
Sampling Dead Block Prediction
for Last-Level Caches

Samira Khan∗, Yingying Tian∗, Daniel A. Jiménez∗†

∗Department of Computer Science
University of Texas at San Antonio

San Antonio, Texas, USA

†Barcelona Supercomputing Center
Barcelona, Catalonia, Spain

skhan@cs.utsa.edu, ytian@cs.utsa.edu, djimenez@acm.org

Abstract—Last-level caches (LLCs) are large structures with
significant power requirements. They can be quite inefficient. On
average, a cache block in a 2MB LRU-managed LLC is dead 86%
of the time, i.e., it will not be referenced again before it is evicted.

This paper introduces sampling dead block prediction, a tech-
nique that samples program counters (PCs) to determine when
a cache block is likely to be dead. Rather than learning from
accesses and evictions from every set in the cache, a sampling
predictor keeps track of a small number of sets using partial
tags. Sampling allows the predictor to use far less state than
previous predictors to make predictions with superior accuracy.

Dead block prediction can be used to drive a dead block
replacement and bypass optimization. A sampling predictor can
reduce the number of LLC misses over LRU by 11.7% for
memory-intensive single-thread benchmarks and 23% for multi-
core workloads. The reduction in misses yields a geometric mean
speedup of 5.9% for single-thread benchmarks and a geometric
mean normalized weighted speedup of 12.5% for multi-core
workloads. Due to the reduced state and number of accesses, the
sampling predictor consumes only 3.1% of the of the dynamic
power and 1.2% of the leakage power of a baseline 2MB LLC,
comparing favorably with more costly techniques. The sampling
predictor can even be used to significantly improve a cache with
a default random replacement policy.

I. INTRODUCTION

The miss rate in the last-level cache (LLC) can be reduced
by reducing the number of dead blocks in the cache. A cache
block is live from the time of its placement in the cache to
the time of its last reference. From the last reference until the
block is evicted the block is dead [13]. Cache blocks are dead
on average 86.2% of the time over a set of memory-intensive
benchmarks. Cache efficiency can be improved by replacing
dead blocks with live blocks as soon as possible after a block
becomes dead, rather than waiting for it to be evicted.

Figure 1 depicts the efficiency of a 1MB 16-way set asso-
ciative LLC with LRU replacement for the SPEC CPU 2006
benchmark 456.hmmer. The amount of time each cache
block is live is shown as a greyscale intensity. Figure 1(a)
shows the unoptimized cache. The darkness shows that many
blocks remain dead for a long time. Figure 1(b) shows

improvement in efficiency by driving a replacement and bypass
policy with a sampling dead block predictor.

Dead blocks lead to poor cache efficiency [15], [4]. In the
least-recently-used (LRU) replacement policy, after the last
access, each dead block wastes time moving from the most-
recently-used (MRU) to the LRU position before it is evicted.

A. Dead Block Prediction

Dead block prediction can be used to identify blocks that are
likely to be dead to drive optimizations that replace them with
live data. Performance improves as more live blocks lead to
more cache hits. However, current dead block prediction algo-
rithms have a number of problems that make them unsuitable
for the LLC:

• They incur a substantial overhead in terms of prediction
structures as well as extra cache metadata. For instance,
each cache block must be associated with many extra bits
of metadata that can change as often as every access to
that block. Thus, the improvement in cache efficiency is
paid for with extra power and area requirements.

• They rely on an underlying LRU replacement algorithm.
However, LRU is prohibitively expensive to implement
in a highly associative LLC. Note that this problem ex-
tends to other recently proposed improvements to caches,
including adaptive insertion policies [19], [7].

• Due to the large number of memory and instruction
references tracked by these predictors, they must be
either very large or experience a significant amount of
destructive interference in their prediction tables resulting
in a negative impact on accuracy.

• Predictors that use instruction traces do not work in
a realistic scenario involving L1, L2, and L3 caches
because a moderately-sized mid-level cache filters out
most of the temporal locality.

B. Sampling Dead Block Predictor

This paper presents dead block prediction technique based
on sampling. Previous dead block predictors find correlations

Appears in Proceedings of the 43rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-43), December 2010

1

(a) (b)

Greyscale Efficiency

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 1: Dead block replacement and bypass bring the cache to life. Efficiency (i.e. live time ratio) shown as greyscale
intensities for 456.hmmer for (a) a 1MB LRU cache and (b) a dead-block-replaced cache using a sampling predictor.
Darker blocks are dead longer. Efficiency is 22% for (a) and 87% for (b).

between observed patterns of memory access instructions and
cache evictions, learning when program behavior is likely to
lead to a block becoming dead. The new prediction technique
exploits four key observations, allowing it to use far less power
and area while improving accuracy over previous techniques:

• Memory access patterns are consistent across sets, so it is
sufficient to sample a small fraction of references to sets
to do accurate prediction. For example, in a 2MB cache
with 2,048 sets, sampling references to 1.6% of sets is
sufficient to predict with accuracy superior other schemes
that learn from every reference. The predictor keeps track
of a small number of sets using partial tags replaced by
the LRU policy, allowing it to generalize predictions not
only to a large LRU cache, but also to a large randomly
replaced cache.

• A separate sampling structure, kept outside the LLC, can
be configured differently to provide improved accuracy.
For instance, we find that, for a 16-way set associative
LLC, a 12-way associative sampler provides superior
accuracy while consuming less state.

• Previous predictors use reference traces or counters for
each block. However, simply using the address of the last
memory access instruction provides sufficient prediction
accuracy while obviating the need to keep track of
access patterns for all blocks. Indeed, we find that trace-
based predictors do not work when a mid-level cache
filters much of the temporal locality from the stream
of memory instructions that access the LLC. Metadata
associated with cache blocks is significantly reduced with
a proportional reduction in power.

• Dead block predictor accuracy can be improved by using
a skewed organization inspired by branch prediction
research.

In this paper, sampling prediction is explored in the context
of a dead block replacement and bypass policy. That is, the
replacement policy will choose a dead block to be replaced
before falling back on a default replacement policy such as
random or LRU, and a block that is predicted “dead on arrival”
will not be placed, i.e., it will bypass the LLC.

The sampling predictor is well-suited to improve the perfor-
mance of a cache with a default random replacement policy.
Sampling prediction reduces average cache misses by 7.5%
compared with no improvement for a previously proposed
predictor based on counting. This reduction in cache misses
for a combination random/dead-block replaced cache results
in a 3.4% average speedup over a baseline LRU cache. Other
recent placement and replacement policies depend on the LRU
policy. The sampling predictor does not.

Because of the small amount of predictor state and cache
metadata, the sampling predictor consumes less than half the
leakage power of a counting predictor. It uses only 3.1% of
the dynamic power of a baseline cache on average, compared
with 11% for the counting predictor.

II. RELATED WORK

A. Dead Block Predictors

Previous work introduced several dead block predictors
and applied them to problems such as prefetching and block
replacement [13], [15], [11], [5], [1].

1) Trace Based Predictor: Dead block prediction was in-
troduced by Lai et al. [13]. The Lai et al. predictor is used
to prefetch data into dead blocks in the L1 data cache. This
reference trace predictor (hereafter reftrace) collects a trace
of instructions addresses that access a particular block on the
theory that, if a trace leads to the last access for one block
then the same trace will lead to the last access for other blocks.
The signature, or truncated sum of these instruction addresses,

2

is used to index a prediction table. A trace based predictor is
also used to optimize a cache coherence protocol [12], [23]
and perform dynamic self-invalidation [14]. A skewed trace-
based predictor is used to identify a pool of dead blocks in
the L2 cache to be used as a “virtual victim cache” into which
LRU victims from hot sets can be stored [10].

2) Time-Based Predictor: Hu et al. propose a time-based
dead block predictor [5] that learns the number of cycles a
block is live and predicts it dead if it is not accessed for twice
that number of cycles. This predictor is used to prefetch into
the L1 cache and filter a victim cache. Abella et al. propose
a similar predictor [1] based on number of references rather
than cycles for reducing cache leakage.

3) Cache Burst Predictor: Cache bursts [15] can be used
with trace, counting, or time based dead block predictors. A
cache burst consists of all the contiguous accesses to a block
while in the MRU position. The predictor predicts and updates
only on each burst rather than on each reference. Cache
bursts predictors limit the number of accesses and updates to
the prediction table for L1 caches, improving power relative
to previous work. Our sampling predictor also reduces the
number of updates. However, cache bursts have been shown
to offer little advantage for higher level caches, since most
bursts are filtered out by the L1. Furthermore, cache bursts
predictors also require significant additional metadata in the
cache, while our predictor requires only one additional bit per
cache block.

4) Counting-Based Predictor: Kharbutli and Solihin pro-
pose counting-based predictors for the L2 cache. The Live-
time Predictor (LvP) tracks the number of accesses to each
block. This value is stored in the predictor on eviction. A
block is predicted dead if it has been accessed more often
than the previous generation. Each predictor entry has a one-
bit confidence counter so that a block is predicted dead if
it has been accessed the same number of times in the last
two generations. The predictor table is a matrix of access and
confidence counters. The rows are indexed using the hashed
PC that brought the block into the cache and the columns are
indexed using the hashed block address. An Access Interval
Predictor (AIP) is also described in the same paper, but we
focus on LvP as we find it delivers superior accuracy. The
counting based replacement policy chooses the predicted dead
block closest to LRU as a victim, or the LRU block if there
is no dead block. LvP and AIP are also used to bypass cache
blocks which are brought to the cache and never accessed
again.

5) Other Predictors: Another kind of dead block prediction
involves predicting in software [25], [21]. In this approach the
compiler collects dead block information and provides hints
to the microarchitecture to make cache decisions. If a cache
block is likely to be reused again it hints to keep the block in
the cache; otherwise, it hints to evict the block.

B. Sampling for Cache Placement and Replacement Policy

Dynamic insertion policy (DIP) uses set dueling to adap-
tively insert blocks in either the MRU or LRU position

depending on which policy gives better performance [19].
Performance is sampled through a small number of dedicated
sets, half using MRU placement and the other half using LRU
placement. Our predictor also uses sampling to dynamically
learn from program behavior, but in addition to sampling
the access characteristics of data, it also samples the instruc-
tions that lead to that program behavior. We compare our
dead-block-predictor-driven replacement and bypass policy to
adaptive insertion in Section VII. A memory-level parallelism
aware cache replacement policy also uses set-dueling to do
sampling, relying on the fact that isolated misses are more
costly for performance than parallel misses [20]. Thread Aware
Dynamic Insertion Policy (TADIP) uses DIP in a multi-core
context [7]. It takes into account the memory requirement
of each executing program. It has a dedicated leader set
for each core for determining the correct insertion position
(MRU/LRU). This way thrashing workloads decide to insert
in the LRU position while cache-friendly workloads continue
to insert in the MRU position.

Keramidas et al. [9] proposed a cache replacement policy
that uses sampling-based reuse distance prediction. This policy
tries to evict cache blocks that will be reused furthest in the
future.

LRU replacement predicts that a block will be referenced in
the near future. Re-reference Interval Prediction (RRIP) cat-
egorizes blocks as near re-reference, distant re-reference and
long re-reference interval blocks [8]. On a miss the block that
is predicted to be referenced most far in the future is replaced.
Set-dueling is used where one policy inserts blocks with
distant re-reference prediction and other one inserts majority
of blocks with distant re-reference prediction and infrequently
inserts new blocks with a long re-reference interval. RRIP
prevents blocks with distant re-reference interval from evicting
blocks that have a near re-reference interval. An extension of
RRIP to multi-core shared cache is analoguous to DIP for
shared cache. Each core selects the best re-reference interval
(long or distant) using set dueling.

III. A SAMPLING DEAD BLOCK PREDICTOR

In this section we discuss the design of a new sampling-
based dead block predictor.

A. A Sampling Partial Tag Array

The sampling predictor keeps a small partial tag array, or
sampler. Each set in the sampler corresponds to a selected set
in the cache; e.g. if the original cache has 2,048 sets, the sam-
pler could keep 32 sets corresponding to every 2, 048/32 =

64th cache set. Since correctness of matches is not necessary
in the sampler tag array, only the lower-order 15 bits of tags are
stored to conserve area and energy. (Nevertheless, we observed
no incorrect matches in any of the benchmarks; 15-bit tags are
quite sufficient for this application.) As with other dead block
predictors, each access to the LLC incurs an access to the
predictor. However, predictor is only updated when there is
an access or replacement in a cache set with a corresponding

3

sampler set. This strategy works because the learning acquired
through sampling a few sets generalizes to the entire cache.

We find that predictor accuracy improves slightly as more
sets are added to the sampler, although too many sets can
increase destructive interference in the prediction tables. We
would like to have as few sets as possible to save power. We
find that 32 sets provide a good trade-off between accuracy
and efficiency.

B. Advantages of a Sampler

A sampler decouples the prediction mechanism from the
structure of the cache, offering several advantages over previ-
ous predictors:

1) Since the predictor and sampler are only updated on a
small fraction of cache accesses and replacements, the
power requirement of the predictor is reduced.

2) The replacement policy of the sampler does not have
to match that of the cache. For instance, the LLC may
use the less costly random replacement policy, but the
sampler can still use the deterministic LRU policy. A
deterministic policy is easier to learn from because
the same sequence of references comes up consistently,
uninterrupted by random evictions.

3) The associativity of the sampler does not have to match
that of the original cache. We have found that, with a
16-way LLC, a 12-way sampler offers better prediction
accuracy than a 16-way sampler since blocks that are
likely to be dead are evicted sooner. Also, a 12-way
sampler consumes less storage and power.

C. Advantage Over Previous Predictors

The reftrace predictor keeps a separate signature for every
cache block to be used by the predictor when that block
is accessed. Counting predictors also store counts with each
block. These predictors, as well as cache bursts, have two
problems: 1) Every cache block must be associated with a
significant amount of metadata. Reftrace requires keeping the
signature for each block, while counting predictors require
keeping a count and other data for each block. 2) Every update
to a block incurs a read/modify/write cycle for the metadata.
Either a count or a signature must be read, modified, and
written. Meeting the timing constraints of this sequence of
operations could be problematic, especially in a low-power
design.

However, the new predictor uses a trace based only on the
PC. That is, rather than predicting whether a block is dead
based on the trace of instructions that refer to that block, the
predictor only uses the PC of the last instruction that accessed
a block. Thus, all predictor state can be kept in the predictor,
and only a single additional bit of metadata is needed for
each cache block – a bit that indicates whether the block has
been predicted as dead. Trace metadata is still stored in the
sampler, but since the sample tag array is far smaller than
the actual LLC tag array, area and timing are not a problem.
The predictor state is only modified on the small fraction of
accesses to sampler sets.

Figure 2 gives a block diagram of the reftrace and sampling
predictors, showing the times during which they are accessed
and updated. The sampling predictor is accessed as frequently
as the reftrace predictor, but it is updated far less often.

D. Key Difference with PC-Only Sampler

The reftrace predictor could also use just the PC to index its
prediction table. Each time a block is accessed, the signature
could immediately be used to update the predictor indicating
that the block is live. However, reftrace would still need to
keep a signature for each cache block for the time between
the last access to the block and the eviction of the block
to update the predictor on an eviction. In addition to the
storage requirement, reftrace would also need a 16-bit channel
between the stream of instructions and the LLC.

The sampling predictor does not have this problem. It only
needs to keep the PC signature for tags tracked in the sampler.
There are far fewer of these sampler signatures, i.e. 1,536
for a 12-way 32-set sampler, compared with the number of
signatures for the entire cache with the reftrace predictor, i.e.
32,768. The sampler needs only a one-bit channel to the LLC
to provide predictions.

E. A Skewed Organization

The sampling predictor uses the idea of a skewed or-
ganization [22], [16] to reduce the impact of conflicts in
the table. The predictor keeps three 4,096-entry tables of 2-
bit counters, each indexed by a different hash of a 15-bit
signature. Each access to the predictor yields three counter
values whose sum is used as a confidence compared with a
threshold; if the threshold is met, then the corresponding block
is predicted dead. This organization offers an improvement
over the previous dead block predictors because unrelated
signatures might conflict in one table but are less likely to
conflict in three tables, so the effect of destructive conflicts is
reduced. A happy consequence of using the skewed predictor
is more sensitive confidence estimation: with three tables, we
have nine confidence levels to choose from instead of just four
with a single table. We find that a threshold of eight gives the
best accuracy. Figure 3 shows the difference in the design of
the reftrace and skewed predictors.

F. Multiple Cores

The sampling predictor described in this paper is used
unmodified for both single-thread and multi-core workloads.
The same 32-set sampling predictor is used for the 2MB
single-core cache as well as the 8MB quad-core cache. There
is no special tuning for multi-core workloads.

IV. A COMPARISON OF PREDICTOR STORAGE AND POWER

In this section, we discuss the storage requirements of dead
block predictors: the reftrace predictor, the counting predictor,
the sampling predictor.

4

Every L2 miss, for

Every LLC eviction,
for training

prediction and training

L2 Cache

Predictor

Table

Prediction

Data access

Last−Level Cache

Data access

Every L2
miss, for
prediction
only

Selected L2 misses,
for training only,

L2 Cache

Predictor

Table

32 sets
tag array
Sampler

and evictions
accesses
Sampler

Prediction

< 1.6% of LLC accesses
2048 sets, tags + data

Last−Level Cache

(a) (b)

Fig. 2: Reftrace dead block predictor (a), and new dead block predictor with sampler tag array (b). The sampler and
dead block predictor table are updated for 1.6% of the accesses to the LLC, while the reftrace predictor is updated on
every access.

confidence

index = blk.signature

Skewed sampling predictor

index3 = hash3(blk.signature)
index2 = hash2(blk.signature)

dead if confidence >= threshold

confidence1

confidence2

confidence3

+

dead if confidence1+confidence2+confidence3 >= threshold

Reference trace predictor

index1 = hash1(blk.signature)

Fig. 3: Block diagrams for dead block predictors

A. Reference Trace Predictor

For this study, we use a reftrace predictor indexed using
15-bit signature. Thus, the prediction table contains 215 two-
bit counters, or 8KB. We find diminishing returns in terms
of accuracy from larger tables, so we limit our reftrace
predictor to this size. Each cache block is associated with
two extra fields: the 15-bit signature arising from the most
recent sequence of accesses to that block, and another bit that
indicates whether the block has been predicted as dead. With a
2MB cache with 64B blocks, this works out to 64KB of extra
metadata in the cache. Thus, the total amount of state for the
reftrace predictor is 72KB, or 3.5% of the data capacity of the
LLC.

B. Counting Predictor

The counting-based Live-time Predictor (LvP) predic-
tor [11] is a 256 × 256 table of entries, each of which
includes the following fields: a four-bit counter keeping track
of the number of accesses to a block and a one-bit confidence
counter. Thus, the predictor uses 40KB of storage. In addition,
each cache block is augmented with the following metadata:
an eight-bit hashed PC, a four-bit counter keeping track of the
number of times the cache block is accessed, a four-bit number

of accesses to the block from the last time the block was in
the cache, and a one-bit confidence counter. This works out
to approximately 68KB of extra metadata in the cache. Thus,
the total amount of state for the counting predictor is 108KB,
or 5.3% of the data capacity of the LLC.

C. Sampling Predictor

The three prediction tables for the skewed dead block
predictor are each 4,096 two-bit counters so they consume
3KB of storage.

We model a sampler with 32 sets. Each set has 12 entries
consisting of 15-bit partial tags, 15-bit partial PCs, one predic-
tion bit, one valid bit, and four bits to maintain LRU position
information, consuming 6.75KB of storage1. Each cache line
also holds one extra bit of metadata. Thus, the sampling
predictor consumes 13.75KB of storage, which is less than
1% of the capacity of a 2MB LLC. Table I summarizes the
storage requirements of each predictor.

1For an LRU cache, why do we not simply use the tags already in the cache?
Since the sampler is 12-way associative and does not experience bypass, there
will not always be a correspondence between tags in a sampler set and the
same set in the cache. Also, we would like to access and update the sampler
without waiting for the tag array latency.

5

Predictor Predictor Structures Cache Metadata Total Storage
reftrace 8KB table 16 bits × 32K blocks = 64KB 72KB
counting 256 × 256 table, 5-bit entries = 40KB 17 bits × 32K blocks = 68KB 108KB
sampler 3 × 1KB tables + 6.75KB sampler = 9.75 1 bit × 32K blocks = 4KB 13.75KB

TABLE I: Storage overhead for the various predictors

D. Predictor Power

The sampling predictor uses far less storage than the other
predictors, but part of its design includes sets of associative
tags. Thus, it behooves us to account for the potential impact of
this structure on power. Table II shows the results of CACTI
5.3 simulations [24] to determine the leakage and dynamic
power of the various components of each predictor. The sam-
pler was modeled as the tag array of a cache with as many sets
as the sampler, with only the tag power being reported. The
predictor tables for the pattern sample predictors was modeled
as a tagless RAM with three banks accessed simultaneously,
while the predictor table for the reftrace predictor was modeled
as a single bank 8KB tagless RAM. The prediction table for
the counting predictor was conservatively modeled as a 32KB
tagless RAM. To attribute extra power to cache metadata,
we modeled the 2MB LLC both with and without the extra
metadata, represented as extra bits in the data array, and report
the difference between the two.

1) Dynamic Power: When it is being accessed, the dynamic
power of the sampling predictor is 57% of the dynamic
power of the reftrace predictor, and only 28% of the dynamic
power of the counting predictor. The baseline LLC itself has
a dynamic power of 2.75W. Thus, the sampling predictor
consumes 3.1% of the power budget of the baseline cache,
while the counting predictor consumes 11% of it. Note that
CACTI reports peak dynamic power. Since the sampler is
accessed only on a small fraction of LLC accesses, the actual
dynamic power for the sampling predictor would far lower.

2) Leakage Power: For many programs, dynamic power
of the predictors will not be an important issue since the
LLC might be accessed infrequently compared with other
structures. However, leakage power is always a concern. The
sampling predictor has a leakage power that is only 40% of
the reftrace predictor, and only 25% of the counting predictor.
This is primarily due to the reduction in cache metadata
required by the predictor. As a percentage of the 0.512W total
leakage power of the LLC, the sampling predictor uses only
1.2%, while the counting predictor uses 4.7% and the reftrace
predictor uses 2.9%.

E. Latency

CACTI simulations show that the latency reading and writ-
ing the structures related to the sampling predictor fit well
within the timing constraints of the LLC. It is particularly fast
compared with the reftrace predictor since it does not need to
read/modify/write metadata in the LLC cache on every access.

V. A DEAD-BLOCK DRIVEN REPLACEMENT AND BYPASS
POLICY

We evaluate dead block predictors in the context of a
combined dead block replacement and bypassing optimiza-
tion [11]. When it is time to choose a victim block, a predicted
dead block may be chosen instead of a random or LRU block.
If there is no predicted dead block, a random or LRU block
may be evicted.

If a block to be placed in a set will be used further in the
future than any block currently in the set, then it makes sense
to decline placing it [17]. That is, the block should bypass
the cache. Bypassing can reduce misses in LLCs, especially
for programs where most of the temporal locality is captured
by the first-level cache. Dead block predictors can be used to
implement bypassing: if a block is predicted dead on its first
access then it is not placed in the cache.

A. Dead Block Replacement and Bypassing with Default Ran-
dom Replacement

In Section VII, we show results for dead-block replacement
and bypass using a default random replacement policy. We
show that this scheme has very low overhead and significant
performance and power advantages.

What does it mean for a block to be dead in a randomly
replaced cache? The concept of a dead block is well-defined
even for a randomly-replaced cache: a block is dead if it will
be evicted before it is used again. However, predicting whether
a block is dead is now a matter of predicting the outcome of
a random event. The goal is not necessarily to identify with
100% certainty which block will be evicted before it is used
next, but to identify a block that has a high probability of not
being used again soon.

B. Predictor Update in the Optimization

One question naturally arises: should the predictor learn
from evictions that it caused? We find that for reftrace and
for the sampling predictor, allowing the predictor to learn
from its own evictions results in slightly improved average
miss rates and performance over not doing so. We believe that
this feedback allows the predictor to more quickly generalize
patterns learned for some sets to other sets. On the other hand,
we find no benefit from letting a tag “bypass” the sampler,
i.e., tags from all accesses to sampled sets are placed into the
sampler.

VI. EXPERIMENTAL METHODOLOGY

This section outlines the experimental methodology used in
this study.

6

Prediction Extra
Predictor Structures Metadata Total

Power Power Power
leakage dynamic leakage dynamic leakage dynamic

reftrace 0.002 0.030 0.013 0.120 0.015 0.150
counting 0.010 0.175 0.014 0.127 0.024 0.302
sampler 0.005 0.078 0.001 0.008 0.006 0.086

TABLE II: Dynamic and leakage power for predictor components. All figures are in Watts.

MPKI MPKI IPC MPKI MPKI IPC
Name (LRU) (MIN) (LRU) FFWD Name (LRU) (MIN) (LRU) FFWD
astar 2.275 2.062 1.829 185B bwaves 0.088 0.088 3.918 680B
bzip2 0.836 0.589 2.713 368B cactusADM 13.529 13.348 1.088 81B
calculix 0.006 0.006 3.976 4433B dealII 0.031 0.031 3.844 1387B
gamess 0.005 0.005 3.888 48B gcc 0.640 0.524 2.879 64B

GemsFDTD 13.208 10.846 0.818 1060B gobmk 0.121 0.121 3.017 133B
gromacs 0.357 0.336 3.061 1B h264ref 0.060 0.060 3.699 8B
hmmer 1.032 0.609 3.017 942B lbm 25.189 20.803 0.891 13B
leslie3d 7.231 5.898 0.931 176B libquantum 23.729 22.64 0.558 2666B
mcf 56.755 45.061 0.298 370B milc 15.624 15.392 0.696 272B
namd 0.047 0.047 3.809 1527B omnetpp 13.594 10.470 0.577 477B

perlbench 0.789 0.628 2.175 541B povray 0.004 0.004 2.908 160B
sjeng 0.318 0.317 3.156 477B soplex 25.242 16.848 0.559 382B

sphinx3 11.586 8.519 0.655 3195B tonto 0.046 0.046 3.472 44B
wrf 5.040 4.434 0.934 2694B xalancbmk 18.288 10.885 0.311 178B
zeusmp 4.567 3.956 1.230 405B

TABLE III: The 29 SPEC CPU 2006 benchmarks with LLC cache misses per 1000 instructions for LRU and optimal
(MIN), instructions-per-cycle for LRU for a 2MB cache, and number of instructions fast-forwarded to reach the simpoint
(B = billions). Benchmarks in the subset in boldface .

A. Simulation Environment

The simulator is a modified version of CMP$im, a memory-
system simulator that is accurate to within 4% of a detailed
cycle-accurate simulator [6]. The version we used was pro-
vided with the JILP Cache Replacement Championship [2].
It models an out-of-order 4-wide 8-stage pipeline with a
128-entry instruction window. This infrastructure enables col-
lecting instructions-per-cycle figures as well as misses per
kilo-instruction and dead block predictor accuracy. The ex-
periments model a 16-way set-associative last-level cache to
remain consistent with other previous work [12], [15], [19],
[20]. The microarchitectural parameters closely model Intel
Core i7 (Nehalem) with the following parameters: L1 data
cache: 32KB 8-way associative, L2 unified cache: 256KB
8-way L3: 2MB/core. Each benchmark is compiled for the
x86 64 instruction set. The programs are compiled with the
GCC 4.1.0 compilers for C, C++, and FORTRAN.

We use SPEC CPU 2006 benchmarks. We use SimPoint [18]
to identify a single one billion instruction characteristic inter-
val (i.e.simpoint) of each benchmark. Each benchmark is run
with the first ref input provided by the runspec command.

1) Single-Thread Workloads: For single-core experiments,
the infrastructure simulates one billion instructions. We simu-

late a 2MB LLC for the single-thread workloads. In keeping
with the methodology of recent cache papers [12], [13], [20],
[19], [15], [9], [11], [7], [8], we choose a memory-intensive
subset of the benchmarks. We use the following criterion: a
benchmark is included in the subset if the number of misses
in the LLC decreases by at least 1% when using the optimal
replacement and bypass policy instead of LRU2.

Table III shows each benchmark with the baseline LLC
misses per 1000 instructions (MPKI), optimal MPKI, baseline
instructions-per-cycle (IPC), and the number of instructions
fast-forwarded (FFWD) to reach the interval given by Sim-
Point.

2) Multi-Core Workloads: Table IV shows ten mixes of
SPEC CPU 2006 simpoints chosen four at a time with a
variety of memory behaviors characterized in the table by
cache sensitivity curves. We use these mixes for quad-core
simulations. Each benchmark runs simultaneously with the
others, restarting after one billion instructions, until all of the
benchmarks have executed at least one billion instructions. We
simulate an 8MB shared LLC for the multi-core workloads.

2Ten of the 29 SPEC CPU 2006 benchmarks experience no significant
reduction in misses even with optimal replacement. Our technique causes no
change in performance in these benchmarks.

7

Name Benchmarks

Cache
Sensi-
tivity
Curve

mix1 mcf hmmer libquantum
omnetpp 25.5

 43.5

mix2 gobmk soplex libquantum lbm
 12.6

 22.0

mix3 zeusmp leslie3d libquantum
xalancbmk 9.4

 14.6

mix4 gamess cactusADM soplex
libquantum 9.5

 19.0

mix5 bzip2 gamess mcf sphinx3
 16.6

 36.4

mix6 gcc calculix libquantum
sphinx3 6.6

 9.7

mix7 perlbench milc hmmer lbm
 9.6

 10.4

mix8 bzip2 gcc gobmk lbm
 5.4

 6.7

mix9 gamess mcf tonto xalancbmk
 16.6

 37.0

mix10 milc namd sphinx3 xalancbmk
 4.5

 12.4

TABLE IV: Multi-core workload mixes with cache sensitiv-
ity curves giving LLC misses per 1000 instructions (MPKI)
on the y-axis for last-level cache sizes 128KB through
32MB on the x-axis.

For the multi-core workloads, we report the weighted speedup
normalized to LRU. That is, for each thread i sharing the 8MB
cache, we compute IPCi. Then we find SingleIPCi as the IPC
of the same program running in isolation with an 8MB cache
with LRU replacement. Then we compute the weighted IPC
as

∑
IPCi/SingleIPCi. We then normalize this weighted IPC

with the weighted IPC using the LRU replacement policy.

B. Optimal Replacement and Bypass Policy

For simulating misses, we also compare with an optimal
block replacement and bypass policy. That is, we enhance
Belady’s MIN replacement policy [3] with a bypass policy
that refuses to place a block in a set when that block’s next
access will not occur until after the next accesses to all other
blocks in the set. We use trace-based simulation to determine
the optimal number of misses using the same sequence of
memory accesses made by the out-of-order simulator. The out-
of-order simulator does not include the optimal replacement
and bypass policy so we report optimal numbers only for cache
miss reduction and not for speedup.

VII. EXPERIMENTAL RESULTS

In this section we discuss results of our experiments. In
the graphs that follow, several techniques are referred to with
abbreviated names. Table V gives a legend for these names.

For TDBP and CDBP, we simulate a dead block bypass and
replacement policy just as described previously, dropping in
the reftrace and counting predictors, respectively, in place of
our sampling predictor.

A. Dead Block Replacement with LRU Baseline

We explore the use of sampling prediction to drive replace-
ment and bypass in a default LRU replaced cache compared
with several other techniques for the single-thread bench-
marks.

1) LLC Misses: Figure 4 shows LLC cache misses normal-
ized to a 2MB LRU cache for each benchmark. On average,
dynamic insertion (DIP) reduces cache misses to 93.9% of
the baseline LRU, a reduction of by 6.1%. RRIP reduces
misses by 8.1%. The reftrace-predictor-driven policy (TDBP)
increases average misses on average by 8.0% (mostly due
to 473.astar), decreasing misses on only 11 of the 19
benchmarks. CDBP reduces average misses by 4.6%. The
sampling predictor reduces average misses by 11.7%. The
optimal policy reduces misses by 18.6% over LRU; thus, the
sampling predictor achieves 63% of the improvement of the
optimal policy.

2) Speedup: Reducing cache misses translates into im-
proved performance. Figure 5 shows the speedup (i.e. new
IPC divided by old IPC) over LRU for the predictor-driven
policies with a default LRU cache.

DIP improves performance by a geometric mean of 3.1%.
TDBP provides a speedup on some benchmarks and a slow-
down on others, resulting in a geometric mean speedup of
approximately 0%. The counting predictor delivers a geomet-
ric mean speedup of 2.3%, and does not significantly slow
down any benchmarks. RRIP yields an average speedup of
4.1%. The sampling predictor gives a geometric mean speedup
of 5.9%. It improves performance by at least 4% for eight of
the benchmarks, as opposed to only five benchmarks for RRIP
and CDBP and two for TDBP. The sampling predictor delivers
performance superior to each of the other techniques tested.

Speedup and cache misses are particularly poor for
473.astar. As we will see in Section VII-C, dead block
prediction accuracy is bad for this benchmark. However, the
sampling predictor minimizes the damage by making fewer
predictions than the other predictors.

3) Poor Performance for Trace-Based Predictor: Note that
the reftrace predictor performs quite poorly compared with
its observed behavior in previous work [15]. In that work,
reftrace was used for L1 or L2 caches with significant temporal
locality in streams of reference reaching the predictor. Reftrace
learns from these streams of temporal locality. In this work, the
predictor optimizes the LLC in which most temporal locality
has been filtered by the 256KB middle-level cache. In this
situation, it is easier for the predictor to try to simply learn
the last PC to reference a block rather than a sparse reference

8

Name Technique
Sampler Dead block bypass and replacement with sampling predictor, default LRU policy
TDBP Dead block bypass and replacement with reftrace, default LRU policy
CDBP Dead block bypass and replacement with counting predictor, default LRU policy
DIP Dynamic Insertion Policy, default LRU policy.
RRIP Re-reference interval prediction
TADIP Thread-aware DIP, default LRU policy
Random Sampler Dead block bypass and replacement with sampling predictor, default random policy
Random CDBP Dead block bypass and replacement with counting predictor, default random policy.
Optimal Optimal replacement and bypass policy as described in Section VI-B.

TABLE V: Legend for various cache optimization techniques.

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

450.soplex

456.hmmer

459.GemsFDTD

462.libquantum

470.lbm

471.omnetpp

473.astar

481.wrf

482.sphinx3

483.xalancbmk

amean

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 M
P

K
I

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 M
P

K
I

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 M
P

K
I

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 M
P

K
I

TDBP
CDBP
DIP
RRIP
Sampler
Optimal

2.5

Fig. 4: Reduction in LLC misses for various policies.

400.perlbench

401.bzip2

403.gcc

429.m
cf

433.m
ilc

434.zeusm
p

435.grom
acs

436.cactusA
D
M

437.leslie3d

450.soplex

456.hm
m
er

459.G
em
sFD

TD

462.libquantum

470.lbm

471.om
netpp

473.astar

481.w
rf

482.sphinx3

483.xalancbm
k

gm
ean

0.90

0.95

1.00

1.05

1.10

1.15

1.20

S
p
ee
d
u
p

0.90

0.95

1.00

1.05

1.10

1.15

1.20

S
p
ee
d
u
p

0.90

0.95

1.00

1.05

1.10

1.15

1.20

S
p
ee
d
u
p

0.90

0.95

1.00

1.05

1.10

1.15

1.20

S
p
ee
d
u
p

0.90

0.95

1.00

1.05

1.10

1.15

1.20

S
p
ee
d
u
p

TDBP

CDBP

DIP

RRIP

Sampler

0.86 0.70

1.27 1.3 1.4 1.4 1.3

Fig. 5: Speedup for various policies

trace that might not be repeated often enough to learn from.
Note that we have simulated reftrace correctly with access to
the original source code used for the cache bursts paper. In
our simulations and in previous work, reftrace works quite
well when there is no middle-level cache to filter the temporal
locality between the small L1 and large LLC. However, many
real systems have middle-level caches.

4) Contribution of Components: Aside from using only the
last PC, there are three other components that contribute to
our predictor’s performance with dead block replacement and
bypass (DBRB): 1) using a sampler, 2) using reduced associa-
tivity in the sampler, and 3) using a skewed predictor. Figure 6
shows the speedup achieved on the single-thread benchmarks
for every feasible combination of presence or absence of these
components. We find that these three components interact
synergistically to improve performance.

The PC-only predictor (“DBRB alone”) without any of the
other enhancements achieves a speedup of 3.4% over the LRU

baseline. This predictor is equivalent to the reftrace predictor
using the last PC instead of the trace signature. Adding a
skewed predictor with three tables (“DBRB+3 tables”), each
one-fourth the size of the single-table predictor, results in a
reduced speedup of 2.3%. The advantage of a skewed predictor
is its ability to improve accuracy in the presence of a moderate
amount of conflict. However, with no sampler to filter the
onslaught of a large working set of PCs, the skewed predictor
experiences significant conflict with a commensurate reduction
in coverage and accuracy.

The sampler with no other enhancements
(“DBRB+sampler”) yields a speedup of 3.8%. The
improvement over DBRB-only is due to the filtering
effect on the predictor: learning from far fewer examples is
sufficient to learn the general behavior of the program, but
results in much less conflict in the prediction table. Adding
the skewed predictor to this scenarion (“DBRB+sampler+3
tables”) slightly improves speedup to 4.0%, addressing the

9

remaining moderate conflict in the predictor.
Reducing the associativity in the sampler from 16 to 12

gives a significant bump in performance. With no skewed
predictor, the speedup (“DBRB+sampler+12-way”) improves
to 5.6%. Reducing the associativity in the predictor allows
the sampler to learn more quickly as tags spend less time in
sampler sets. Putting together all three components results in
the speedup of 5.9%.

DBRB+3 tables

DBRB alone

DBRB+sampler

DBRB+sampler+3 tables

DBRB+sampler+12-way

DBRB+sampler+3

 tables+12-way

1.00

1.02

1.04

1.06

S
p

ee
d

u
p

 o
v

er
 B

a
se

li
n

e
L

R
U

Fig. 6: Contribution to speedup of sampling, reduced
associativity, and skewed prediction

B. Dead Block Replacement with Random Baseline

In this subsection we explore the use of the sampling
predictor to do dead-block replacement and bypass with a
baseline randomly-replaced cache. When a block is replaced, a
predicted dead block is chosen, or if there is none, a random
block is chosen. We compare with the CDBP and random
replacement. We do not compare with TDBP, RRIP or DIP
because these policies depend on a baseline LRU replacement
policy and become meaningless in a randomly-replaced cache.

1) LLC Misses: Figure 7 shows the normalized number of
cache misses for the various policies with a default random-
replacement policy. The figures are normalized to the same
baseline LRU cache from the previous graphs, so the numbers
are directly comparable. CDBP reduces misses for some
benchmarks but increases misses for others, resulting in no
net benefit. Random replacement by itself increases misses
an average of 2.5% over the LRU baseline. The sampling
predictor yields an average normalized MPKI of 0.925, an
improvement of 7.5% over the LRU baseline. Note that the
sampling predictor with a default random-replacement policy
requires only one bit of metadata associated with individual
cache lines. Amortizing the cost of the predictor storage over
the cache lines (computed in Section IV), the replacement and
bypass policy requires only 1.71 bits per cache line to deliver
7.5% fewer misses than the LRU policy.

2) Speedup: Figure 8 shows the speedup for the predictor-
driven policies with a default random cache. CDBP yields an
almost negligible speedup of 0.1%. Random replacement by

itself results in a 1.1% slowdown. The sampling predictor gives
a speedup of 3.4% over the LRU baseline. Thus, a sampling
predictor can be used to improve performance with a default
randomly-replaced cache.

C. Prediction Accuracy and Coverage

Mispredictions come in two varieties: false positives and
false negatives. False positives are more harmful because they
wrongly allow an optimization to use a live block for some
other purpose, causing a miss. The coverage of a predictor is
ration of positive predictions to all predictions. If a predictor
is consulted on every cache access, then the coverage is
the fraction of cache accesses when the optimization may
be applied. Higher coverage means more opportunity for the
optimization. Figure 9 shows the coverage and false positive
rates for the various predictors given a default LRU cache.
On average, reftrace predicts that a block is dead for 88% of
LLC accesses, and is wrong about that prediction for 19.9%
of cache accesses. The counting predictor has a coverage of
67% and is wrong 7.19% of the time. The sampling predictor
has a coverage of 59% and a low false positive rate of 3.0%,
explaining why it has the highest average speedup among the
predictors. The benchmark 473.astar exhibits apparently
unpredictable behavior. No predictor has good accuracy for
this benchmark. However, the sampling predictor has very low
coverage for this benchmark, minimizing the damage caused
by potential false positives.

D. Multiple Cores Sharing a Last-Level Cache

Figure 10(a) shows the normalized weighted speedup
achieved by the various techniques on the multi-core work-
loads with an 8MB last-level cache and a default LRU policy.
The normalized weighted speedup over all 10 workloads
ranges from 6.4% to 24.2% for the sampler, with a geometric
mean of 12.5%, compared with 10% for CDBP, 7.6% for
TADIP, 5.6% for TDBP, and 4.5% for the multi-core version
of RRIP.

Figure 10(b) shows the normalized weighted speedup for
techniques with a default random policy. The speedups are still
normalized to a default 8MB LRU cache. The random sampler
achieves a geometric mean normalized weighted speedup of
7%, compared with 6% for random CDBP and no benefit
for random replacement by itself. All of the other techniques
discussed rely on the presence of a default LRU policy and do
not make sense in the context of a default random replacement
policy.

The average normalized MPKIs (not graphed for lack of
space) are 0.77 for the sampler, 0.79 for CDBP, 0.85 for
TADIP, 0.95 for TDBP, 0.82 for the random sampler, 0.93
for multi-core RRIP, and 0.84 for random CDBP. The sampler
reduces misses by 23% on average.

VIII. CONCLUSION AND FUTURE WORK

Sampling prediction can improve performance for last-level
caches while reducing the power requirements over previous
techniques. For future work, we plan to investigate sampling

10

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

450.soplex

456.hmmer

459.GemsFDTD

462.libquantum

470.lbm

471.omnetpp

473.astar

481.wrf

482.sphinx3

483.xalancbmk

amean

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 M
P

K
I

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 M
P

K
I

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 M
P

K
I

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 M
P

K
I Random

Random CDBP
Random Sampler

Fig. 7: LLC misses per kilo-instruction for various policies

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

450.soplex

456.hmmer

459.GemsFDTD

462.libquantum

470.lbm

471.omnetpp

473.astar

481.wrf

482.sphinx3

483.xalancbmk

gmean

0.90

0.95

1.00

1.05

1.10

1.15

Sp
ee

du
p

0.90

0.95

1.00

1.05

1.10

1.15

Sp
ee

du
p

0.90

0.95

1.00

1.05

1.10

1.15

Sp
ee

du
p

0.90

0.95

1.00

1.05

1.10

1.15

Sp
ee

du
p

0.90

0.95

1.00

1.05

1.10

1.15

Sp
ee

du
p

0.90

0.95

1.00

1.05

1.10

1.15

Sp
ee

du
p

0.90

0.95

1.00

1.05

1.10

1.15

Sp
ee

du
p

Random
Random CDBP
Random Sampler

0.82

1.19 1.2 1.3

Fig. 8: Speedup for various replacement policies with a default random cache

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

450.soplex

456.hmmer

459.GemsFDTD

462.libquantum

470.lbm

471.omnetpp

473.astar

481.wrf

482.sphinx3

483.xalancbmk

Arithmetic Mean

Benchmark

0

20

40

60

80

100

P
er

ce
n

ta
g

e
o

f
L

2
 A

cc
es

se
s

reftrace predictor

counting predictor

sampling predictor

Fig. 9: Coverage and false positive rates for the various predictors

techniques for counting predictors as well as cache-bursts
predictors [15] at all levels of the memory hierarchy. We plan
to evaluate multi-threaded workloads with significant sharing
of data to see what improvements can be made to the sampling
predictor in this context. The skewed organization boosts the
accuracy of the sampling predictor. In future work we plan
to apply other techniques derived from branch prediction to
dead block prediction. We plan to investigate the use of
sampling predictors for optimizations other than replacement
and bypass.

IX. ACKNOWLEDGEMENTS

Daniel A. Jiménez, Samira M. Khan, and Yingying Tian are
supported by grants from the National Science Foundation:
CCF-0931874 and CRI-0751138 as well as a grant from the
Norman Hackerman Advanced Research Program, NHARP-
010115-0079-2009. We thank Doug Burger for his helpful

feedback on an earlier version of this work. We thank the
anonymous reviewers for their invaluable feedback.

REFERENCES

[1] Jaume Abella, Antonio González, Xavier Vera, and Michael F. P.
O’Boyle. IATAC: a smart predictor to turn-off l2 cache lines. ACM
Trans. Archit. Code Optim., 2(1):55–77, 2005.

[2] Alaa R. Alameldeen, Aamer Jaleel, Moinuddin Qureshi, and Joel Emer.
1st JILP workshop on computer architecture competitions (JWAC-1)
cache replacement championship. http://www.jilp.org/jwac-1/.

[3] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78–101, 1966.

[4] D. Burger, J. R. Goodman, and A. Kagi. The declining effectiveness of
dynamic caching for general-purpose microprocessors. Technical Report
1261, 1995.

[5] Zhigang Hu, Stefanos Kaxiras, and Margaret Martonosi. Timekeeping
in the memory system: predicting and optimizing memory behavior.
SIGARCH Comput. Archit. News, 30(2):209–220, 2002.

11

mix1
mix2

mix3
mix4

mix5
mix6

mix7
mix8

mix9
mix10

gmean

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

1.00

1.05

1.10

1.15

1.20

Sp
ee

du
p

TDBP
CDBP
TADIP
RRIP
Sampler

1.22 1.24

(a)

mix1
mix2

mix3
mix4

mix5
mix6

mix7
mix8

mix9
mix10

gmean

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sp
ee

du
p

Random
Random CDBP
Random Sampler

1.17

(b)

Fig. 10: Weighted speedup for multi-core workloads normalized to LRU for (a) a default LRU cache and (b) a default
randomly replaced cache.

[6] Aamer Jaleel, Robert S. Cohn, Chi-Keung Luk, and Bruce Jacob.
CMP$im: A pin-based on-the-fly single/multi-core cache simulator. In
Proceedings of the Fourth Annual Workshop on Modeling, Benchmarking
and Simulation (MoBS 2008), June 2008.

[7] Aamer Jaleel, William Hasenplaugh, Moinuddin K. Qureshi, Julien
Sebot, Simon Stelly Jr., and Joel Emer. Adaptive insertion policies
for managing shared caches. In Proceedings of the 2008 International
Conference on Parallel Architectures and Compiler Techniques (PACT),
September 2008.

[8] Aamer Jaleel, Kevin Theobald, Simon Steely Jr., and Joel Emer. High
performance cache replacement using re-reference interval prediction
(rrip). In Proceedings of the 37th Annual International Symposium on
Computer Architecture (ISCA-37), June 2010.

[9] Georgios Keramidas, Pavlos Petoumenos, and Stefanos Kaxiras. Cache
replacement based on reuse-distance prediction. In ICCD, pages 245–
250, 2007.

[10] Samira M. Khan, Daniel A. Jiménez, Babak Falsafi, and Doug Burger.
Using dead blocks as a virtual victim cache. In Proceedings of the
International Conference on Parallel Architectures and Compilation
Technologies (PACT), 2010.

[11] Mazen Kharbutli and Yan Solihin. Counter-based cache replacement and
bypassing algorithms. IEEE Transactions on Computers, 57(4):433–447,
2008.

[12] An-Chow Lai and Babak Falsafi. Selective, accurate, and timely self-
invalidation using last-touch prediction. In International Symposium on
Computer Architecture, pages 139 – 148, 2000.

[13] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block prediction &
dead-block correlating prefetchers. SIGARCH Comput. Archit. News,
29(2):144–154, 2001.

[14] Alvin R. Lebeck and David A. Wood. Dynamic self-invalidation: reduc-
ing coherence overhead in shared-memory multiprocessors. SIGARCH
Comput. Archit. News, 23(2):48–59, 1995.

[15] Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burger. Cache
bursts: A new approach for eliminating dead blocks and increasing cache
efficiency. In Proceedings of the IEEE/ACM International Symposium
on Microarchitecture, pages 222–233, Los Alamitos, CA, USA, 2008.
IEEE Computer Society.

[16] Pierre Michaud, André Seznec, and Richard Uhlig. Trading conflict
and capacity aliasing in conditional branch predictors. In Proceedings

of the 24th International Symposium on Computer Architecture, pages
292–303, June 1997.

[17] David M. Nicol, Albert G. Greenberg, and Boris D. Lubachevsky.
Massively parallel algorithms for trace-driven cache simulations. In
IEEE Transactions on Parallel and Distributed Systems, volume vol. 5,
pages 849–859, August 1994.

[18] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sher-
wood, and Brad Calder. Using simpoint for accurate and efficient
simulation. SIGMETRICS Perform. Eval. Rev., 31(1):318–319, 2003.

[19] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely
Jr., and Joel S. Emer. Adaptive insertion policies for high performance
caching. In 34th International Symposium on Computer Architecture
(ISCA 2007), June 9-13, 2007, San Diego, California, USA. ACM, 2007.

[20] Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt.
A case for mlp-aware cache replacement. In ISCA ’06: Proceedings
of the 33rd annual international symposium on Computer Architecture,
pages 167–178, Washington, DC, USA, 2006. IEEE Computer Society.

[21] Jennifer B. Sartor, Subramaniam Venkiteswaran, Kathryn S. McKinley,
and Zhenlin Wang. Cooperative caching with keep-me and evict-me.
Annual Workshop on Interaction between Compilers and Computer
Architecture, 0:46–57, 2005.

[22] André Seznec. A case for two-way skewed-associative caches. In
ISCA ’93: Proceedings of the 20th annual international symposium on
Computer architecture, pages 169–178, New York, NY, USA, 1993.

[23] Stephen Somogyi, Thomas F. Wenisch, Nikolaos Hardavellas, Jangwoo
Kim, Anastassia Ailamaki, and Babak Falsafi. Memory coherence
activity prediction in commercial workloads. In WMPI ’04: Proceedings
of the 3rd workshop on Memory performance issues, pages 37–45, New
York, NY, USA, 2004. ACM.

[24] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and
Norman P. Jouppi. Cacti 5.1. Technical report, HP Tech Report HPL-
2008-20, 2008.

[25] Zhenlin Wang, Kathryn S. McKinley, Arnold L. Rosenberg, and
Charles C. Weems. Using the compiler to improve cache replacement
decisions. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, page 199, Los Alamitos, CA,
USA, 2002. IEEE Computer Society.

12

