CS 3843

Computer Organization

Topics:
= Theme
m Six great realities of computer systems
m How this fits within CS curriculum

Course Theme

m Abstraction is good, but don’t forget reality!

Courses to date emphasize abstraction
m Abstract data types, asymptotic analysis

These abstractions have limits
m Especially in the presence of bugs
= Need to understand underlying implementations

Useful outcomes

m Become more effective programmers
® Able to find and eliminate bugs efficiently
® Able to tune program performance

m Prepare for later “systems” classes in CS & ECE

e Compilers, Operating Systems, Networks, Computer
Architecture, Embedded Systems

Great Reality #1

Int’s are not Integers, Float’s are not Reals

Examples

m Is x2=07?
® Float’s: Yes!
® Int’s:
» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ?7?
mils(X+y)+z = x+(y+2)?
e Unsigned & Signed Int’s: Yes!
® Float’s:
» (1€20 +-1€20) + 3.14 --> 3.14
» 120 + (-1e20 + 3.14) --> ?7?

Computer Arithmetic

Does not generate random values

= Arithmetic operations have important mathematical
properties

Cannot assume “usual” properties
m Due to finiteness of representations

= Integer operations satisfy “ring” properties
e Commutativity, associativity, distributivity

= Floating point operations satisfy “ordering” properties
® Monotonicity, values of signs

Observation
m Need to understand which abstractions apply in which
contexts
= Important issues for compiler writers and serious application
programmers

Great Reality #2

You’ve got to know assembly

Chances are, you’ll never write program in assembly
m Compilers are much better & more patient than you are

Understanding assembly key to machine-level
execution model

m Behavior of programs in presence of bugs
e High-level language model breaks down

= Tuning program performance
® Understanding sources of program inefficiency

= Implementing system software
e Compiler has machine code as target
e Operating systems must manage process state

Assembly Code Example

Sum of Integers
m Finds the sum of the integers from 1 to n

C Code:

int find sum (int n) {
int i, sum;

sum = 0;

for (i=1; i<=n; i++) {
sum += i;

}

return sum;

Code to Sum Integers

m We can use the compiler to translate this code to assembly:

find_sum: movl 4(%esp), Y%ecx
xorl %eax, %eax
testl %ecx, %ecx
jle .L4
movl $1, Y%edx
addl $1, %ecx

.L5: addl %edx, %eax
addl $1, %edx
cmpl %ecx, %edx
jne .L5

L4: ret

Great Reality #3

Memory Matters

Memory is not unbounded
= It must be allocated and managed
m Many applications are memory dominated

Memory referencing bugs especially pernicious
m Effects are distant in both time and space

Memory performance is not uniform

m Cache and virtual memory effects can greatly affect program
performance

m Adapting program to characteristics of memory system can
lead to major speed improvements

Memory Referencing Bug Example

main ()
{
long int a[2];
double d = 3.14;
a[2] = 1073741824; /* Out of bounds reference */
printf("d = %.15g\n", d);
exit (0) ;

Alpha MIPS Linux
-g 5.30498947741318e-315 3.1399998664856 3.14
-0 3.14 3.14 3.14

(Linux version gives correct result, but
implementing as separate function gives
segmentation fault.)

Memory Referencing Errors

C and C++ do not provide any memory protection
m Out of bounds array references
= Invalid pointer values
m Abuses of malloc/free

Can lead to nasty bugs

m Whether or not bug has any effect depends on system and
compiler

m Action at a distance
e Corrupted object logically unrelated to one being accessed
e Effect of bug may be first observed long after it is generated

How can | deal with this?
= Program in Java, Lisp, or ML
m Understand what possible interactions may occur
m Use or develop tools to detect referencing errors

Memory Performance Example

Implementations of Matrix Multiplication

m Multiple ways to nest loops

/* ijk */
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][j];
c[i]l[j] = sum;

}

/* jik */
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i] [k] * b[k][j];
c[i] [J] = sum

}

Matmult Performance (Alpha 21164)

Too big for L1 Cache Too big for L2 Cache

Blocked matmult perf (Alpha 21164)

—o— bijk
bik;j

—A— ijk
ikj

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!

m Easily see 10:1 performance range depending on how code
written

m Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performance
= How programs compiled and executed

= How to measure program performance and identify
bottlenecks

= How to improve performance without destroying code
modularity and generality

Great Reality #5

Computers do more than execute programs

They need to get data in and out
m /O system critical to program reliability and performance

They communicate with each other over networks

m Many system-level issues arise in presence of network
® Concurrent operations by autonomous processes
® Coping with unreliable media
® Cross platform compatibility
® Complex performance issues

Great Reality #6

Computers are made from physical devices

A computer is made of logic gates and memories
= How do these devices work?

= How do transistors and capacitors form gates and
memories?

= How does Boolean logic help us compute?

Course Perspective

Most Systems Courses are Builder-Centric

m Computer Architecture
® Design pipelined processor in Verilog
m Operating Systems
e Implement large portions of operating system

m Compilers
® Write compiler for simple language

= Networking
® Implement and simulate network protocols

Course Perspective (Cont.)

Our Course is Programmer-Centric

m Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer

= Enable you to

® Write programs that are more reliable and efficient
® Incorporate features that require hooks into OS
» E.g., concurrency, signal handlers

= Not just a course for dedicated hackers
® We bring out the hidden hacker in everyone

m Cover material in this course that you won’t see elsewhere

