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Abstract

Microarchitectural prediction based on neural learning
has received increasing attention in recent years. However,
neural prediction remains impractical because its superior
accuracy over conventional predictors is not enough to off-
set the cost imposed by its high latency. We present a new
neural branch predictor that solves the problem from both
directions: it is both more accurate and much faster than
previous neural predictors. Our predictor improves accu-
racy by combining path and pattern history to overcome
limitations inherent to previous predictors. It also has much
lower latency than previous neural predictors. The result is
a predictor with accuracy far superior to conventional pre-
dictors but with latency comparable to predictors from in-
dustrial designs. Our simulations show that a path-based
neural predictor improves the instructions-per-cycle (IPC)
rate of an aggressively clocked microarchitecture by 16%
over the original perceptron predictor.

1 Introduction

Branch misprediction latency is the most important com-
ponent of performance degradation as microarchitectures
become more deeply pipelined [20]. Branch predictors
must improve to avoid the increasing penalties of mispre-
dictions. Branch predictors based on neural learning are the
most accurate predictors in the literature [12, 10], but they
are impractical because the advantage of the extra accu-
racy is nullified by high access latency, even when latency-
sensitive predictor organizations are used [7]. This latency
is due primarily to the complex computation that must be
carried out to determine the excitation of an artificial neu-
ron.

We present a new, practical neural branch predictor. Its
latency is much lower than previous designs and is com-
parable to that of conventional predictors used in industrial
designs, making it practical for implementation in a high-
frequency microprocessor. At the same time, its accuracy is
superior to that of previous highly accurate predictors.

Figure 1 illustrates how our new predictor achieves low
latency by beginning well ahead of time. The predictor
staggers computations in time, predicting a branch using a
neuron selected dynamically along the path to that branch,

rather than selecting the neuron all at once based solely on
the branch address. A happy side-effect of this selection
process is improved accuracy because the predictor is able
to correlate with path history as well as pattern history.

We show that our path-based neural predictor has a mis-
prediction rate 7% lower than that of the original perceptron
predictor, and because of its improved latency it delivers
an IPC 16% higher than that predictor at a 64KB hardware
budget.
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Figure 1. Rather than being done all at once
(above), computation is staggered (below).

This paper is organized as follows: Section 2 briefly dis-
cusses related work. Section 3 gives background in neu-
ral branch prediction and explains the new prediction algo-
rithm. Section 4 describes our experimental methodology.
Section 5 gives the accuracy and performance results of our
experiments. Finally, Section 6 concludes the paper.

2 Related Work

2.1 Neural Prediction

Calder et al. use neural networks to perform static
branch prediction [4] at compile time. Features such as
control-flow information are used to train a neural network
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to distinguish between branches that are likely to be biased
taken from branches that are likely to be biased not taken.

Dynamic branch prediction with neural methods was
first proposed by Vintan et al. [23] who explore the use of
learning vector quantization, a neural method. The result-
ing branch predictor achieves an accuracy comparable to a
table-based branch predictor.

2.1.1 Branch Prediction with Perceptrons

The original perceptron predictor [9] uses a simple linear
neuron known as a perceptron [1] to perform branch pre-
diction. Perceptrons achieve better accuracy than two-level
adaptive branch prediction because of their ability to exploit
long history lengths which have been shown to provide ad-
ditional correlation for branch predictors [6]. Another study
suggests ways to implement the predictor using techniques
from high-speed arithmetic [10], but the latency of the pre-
dictor is more than 4 cycles with an aggressive clock rate.
Despite its drawbacks, neural prediction has been suggested
as a promising technology for future microprocessors [16].
It has become part of one of Intel’s IA-64 simulators for re-
searching future microarchitectures [2]. It has been used as
a component in studies of hybrid predictors [12, 22] and is
the most accurate single-component branch predictor in the
literature [12, 10].

2.2 Path-Based Prediction

Our path-based neural predictor achieves superior accu-
racy and low latency by choosing the neural weights based
on the path taken to reach a branch rather than the branch
address itself. Branch outcomes are highly correlated both
with path and pattern histories [14, 21]. Previous work has
also explored the use of path information to improve branch
predictor accuracy.

2.3 Latency-Sensitive Prediction

As hardware budgets for branch predictors expand, re-
search has begun to focus on balancing the tradeoff between
accuracy and latency important for large predictors with
high latencies. Jiménez et al. survey several techniques
for mitigating branch predictor delay [8]. The most com-
mon technique is overriding, in which a quick but relatively
inaccurate predictor guides instruction fetch in a single cy-
cle, and may be corrected by a slower but more accurate
multi-cycle predictor. This approach was used for the Al-
pha EV6 and EV7 cores [11] and was proposed for the Al-
pha EV8 [16]. The overriding technique does not scale well
as branch predictor latency increases because the penalty
for an overriding event becomes substantial [7].

Other studies propose pipelined branch predictors [21, 7,
17] to mitigate latency. The main source of latency for most

large branch predictors is the access delay to the memories
used to implement the pattern history tables. The latency of
the perceptron predictor is dominated by computation time.

3 A Path-Based Neural Predictor

In this section, we review the relevant details of previous
work on neural branch prediction. In this context, we give
the intuition behind the path-based neural predictor. We
then give a detailed explanation of the path-based neural
predictor.

3.1 Branch Prediction with Perceptrons

The perceptron predictor uses perceptron learning [15, 1]
to predict the directions of conditional branches [9, 10]. We
review the design of the perceptron predictor, describing
algorithms using an Algol-like pseudocode with keywords
in boldface and comments in italics. We use taken and
not taken as meaningful names for Boolean constants.

The perceptron predictor is similar to other predictors in
that it keeps a global history shift register that records the
outcomes of branches as they are executed, or speculatively
as they are predicted. The width of this register is the history
length for the predictor, hereafter referred to as

�
.

The perceptron predictor keeps an ����� �
	���
matrix��� ����� ��� ��� ����� ���

of integer weights, where � is a design
parameter. Weights are typically 8-bit bytes. Each row
of the matrix is an � ��	���

-length weights vector. Each
weights vector stores the weights of one perceptron that
is controlled by perceptron learning. In a weights vector� � ����� ��� , the first weight, � � � � , is known as the bias weight.
Thus, the first column of

�
contains the bias weights

of each weights vector. The Boolean vector  � � ��� ���"!# � ��� �%$ � #
taken

�
not taken

$
represents the global history

shift register.

3.1.1 Prediction and Update Algorithms

Figure 2 gives pseudocode for the prediction and update al-
gorithms for the original perceptron predictor. The predic-
tion algorithm returns a Boolean value predicting the branch
at address pc.

When a branch outcome becomes known, the train algo-
rithm is invoked to update the predictor. The training algo-
rithm takes an integer parameter & that controls the trade-
off between long-term accuracy and the ability to adapt to
phase behavior. It has been empirically determined that
choosing &('*) � � +�, �-	.�0/21

gives the best accuracy [10].
Thus, & is a constant for a given history length. Once the
outcome of a branch becomes known, the following algo-
rithm is used to update the perceptron predictor, taking as
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function prediction (354 : integer): 6 taken , not taken 7 ;
begin8:9 ; 354=<?>2@BA Hash the 354 to select a row of CD�EGF � 9 ; CIH 8KJMLON2PRQ �SUTWV%X CIH 8KJZY0N if [BH Y0N�; taken\ CIH 8KJZY0N if [BH Y0N�; not taken Compute output of

8 �]�
perceptron using [BH_^�`a` b N as input

if D EGF �:c L then
prediction := taken

else Make the prediction based on the sign of D EGF �
prediction := not taken

end if
end

procedure train (
8MJ D EGF � : integer; prediction , outcome : 6 taken , not taken 7 );

if prediction d; outcome or e D�EGF � e2fRg then If incorrect or D�EGF � below threshold then adjust weightsCIH 8KJMLhNi9 ; CIH 8KJMLhN2P X ^ if outcome
;

taken\ ^ if outcome
;

not taken Increment bias weight if taken, decrement if not taken

for
Y

in ^0`a` b in parallel doCIH 8KJZY0Nj9 ; CIH 8MJ�Y0NkP X ^ if outcome
; [BH Y0N\ ^ if outcome d; [BH Y0N Increment

Y ���
weight for positive correlation,

end for decrement for negative correlation
end if[ 9 ;ml [�non"^qp or outcome Update the global history shift register

end

Figure 2. Perceptron prediction and update algorithm

parameters the outcome as well as the values of r , predic-
tion, and sutwv0x computed during the prediction phase.

3.1.2 Implementation

We review some of the suggestions for a practical imple-
mentation of the perceptron predictor.

The matrix
�

should be implemented as a tagless direct-
mapped memory of � blocks with the r xZy block containing�

8-bit weights that form the weights vector of the r xZy per-
ceptron. Thus, each time a prediction is needed, the weights
vector corresponding to that value of zi{ is read from mem-
ory.

Instead of negating the weights to produce summands for
the computation of s5tGv�x , they can be bitwise complemented
with very little impact on accuracy. This speeds the compu-
tation of the summands.

The computation of sutGv�x can be arranged as a Wallace-
tree [5] adder to add the summands. This allows the circuit
performing this computation to have a depth of |}��~���� �i
gate delays, as opposed to |}� �i gate delays with a naive
summing algorithm.

3.1.3 Disadvantage of the Perceptron Predictor

The main disadvantage of the perceptron predictor is its
high latency. Even using the high-speed arithmetic tricks
mentioned above, the latency of the computation of s twv0x
is high relative to the clock period of a deeply pipelined
microarchitecture. It has been shown that performance is

highly sensitive to high branch predictor latency [8], even
when special techniques are used to mitigate latency [7].

3.2 A Path-Based Neural Predictor

Our alternative to the perceptron predictor is a neural
predictor that chooses its weights vector according to the
path leading up to a branch, rather than according to the
branch address alone. This technique has two advantages.
First, latency is mitigated because computation of s�tGv�x can
begin in advance of the prediction, with each step proceed-
ing as soon as a new element of the path is executed. Sec-
ond, accuracy is improved because the predictor incorpo-
rates path information into the prediction.

3.2.1 Intuitive Description

Our new predictor has much the same structure as the per-
ceptron predictor. It keeps a matrix

�
of weights vectors.

Each time a branch is fetched and requires a prediction, one
of the weights vectors from

�
is read. However, only the� xZy weight, i.e. the bias weight, is used to help predict the

current branch. Its value is added to a running total that has
been kept for the last

�
branches, with each summand added

during the processing of a previous branch.
Figure 3 illustrates the difference between the perceptron

predictor (a) and our new predictor (b). The diagrams show
the progress of the two predictors predicting a sequence of
branches labeled �qx��j� through �qx with ��x fetched most re-
cently. The vertical columns correspond to the rows of

�
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Figure 3. Illustration of the weights used to predict branch �qx with the perceptron predictor (a) and
the path-based neural predictor (b) with history length of 7. Vertical columns are weights vectors.

accessed at each time step. Each predictor has a history
length

� '�� . For each predictor, the set of weights used to
predict branch �qx is � � ����� � � . For the perceptron predictor (a)
at time � , the vector is accessed, each weight processed into
a summand, and sutwv�x computed all at once. By contrast,
the � � ����� � � weights for the new predictor (b) are built up by
accessing different positions in the weights vectors associ-
ated with branches � x��W� through � x . For the new predictor,
a running total (not shown) is kept of the summands in the
computation of s twv0x . By time � , the only summand left to
be added is the bias weight, � � � � . Note that the prediction
generated for branch �Ox��j� is the r xZy most recent speculative
history bit for branch �qx , so the relevant parts of the specu-
lative global history shift register become available as they
are needed. To further clarify the intuition, Figure 3 also
shows the positions of the weights s � ����� � � and � � ����� � � used
to compute the predictions for the previous two branches��x��%� and ��x��j� .

Another way to see the difference between the two pre-
dictors is to look at which weights are used to predict which
branches. In the original perceptron predictor, each of the
weights in the weights vector associated with branch �q� is
used to predict branch �qx . In the new predictor, the r xZy
weight in the weights vector associated with branch � � is
used to predict branch � �w��� .
3.2.2 The Prediction Algorithm

Figure 4 shows a parallel algorithm for predicting the cur-
rent branch and updating computations for predicting the
next

�
branches. Let

�
, � , and

�
be defined as before. Let��� � ����� ���

and
� � ����� ���

be vectors of
�?	��

integers. The first
column of

�
form the bias weights.

��� � � �?� � contains the
running total computing the perceptron output that will be

used to predict the � xZy branch after the current one.
���

is
updated speculatively, so

�
, used in the updating algorithm

described later, holds the most up-to-date non-speculative
version of

���
. Think of

���
as a queue that holds the par-

tial sums for the perceptron output computation as they are
being computed. A zero enters the tail of the queue at

��� � � �
and the perceptron output, minus the bias weight, emerges
at
��� � ���

.
�  and  are shift registers that hold speculative

and non-speculative global history, respectively.

3.2.3 Update Algorithm

Updating the path-based neural predictor is conceptually
similar to updating the original perceptron predictor. How-
ever, the new update algorithm has to deal with the fact that
each weights vector is associated with

�
branches, rather

than one branch as in the original predictor. When branch��x completes and its outcome is ready to be used to update
the predictor, most of the weights vector associated with��x cannot be updated because they are being used to pre-
dict future branches that have not completed yet. Thus, we
design the matrix

�
as
��	��

independently addressable
high-speed memories, each representing the � weights of
a single column of

�
. When the predictor is updated the

corresponding weights can be accessed independently. The
memory with the bias weights are kept closest to the logic
that computes the final s twv0x value for low latency.

Figure 5 gives a parallel algorithm for updating the path-
based neural predictor. It accepts as parameters the values
of r and s twv�x computed during the prediction algorithm as
well as the Boolean outcome of the branch, a vector � rep-
resenting the value of the speculative global history shift
register

���
when the branch was predicted, and an array� � � ��� ��� of integers representing the addresses of the last

�
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function 35�0�O� 8 4G� 8�� A (3u4 : integer) : 6 taken , not taken 7
begin8:9 ; 354=<?>2@BA Hash 354 to produce

8
, a row number in C .D 9 ;¡ %¢ H b N�P CIH 8MJKLhN D , the perceptron output, is the partial sum

if D c L then from the last prediction plus the bias weight.
prediction

9 ;
taken

else The prediction is the complement of the sign bit of D .
prediction

9 ;
not taken

end if
for
Y

in ^0`£` b in parallel do Update the next b partial sums.¤ S ; b \ Y  �¢ H ¤ S N is the partial sum for predicting the
Y ���

next branch.
if prediction

;
taken then %¢¦¥ H ¤ S P ^ Ni9 ;¡ %¢ H ¤ S N§P C¨H 8KJZY0N Do the next step in the perceptron output computation for the

else
Y ���

next branch, speculating that this prediction is correct, %¢¦¥ H ¤ S P ^ Ni9 ;¡ %¢ H ¤ S N \ C¨H 8KJZY0N and shifting each partial sum to the next position. We’re using
end if the current prediction as the

Y ���
most recent history bit for

end for the
Y ���

next branch. �¢�9 ;" %¢¦¥
Copy the resulting partial sums into

 �¢
. �¢ H LONj9 ;¡L Initialize the partial sum for b ��� next branch.  [ 9 ;mlZ  [mnon(^Op or prediction Shift the prediction into the speculative global history.

end

Figure 4. Path-based neural prediction algorithm to predict branch at address zj{
branches predicted modulo � . That is, � � r � is the index of
the row in

�
used for predicting the r xZy most recent branch

instruction. This array can be implemented as a small circu-
lar buffer global to all invocations of the training procedure
with speculative and non-speculative versions as with the
prediction algorithm. Note that the address modulo � was
computed in the prediction algorithm, so it can be recorded
in the circular buffer at that time. Also, the modulo opera-
tion need not be expensive: it is simply a masking operation
if the number of weights vectors is chosen to be a power of
two.

Some of the details of these algorithms have been omit-
ted for clarity and brevity, e.g., details the maintenance
of the circular buffer of weights vector indices and the
maintenance of the contents of

�
, which is simply a non-

speculative copy of the circuitry that maintains
���

. A de-
tailed Java implementation of the algorithm will be made
available upon request.

3.2.4 Recovery After Misprediction

When the path-based neural predictor predicts incorrectly,
the

�©�
vector is restored to the value stored in

�
during the

predictor update for the last committed branch. Since all of
the branches up to the last committed branch were correctly
predicted and committed in-order, the restored value of

���
is as it was when the mispredicted branch was fetched, and
prediction will continue normally. The recovery takes less
than one cycle, and its latency is completely hidden by the
latency of other actions taken by the microarchitecture to
recover from the misprediction.

3.2.5 Area and Latency

Clearly, the prediction algorithm uses a slower method for
computing sktwv�x than the original perceptron method. How-
ever, since it begins the summation process

�
branches be-

fore the prediction is needed, the latency is almost com-
pletely hidden. The only elements on the critical path to
making a prediction are reading the bias weight and adding
it to the current partial sum (i.e.,

��� � ���
). This is much

faster than computing s5tGv�x all at once with a Wallace-tree
and also consumes less area. The Wallace-tree for the origi-
nal perceptron predictor has |}� � ~���� �i carry-save adders as
well as a carry-lookahead adder for the final addition, while
the new algorithm requires only |}� �j independent adders
for updating

���
at each prediction step. For reasonable-

sized predictors and history lengths, we estimate that the
path-based neural predictor would take approximately two
clock cycles to produce a prediction given a branch address.
This is the same latency tolerated by branch predictors from
industrial designs [16]. We give details of these estimates
later in Section 4.

4 Methodology

In this section, we describe our experimental methodol-
ogy for evaluating the path-based neural predictor.

4.1 Microarchitectural Framework

We use 17 SPEC CPU integer benchmarks running un-
der a version of SimpleScalar/Alpha [3], a cycle-accurate

5



procedure train (
8KJ D EGF � : integer; prediction , outcome : 6 taken , not taken 7 ,ª : array Ha^0`a` b N of integer; « : array Ha^0`a` b N of 6 taken , not taken 7 );

begin
if prediction d; outcome or e D EGF � e2fRg then If incorrect or D EGF � below threshold then adjust weightsCIH 8KJMLhNi9 ; CIH 8KJMLhN2Pm¬ ^ if outcome

;
taken\ ^ if outcome

;
not taken

for
Y

in ^0`a` b in parallel do
¤

is the row in C whence came the
Y ���

weight for¤ 9 ; ª H Y0N this predictionCIH ¤ J�Y0Nj9 ; CIH ¤ JZY0N2P�¬ ^ if outcome
; «H Y0N\ ^ if outcome d; «H Y0N Increment

Y ���
weight for positive correlation,

end for decrement for negative correlation,
end if[ 9 ;ml [�non"^qp or outcome Update non-speculative global history shift register
if prediction d; outcome then  [ 9 ; [ Restore speculative history on a misprediction %¢�9 ;(¢

Restore
 %¢

to a non-speculative version computed
end if using only non-speculative information (not shown)

end

Figure 5. Path-based predictor update algorithm

out-of-order execution simulator that has been enhanced to
include our branch predictors, simulate overriding predic-
tors at various latencies, and simulate deep pipelines. We
simulate all of the SPEC CPU 2000 integer benchmarks,
and all of the SPEC CPU 95 integer benchmarks that are
not duplicated in SPEC CPU 2000. The benchmarks are
compiled with the CompaQ GEM compiler with the opti-
mization flags -fast -O4 -arch ev6.

To better capture the steady-state performance behavior
of the programs, our experiments skip the first billion in-
structions, as several of the benchmarks have an initializa-
tion period lasting fewer than one billion instructions during
which program behavior is not characteristic of the many
billions of subsequent instructions. After skipping those
instructions, each benchmark executes 500 million instruc-
tions on the ref inputs before the simulation ends.

Table 1 shows the base microarchitectural parameters
used for the simulations. We started with a configura-
tion loosely based on the Intel Pentium 4, with a deeper
pipeline of 32 stages to provide a reasonable model of a
future aggressively clocked microarchitecture. A recent
study from Intel’s Pentium Processor architecture group
concludes that performance of aggressively clocked mi-
croarchitectures continues to improve until pipelines reach
a depth of 52 [20]. Thus, while our 32-stage pipeline is
aggressive for current technology, it is conservative with re-
spect to what is possible in future technologies.

4.2 Branch Predictors Simulated

We simulate the following predictors to compare with
the path-based neural predictor:

Parameter Configuration
L1 I-cache 16 KB, 64B blocks, 2-way

L1 D-cache 8 KB, 64B blocks, 4-way
L2 unified cache 512KB, 128B blocks, 8-way

BTB 4096 entry, 2-way
Issue width 8

Pipeline depth 32
RUU entries 128
LSQ entries 128

L2 hit latency 7 cycles
L2 miss latency 200 cycles

Table 1. Microarchitectural parameters

2Bc-gskew We simulate a 2Bc-gskew predictor, which is a
McFarling-style [13] hybrid predictor combining a bimodal
predictor with an egskew predictor that predicts using the
majority prediction of three components: the bimodal pre-
dictor and two gshare-like predictors indexed by special
hash functions so as to minimize the chance that both pre-
dictors will suffer destructive interference at the same time.
A version of this predictor would have been used in the Al-
pha EV8 processor [16]. In our latency-sensitive simula-
tion, 2Bc-gskew takes more than one cycle to return a result.
We use a two-level overriding organization [8] to mitigate
this latency: A first-level 2K-entry bimodal predictor gives
a prediction in a single cycle and instructions are fetched
down the predicted path. If the second-level 2Bc-gskew pre-
dictor disagrees with the initial prediction, the instructions
fetched so far are dropped and fetching continues from the

6



other path. This technique closely reflects the design of the
EV8 predictor, in which 2Bc-gskew overrides a less accu-
rate instruction cache line predictor.

Perceptron Predictor We simulate a recent [10], highly
accurate version of the perceptron predictor that combines
global and per-branch history information in a manner rem-
iniscent of the alloyed branch predictors of Skadron et
al. [19, 10]. We again use an overriding organization with
a first-level 2K-entry bimodal predictor, this time backed
up with a second-level perceptron predictor. We note that
this predictor has been shown to be more accurate than even
the most aggressive multi-component hybrid predictor [10].
Thus, including other combined global and per-branch hy-
brid predictors in this study would be superfluous.

gshare.fast We simulate a specialized version of the
gshare predictor that has been pipelined to return a result
in a single cycle. By using older branch history to prefetch
a portion of the pattern history table in a previous cycle and
then using the exclusive-OR of more recent history and the
low bits of the current branch address to select from that
portion, gshare.fast has an effective latency of one cycle [7].
It has been shown to yield higher instruction per cycle rates
than highly accurate predictors such as 2Bc-gskew and the
perceptron predictor at large hardware budgets [7]. For this
study, our simulation of gshare.fast is idealized, assuming
that there is no overlap or missing gap between the older
history and more recent history.

Fixed-Length Path Predictor We simulate a fixed length
path branch predictor that forms a hash of the history of
branch target addresses leading up to the branch to be pre-
dictor [21]. The hash function XORs the addresses, first ro-
tating each address by a number of bits equal to it position in
the branch history. The hash is used to index a table of two-
bit saturating counters as in a two-level scheme. We use the
same fixed length for each benchmark, as opposed to using
a variable-length path branch predictor which requires ex-
pensive profiling [21]. (Note that none of the schemes used
for this paper require profiling.)

Path-Based Neural Predictor We simulate the path-
based neural predictor as described above, using an over-
riding organization with a first-level 2K-entry bimodal pre-
dictor as with the other overriding predictors.

Each simulated predictor is pipelined so that it can be ac-
cessed on every cycle, e.g. for a predictor with a latency of
2 cycles, the prediction requested 2 cycles ago is available
in the current cycle. Each predictor’s history registers are
updated speculatively and corrected on a misprediction.

4.3 Tuning The Predictors

Using the train inputs of the benchmarks and trace-
driven simulation, we find the history lengths that minimize
the average misprediction rate for each hardware budget and
branch predictor, exploring hardware budgets from 1 KB
to 64KB. We use these history lengths in the execution-
driven simulations on the ref inputs. Table 2 shows the
tuned history lengths for each hardware budgets. Note that
gshare.fast is not shown, as its history length is fully con-
strained by the details of its implementation, and is equal
to the base-2 logarithm of the number of elements in the
pattern history table.

fixed path-
Hardware length global/ based

Budget path 2Bc-gskew local neural

1 KB 10 10 25/9 13
2 KB 10 10 31/11 18
4 KB 12 10 34/12 20
8 KB 15 11 34/12 32

16 KB 20 14 38/14 34
32 KB 20 15 40/14 34
64 KB 20 16 50/18 37

Table 2. Tuned history lengths

4.4 Estimating Branch Predictor Latency

We use CACTI 3.0 [18] to estimate the latency of the var-
ious memories accessed by the predictors. We use HSPICE
along with a custom logic design program to estimate the
latency of the circuits used to compute the perceptron out-
put for the perceptron predictor as well as the latency of
the adders used for the path-based neural predictor. Ta-
ble 3 shows the latencies we derived for each branch pre-
dictor and hardware budget except for gshare.fast, giving
the amount of time it takes from the time a branch address
is known to the time a prediction becomes available. For
gshare.fast, the latency is always at most one cycle. For
2Bc-gskew, we estimate the latency of the predictor as the
delay in accessing the slowest table plus one fan-out-of-four
(FO4) delay for taking the majority and choosing the hy-
brid prediction from the two component predictions. For
the global/local perceptron predictor, the latency is the sum
of the access delay to the table of weights vectors measured
by CACTI and the worst-case delay of the perceptron output
circuit as measured by HSPICE. We optimistically ignore
the access time to the first-level table of per-branch histo-
ries. The fixed-length path branch predictor is computa-
tionally expensive to implement because it requires hashing
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many addresses to produce one prediction. Nevertheless,
we optimistically assume that it can be pipelined to produce
a result with the same latency as 2Bc-gskew. For the path-
based neural predictor, the latency is the sum of the access
delay to the table of bias weights and the worse-case delay
of the adder that adds the bias weight to the next partial sum
in the

���
vector. For consistency, we use the same adder

circuits that were used in the original perceptron predictor
study [10]. All of the estimates assume a 90 nm technology
and an aggressive 8 FO4 delays, i.e., 3.86 GHz.

Hardware 2Bc-gskew global/local path-based
Budget (cycles) perceptron neural

1 KB 2 5 2
2 KB 2 5 2
4 KB 2 5 2
8 KB 2 6 2

16 KB 2 6 2
32 KB 2 6 2
64 KB 3 7 3

Table 3. Estimated access latencies

5 Experimental Results

In this section, we give the results of our experimen-
tal studies. We discuss the misprediction rates of the var-
ious branch predictors. We then discuss the performance
achieved by the predictors in terms of instructions-per-cycle
(IPC).

5.1 Misprediction Rates

Figure 6 shows the arithmetic mean misprediction rates
for the four predictors ranging over hardware budgets from
1 KB to 64KB over all benchmarks as measured by the mi-
croarchitectural simulator. Clearly, the path-based neural
predictor has the lowest misprediction rate of all the predic-
tors for all hardware budgets. Figure 7 shows the mispre-
diction rates for each benchmark at a 8KB hardware bud-
get. The path-based neural predictor achieves an average
misprediction rate of 5.7%, which is 7% lower than that of
the global/local perceptron predictor at 6.1%, 13% lower
than that of 2Bc-gskew at 6.6%, and 40% lower than that of
the fixed-length path branch predictor at 9.4%. The path-
based neural predictor has the lowest misprediction rate of
all the predictors in 9 out of the 17 benchmarks. Ignoring
the global/local perceptron predictor, the path-based neural
predictor is the best predictor for 14 of the benchmarks.
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Figure 6. Average misprediction rates per
hardware budget

5.2 Instructions Per Cycle

Figure 8 shows the number of instructions executed per
cycle (IPC) for each branch predictor and hardware budget.
Clearly, the path-based neural predictor yields the best per-
formance at every hardware budget. The key reason is the
combination of superior accuracy and low latency. For in-
stance, the global/local perceptron predictor, which is the
second most accurate of all the branch predictors, yields the
worse performance at higher hardware budgets because of
its high latency. At the same time, 2Bc-gskew, a McFarling-
style hybrid with approximately the same latency as the
path-based neural predictor, delivers less accuracy and per-
formance than the single-component path-based neural pre-
dictor. At a 64KB hardware budget, the path-based neural
predictor delivers an IPC 16% higher than that of the per-
ceptron predictor because of that predictor’s high latency.
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Figure 8. Average IPC per hardware budget
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Figure 7. Misprediction rates per benchmark at an 8KB hardware budget

Figure 9 shows the IPC for each benchmark and each
predictor at an 8KB hardware budget. The path-based neu-
ral predictor yields the best IPC in 15 out of the 17 bench-
marks. It achieves a harmonic mean IPC of 1.06, giving
a speedup of 12% over the global/local perceptron predic-
tor at 0.95 IPC, 4% over 2Bc-gskew at 1.02 IPC, 18% over
gshare.fast at 0.90 IPC, and 18% over the fixed length path
branch predictor at 0.90 IPC. At this hardware budget, both
2Bc-gskew and the path-based neural predictor have a la-
tency of 2 cycles, while gshare.fast has a single-cycle la-
tency. The global/local perceptron predictor has a latency
of 6 cycles at this hardware budget. Although it is more
accurate than gshare.fast and 2Bc-gskew, its higher latency
cancels any advantage it might have for performance.

5.2.1 Area vs. Hardware Budget

Although standard for branch prediction research, equating
the term hardware budget with number of bits of predic-
tor state is problematic in our case. As described in Sec-
tion 3.2.3, an implementation of the path-based neural pre-
dictor may use

�®	¯�
independently addressable memories,

each with its own selection logic, to facilitate the update
algorithm. The path-based neural predictor also requires a
number of adder circuits proportional to the history length.
We estimate that a naive implementation of a path-based
neural predictor using 8KB of state could require 80% more
area than a 8KB 2Bc-gskew predictor. Even so, the path-
based neural predictor is still the best choice. A path-based
neural predictor with a hardware budget of 4KB, consuming
approximately 10% less total area than a 8KB 2Bc-gskew,
achieves a harmonic mean IPC of 1.05 which is less than 1%
lower than that of an 8KB path-based neural predictor and
3% higher than that of a 8KB 2Bc-gskew. Indeed, a path-
based neural predictor with only 2KB of state achieves the
same IPC as an 8KB 2Bc-gskew.

6 Conclusion

We have presented a new neural branch predictor that
has lower latency and superior accuracy to previous neural
branch predictors. Our new predictor achieves high accu-
racy and low latency by predicting a branch using a neuron
selected dynamically along the path to that branch. This
work is only the beginning of path-based neural prediction;
we have yet to fully exploit the potential of this technique.
We have shown that our predictor has better accuracy and
yields higher performance than conventional predictors. By
incorporating our path-based neural predictor into new mi-
croarchitectures, designers will be able to improve IPC rates
while increasing pipeline depths and clock frequencies.
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