WRL Research Report 89/17, September 1989.

WRL Research Report 89/4, March 1989.
‘‘Noise Issues in the ECL Circuit Family.’’

‘‘Spritely NFS: Implementation and Performance of Jeffrey Y.F. Tang and J. Leon Yang.

Cache-Consistency Protocols.’’ WRL Research Report 90/1, January 1990.

V. Srinivasan and Jeffrey C. Mogul.
‘‘Efficient Generation of Test Patterns UsingWRL Research Report 89/5, May 1989.

Boolean Satisfiablilty.’’

‘‘Available Instruction-Level Parallelism for Super- Tracy Larrabee.

scalar and Superpipelined Machines.’’ WRL Research Report 90/2, February 1990.

Norman P. Jouppi and David W. Wall.
‘‘Two Papers on Test Pattern Generation.’’WRL Research Report 89/7, July 1989.
Tracy Larrabee.

‘‘A Unified Vector/Scalar Floating-Point WRL Research Report 90/3, March 1990.

Architecture.’’
‘‘Virtual Memory vs. The File System.’’Norman P. Jouppi, Jonathan Bertoni, and David
Michael N. Nelson.W. Wall.
WRL Research Report 90/4, March 1990.WRL Research Report 89/8, July 1989.

‘‘Efficient Use of Workstations for Passive Monitor-‘‘Architectural and Organizational Tradeoffs in the
ing of Local Area Networks.’’Design of the MultiTitan CPU.’’

Jeffrey C. Mogul.Norman P. Jouppi.
WRL Research Report 90/5, July 1990.WRL Research Report 89/9, July 1989.

‘‘A One-Dimensional Thermal Model for the VAX‘‘Integration and Packaging Plateaus of Processor
9000 Multi Chip Units.’’Performance.’’

John S. Fitch.Norman P. Jouppi.
WRL Research Report 90/6, July 1990.WRL Research Report 89/10, July 1989.

‘‘1990 DECWRL/Livermore Magic Release.’’‘‘A 20-MIPS Sustained 32-bit CMOS Microproces-
Robert N. Mayo, Michael H. Arnold, Walter S. Scott,sor with High Ratio of Sustained to Peak

Don Stark, Gordon T. Hamachi.Performance.’’
WRL Research Report 90/7, September 1990.Norman P. Jouppi and Jeffrey Y. F. Tang.

WRL Research Report 89/11, July 1989.

‘‘The Distribution of Instruction-Level and Machine

Parallelism and Its Effect on Performance.’’
Norman P. Jouppi.

WRL Research Report 89/13, July 1989.

‘‘Long Address Traces from RISC Machines:

Generation and Analysis.’’

Anita Borg, R.E.Kessler, Georgia Lazana, and David
W. Wall.

WRL Research Report 89/14, September 1989.

28



WRL Technical Notes

‘‘TCP/IP PrintServer: Print Server Protocol.’’

Brian K. Reid and Christopher A. Kent.

WRL Technical Note TN-4, September 1988.

‘‘TCP/IP PrintServer: Server Architecture and

Implementation.’’

Christopher A. Kent.

WRL Technical Note TN-7, November 1988.

‘‘Smart Code, Stupid Memory: A Fast X Server for a

Dumb Color Frame Buffer.’’

Joel McCormack.

WRL Technical Note TN-9, September 1989.

‘‘Why Aren’t Operating Systems Getting Faster As

Fast As Hardware?’’

John Ousterhout.

WRL Technical Note TN-11, October 1989.

‘‘Mostly-Copying Garbage Collection Picks Up

Generations and C++.’’

Joel F. Bartlett.

WRL Technical Note TN-12, October 1989.

‘‘Limits of Instruction-Level Parallelism.’’

David W. Wall.

WRL Technical Note TN-15, December 1990.

29


