
Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

Improving Writeback Efficiency with Decoupled Last-Write Prediction

Zhe Wang Samira M. Khan Daniel A. Jiménez

The University of Texas at San Antonio

{zhew,skhan,dj}@cs.utsa.edu

Abstract

In modern DDRx memory systems, memory write re-

quests compete with read requests for available memory

resources, significantly increasing the average read request

service time. Caches are used to mitigate long memory read

latency that limits system performance. Dirty blocks in the

last-level cache (LLC) that will not be written again before

they are evicted will eventually be written back to memory.

We refer to these blocks as last-write blocks. In this pa-

per, we propose an LLC writeback technique that improves

DRAM efficiency by scheduling predicted last-write blocks

early. We propose a low overhead last-write predictor for

the LLC. The predicted last-write blocks are made avail-

able to the memory controller for scheduling. This tech-

nique effectively re-distributes the memory requests and ex-

pands writes scheduling opportunities, allowing writes to

be serviced efficiently by DRAM. The technique is flexible

enough to be applied to any LLC replacement policy. Our

evaluation with multi-programmed workloads shows that

the technique significantly improves performance by 6.5%-

11.4% on average over the traditional writeback technique

in an eight-core processor with various DRAM configura-

tions running memory intensive benchmarks.

1 Introduction

Memory access latency is a major performance bottle-

neck. A last-level cache miss can stall the pipeline and

require hundreds of cycles of delay. Memory write re-

quests compete with read requests for the available mem-

ory resources, increasing the average service time of read

requests. This write-induced interference [12] has a signifi-

cant impact on system performance.

There are two aspects to reducing write-induced interfer-

ence. First, we must consider when to schedule the write

requests [27]. System performance is sensitive to mem-

ory read latency, so write requests should be scheduled to

have minimal interference with read requests. Second, we

must consider how to schedule write requests. Write re-

quests should be scheduled so that they can be serviced

by DRAM efficiently. Scheduling can benefit from a large

write scheduling space that can be used to hold the write

scheduling candidates. A large write scheduling space can

improve writeback efficiency by increasing the possibility

of scheduling row-buffer hits and exploiting bank-level par-

allelism, i.e., write requests may be serviced in parallel in

different DRAM banks.

The traditional way to handle writeback requests is to

write a dirty block into the write buffer when it is evicted

from the LLC. Write requests in the write buffer are sched-

uled for service based on the buffer management policy.

Since the write buffer only has a small number of entries,

the ability to schedule write requests with good locality is

limited. Thus, the scheduling decision made is far from op-

timal. Increasing the size of the write buffer can expand the

write scheduling space of the memory controller, but a large

write buffer is complex and power inefficient. Moreover,

exposing dirty blocks to the memory controller when they

are evicted causes high contention between bursty reads and

writes by clustering memory traffic, thus reducing memory

bandwidth utilization and degrading performance [13].

Previous work [13, 27, 12] proposes to write back dirty

cache blocks near the least-recently-used (LRU) position

early. Though these proposals reduce write-induced inter-

ference by either balancing the memory bandwidth or ex-

panding the memory scheduling space, they depend on the

recency levels of LLC replacement policies such as LRU.

However, such policies are prohibitively expensive in the

LLC, and these writeback techniques cannot work with less

costly replacement policies with no distinct recency levels,

such as not recently used (NRU) and random replacement

policy.

This paper proposes a decoupled LLC writeback tech-

nique. The technique reduces write-induced interference by

scheduling predicted last-write blocks early. A last-write

block is a dirty block in the LLC that will not be written

again before it is evicted. Thus, last-write blocks in the LLC

are available for scheduling without incurring extra memory

write requests. We propose a low overhead last-write pre-

dictor (LWP) based on sampling. A last-write buffer is used

1

Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

to track the predicted last-write blocks until they are sent

to DRAM. Experimental results show our technique sig-

nificantly reduces write-induced interference and improves

DRAM efficiency. The technique is independent of LLC

replacement policy so it is flexible enough to apply to any

replacement policy.

This paper makes the following contributions:

• We propose a low overhead last-write predictor based

on sampling. This predictor uses a low-overhead LLC

write simulator to simulate and make predictions based

on the write behavior of the LLC. We demonstrate that

the proposed last-write predictor can accurately predict

last-write blocks.

• We propose a decoupled LLC writeback technique that

makes last-write blocks in the LLC available to the

memory controller for scheduling. The technique ef-

fectively expands the write scheduling space and bal-

ances memory bandwidth by re-distributing memory

write requests, thus reducing write-induced interfer-

ence. The technique is completely decoupled from the

LLC replacement policy.

• We present an evaluation of our technique with multi-

programmed SPEC CPU2006 workloads simulated

with the MARSSx86 [19] simulator together with

DRAMSim2 [23]. Our evaluation simulating an eight-

core processor shows that the technique improves per-

formance by 6.5%-11.4% on average over the tradi-

tional writeback technique with various DRAM con-

figurations and LLC replacement policies. Our tech-

nique also significantly improves system performance

in the presence of prefetching.

2 Background and Related Work

2.1 DRAM Memory Systems

The DDRx based memory system [2, 4] consists of one

or more dual in-line memory modules (DIMMs) composed

of multiple chips. Each chip is organized as multiple banks

that can be operated in parallel. A memory rank is made

up of a set of chips where chips in the same rank can be

accessed simultaneously. In a DDRx memory module, each

rank has a 64-bit data bus. Chips within a rank work in

unison to return 64 bits per cycle. The memory channel is

made up of one or multiple memory ranks. Ranks in the

same channel share the same data bus. Modern multicore

processors may have multiple channels.

A memory access includes both row access and column

access [4]. An entire row of bits that contains the required

data is brought into the row buffer during row access, then

a column of this row buffer is selected according to the col-

umn address. Memory access requests may be row-buffer

hit requests, row-buffer closed requests, or row-buffer con-

flict requests. A row-buffer hit request goes to a currently

open row. Data can be accessed without activating the row

buffer again. A row-buffer closed request goes to a row

when there is no open row in the row buffer. The required

row must be activated before the data in the row-buffer can

be accessed. A row-buffer conflict request goes to a row

other than the currently open row. Data in the currently

open row must be written back first, then the required row

must be activated before the data can be accessed. Thus,

the access latency for row-buffer conflict/closed requests is

significantly higher than for row-buffer hit requests.

2.2 Related Work

2.2.1 Memory Access Scheduling

Memory access scheduling [22] reorders memory refer-

ences to improve memory performance. Much previous

work [24, 28, 17, 1, 16, 9, 18] focuses on improving mem-

ory efficiency by intelligently scheduling memory requests.

Shao et al. [24] propose a burst scheduling algorithm that

schedules requests that hit in the same row buffer into a

burst to increase row buffer hit rates and bus utilization. Su-

dan et al. [28] propose a page migration algorithm that col-

locates frequently accessed data in the same row buffer to

increase row buffer hit rates in a multi-core system. Mutlu

et al. [17] propose a parallelism-aware batch scheduling

technique for multi-core systems. Their technique first or-

ganizes memory requests into batches to ensure the fairness

of service, then within each batch, requests are scheduled

to maximize parallelism while at the same time minimiz-

ing the number of idle cores by using a shortest-job-first

scheduling technique. Ipek et al. [9] use a reinforcement-

learning approach to learn the optimal memory scheduling

policy according to past behavior.

2.2.2 Last-Level Cache Writeback

Much previous work [28, 17, 1, 16, 18] does not take

into account the write-induced interference problem. Ea-

ger writeback [13] is the first proposal that increases the

visibility of the write buffer by using the LLC to reduce

write-induced interference. Eager writeback writes back

dirty cache blocks in the LRU position of the LLC sets

whenever the bus is idle instead of waiting for the block

to be evicted to reduce the memory traffic. However, the

scheduling space in eager writeback is still limited to the

write buffer.

Stuecheli et al. [27] propose a virtual write queue

(VWQ) technique. Their technique takes a fraction of the

LRU positions in the LLC as the virtual write queue (also

2

Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

requiring LRU). Dirty cache blocks in the virtual write

queue that target the same row buffer when mapping to the

memory resource will be written back in a batch, therefore

reducing write-induced interference. In their paper, they

also propose the concept of scheduled writeback. Sched-

uled writeback writes back the dirty cache blocks that ex-

ploit locality in the DRAM structure to improve the memory

performance. Chang et al. [12] propose a similar technique

that writes back qualified dirty cache blocks in the LLC to

improve the memory efficiency.

2.2.3 Dead Block Prediction

Lai et al. [11] proposes last touch predictor that predicts

the last touch cache blocks for core caches. The last touch

predictor uses program counter (PC) traces to detect the last

touch and invalidate the shared cache blocks to reduce cache

coherence overhead. Several dead block predictors are pro-

posed in previous work [3, 7, 14, 10]. The trace-based dead

block predictor [11] can detect when a cache block is ac-

cessed for the last time based on the a given sequence of

memory-access PCs. This predictor is used to prefetch data

into dead blocks in the L1 data cache. Hu et al. [7] propose

a time based dead block predictor that learns the number

of cycles a block is live and predicts it dead if it is not ac-

cessed for twice that number of cycles. This predictor is

used to prefetch into the L1 cache and filter a victim cache.

Recent work proposes [10] sampling dead block predictor

for LLC that predict the dead blocks in the LLC and replace

them for useful cache blocks.

3 Motivation

Previous proposals [12, 27, 20] point out that write-

induced interference can degrade system performance sig-

nificantly. Write-induced interference is a more severe

problem in CMP systems since performance of an applica-

tion is affected not only by its own write requests, but also

write requests from other applications.

Figure 1 shows the simulation result for traditional write-

back policy with various buffer sizes and perfect write-

back. The system configuration for this experiment is a

4.8GHZ eight-core processor and a DDR3-1600 memory.

The DRAM system has two channels/memory controllers,

each memory controller has a per-channel write buffer.

Each memory channel is made up of one rank. We run

six randomly mixed multi-programmed SPEC CPU 2006

workloads; each benchmark runs simultaneously with the

others. The result of the 16 memory intensive benchmarks

is shown in the graph. The traditional writeback policy (i.e.

writes go to the write buffer on LLC eviction) with various

write buffer sizes and the perfect writeback are evaluated.

The write buffer management policy we used for the tradi-

tional writeback policy is for writes in the write buffer to

be scheduled for service whenever either of the following

two conditions is satisfied: 1) the corresponding rank is idle

and the number of writes in write buffer reaches a thresh-

old, or 2) the write buffer is full. Perfect writeback assumes

that write requests do not cause any interference with read

requests. In Figure 1, the performance of the traditional

writeback policy with a practical 32-entry write buffer is

taken as the baseline. The graph shows that system perfor-

mance improves 25.4% without write-induced interference.

Thus, there is significant headroom for writeback optimiza-

tion to improve system performance.

Figure 1 also shows that system performance improves

as the size of the write buffer increases. A large write buffer

can hold more write requests so the possibility of row-buffer

hits and bank-level parallelism increases. For a practical 32-

entry buffer size, the average row-buffer hit rate for writes

is only 34.2% because, when dirty cache blocks are evicted

from the LLC, their spatial locality has been filtered by core

caches and the LLC. Additionally, in a CMP system, row-

buffer utilization can be reduced by the distribution of re-

quests from different applications. Thus, a small buffer size

has a limited ability for preserving row-buffer hit requests.

Increasing the size of the write buffer also increases the row-

buffer hit rate since more scheduling candidates in the write

buffer offers more opportunities for row-buffer hit requests.

For a 512-entry write buffer, the average row-buffer hit rate

for writes is increased to 54.5%.

However, a large write buffer is complex and power-

hungry, as each memory read request must associatively

search the write buffer for a matching address. Thus, in-

creasing the number of write buffer entries also significantly

increases the on-chip power consumption. Therefore, build-

ing a large write buffer is not a practical way to improve

memory efficiency. Additionally, exposing dirty cache

blocks to the memory controller when they are evicted from

the LLC can cause high bus contention between writes and

reads. LLC misses tend to occur in bursts, so writes com-

pete for memory bandwidth with bursty reads, reducing the

memory bandwidth utilization by clustering memory traffic.

Previous work [27, 13] proposes to write back dirty

cache blocks near the LRU position in the LLC earlier to re-

duce write-induced interference. These techniques depend

on a policy that divides the LLC blocks of a set in levels

of distinct recency (LRU and Pseudo LRU) to detect last-

write cache block. They can not be adapted to less costly

replacement policies like NRU and random.

We propose a low overhead LLC writeback technique.

Instead of detecting last-write cache blocks using LRU re-

cency information, this technique uses a last-write predictor

based on sampling to predict the last-write cache blocks in

LLC. Making the last-write cache blocks available to the

memory controller early effectively re-distributes memory

3

Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

401.bzip2

410.bw
aves

429.m
cf

433.m
ilc

434.zeusm
p

435.grom
acs

436.cactusA
D

M
450.soplex
456.hm

m
er

459.G
em

sF
D

T
D

462.libquantum
464.h264ref
470.lbm

473.astar

482.sphinx3
483.xalancbm

k
G

M
ean

1.0

1.1

1.2

1.3

1.4

S
p

ee
d

u
p

64-entry 128-entry 256-entry 512-entry

Perfect Writeback

1.25

1.49

Figure 1. Speedup for traditional writeback with various write buffer sizes and perfect writeback

write requests and increases memory scheduling resources.

Thus, DRAM efficiency is improved and the write-imposed

penalty to following reads is reduced. This technique can

work with any replacement policy without significant over-

head.

4 Last-Write Predictor Guided Last-Level

Cache Writeback

We propose a last-write predictor guided (LWPG) LLC

writeback policy. Figure 2 shows the structure of our tech-

nique. A last-write predictor is proposed to predict last-

write blocks when they access the LLC. A last-write buffer

is used to track predicted last-write blocks. Write requests

in the last-write buffer as well as the write buffer are avail-

able to memory controller for scheduling. The LWPG

writeback policy has the following advantages: 1) re-

distributing the memory requests and balancing the memory

bandwidth, 2) expanding the scheduling space of memory

controller, maintaining row-buffer hit and bank-level par-

allelism locality, and 3) completely decoupling from cache

replacement policy allowing it to be applied to any LLC re-

placement policy.

4.1 Last-Write Predictor

The last-write predictor is used to predict last-write

blocks in the LLC. It is composed of a lightweight LLC

write simulator and a prediction table. Once a dirty block

is evicted from the core cache and accesses the LLC, the

last-write predictor consults the prediction table to make a

prediction. The instruction PC related to the dirty block is

hashed to index the prediction table to get the prediction

result. An LLC write simulator is used to update the predic-

tion table according to the simulated write behavior of the

LLC.

The last-write predictor is a PC-based predictor. It is

based on the observation that if an instruction PC leads to

the last write access to one block, then there is a high prob-

ability that the next time this instruction is reached it will

also lead to a last-write block. For a writeback cache, once

a dirty block is evicted from the core cache, it has no PC

information with it. Thus, a PC field is associated with each

core block. Once a write accesses the core cache, the PC

related to this write will be stored with the block.

4.1.1 Prediction Table

The prediction table uses skewed organization [10, 15] to

reduce the impact of conflicts in the table. It consists of

three tables, each indexed by a different hash of 16-bits

partial PC. Each entry in the table has a two-bit saturating

counter. Once a dirty block is evicted from the core cache

and accesses the LLC, the LWP predicts whether or not this

dirty block is a last-write block. The prediction decision is

based on the sum of the counter values for all three tables

that indexed by different hashes of the PC related to this

dirty block: if the sum is greater than a threshold, then it

is a last-write block. The prediction table is updated by the

LLC write simulator.

4.1.2 LLC Write Simulator

The LLC write simulator simulates the write behavior of the

LLC and updates the prediction table. To reduce overhead,

only a few sets of the LLC are represented. LLC sets are

sampled; there is one simulated set for every 16 cache sets.

Only partial tags are represented since simulator correct-

ness is not required; in practice, we find 16 bits of tag leads

to >99% accuracy with respect to full tags. Of course, no

data are represented in the simulated sets. The LLC write

simulator only simulates the write behavior of the LLC, i.e.

missing reads from memory are not placed in the simulator.

The write accesses of the LLC account for about 1/3 of to-

tal number of accesses on average in the memory intensive

SPEC CPU 2006 benchmarks. Thus, the write simulator

can use a smaller associativity compared with the LLC. The

4

Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

LLC

data access

data access

DRAM Controller

Write Buffer

 Read Buffer
schedule writes

Last−Write Buffer

data access

 Predictor

prediction

Last−Write

Prediction Table

update table

LLC Write

Simulator
Core Cache cache missesselected core

data access

address of predicted last−write block

searching data according to address

Figure 2. System structure

ta cttb

tb ta ct td

ct tb ta td

td

tatbctte

te ct tb ta

PC 5 : Read b PC1 PC2 PC3 PC4

PC2 PC1 PC3 PC4

PC6 PC2 PC1 PC4

PC7 PC6 PC2 PC1

PC7 PC6 PC2 PC1

: PC 6 Write c

7 : PC Write

PC 8 : Read f

e

Read hit

Write hit : update

Write miss : update prediction table

Read miss

prediction table

Figure 3. Behavior of the LLC write simulator

associativity of the LLC simulator is 6 while the associa-

tivity of the LLC is 16. Each entry in the simulator set has

a partial tag field, a partial write PC field, a valid bit and

an LRU recency field. When a write accesses a sampled

LLC set, it also accesses the simulator simultaneously. The

corresponding sampled set is searched for an entry with a

matching tag; if there is a miss in the simulator, an entry

is allocated using an LRU victim entry. LRU is used in the

simulator, but since the associativity and number of sam-

pled sets are low, the implementation of LRU is far more

feasible than in the LLC [10]. The simulator also updates

the prediction table. When a read accesses the simulator, if

it is a hit, the LRU recency will be updated. If it is a miss,

the simulator will do nothing. Read access to the simula-

tor updates the recency information for synchronizing the

behavior of the simulator with the LLC, while the write ac-

cess also needs to update the predictor.

Figure 3 illustrates the set behavior of the write simu-

lator. Assuming a four-entry set, the box on the left side

shows the LRU stack of the partial tag field. The box on the

right side shows the partial write PC corresponding to the

same entry with the partial tag on the left side. The PC for

write access on the left in Figure 3 is the partial PC related

to the evicted dirty block from the core cache.

At beginning, partial tags at, bt, ct, dt of blocks a, b, c,

d and their related PCs are reside in the set entries. First,

request “read b” accesses the simulator, it is a read hit, so

it updates the LRU recency of block b to the MRU posi-

tion. Since it is a read access, the prediction table is not

updated. Then, request “write c” accesses the simulator. It

is a write hit meaning that PC3 leads to a dirty block that

could be rewritten again before it is evicted. Thus, we up-

date the entry in prediction table that indexed by PC3 using

’not last-write’, and update the LRU recency of block c to

MRU position. Then request “write e” accesses the set. It is

a miss, so we replace d with e since PC4 leads to a last-write

block d that did not access again before it is evicted. Thus,

we update the entry in prediction table that indexed by PC4

using ’last-write’. Finally, request “read f” accesses the set.

It is a read miss, so the simulator does nothing.

The write simulator itself uses LRU replacement policy,

but it can also accurately simulate the last-write behavior

for LLC with other replacement policies. Write accesses to

the write simulator and LLC are the same, thus they have

same behavior. Though the replacement policy in LLC and

write simulator may differ, a dirty block in the write simu-

lator with LRU replacement policy that will not be accessed

again before it is evicted also has a high probability that it

will not be accessed again in LLC. Thus, the last-write pre-

dictor is independent of the LLC replacement policy.

5

Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

4.2 Writeback Mechanism

4.2.1 Last-Write Buffer

In our technique, two buffers are used to hold write requests:

the write buffer and the last-write buffer. The evicted dirty

blocks are placed in the write buffer. The last-write buffer

is used to track the predicted last-write blocks in the LLC.

When the predictor predicts a last-write block, the physi-

cal address of the predicted last-write block will be placed

into the last-write buffer. The write requests in the write

buffer and the last-write buffer are available for schedul-

ing. Since each entry in the last-write buffer only contains

a 64-bit physical address, the data for the write requests are

still in the LLC. Thus, memory read requests do not need to

search the last-write buffer for address matching. This al-

lows the last-write buffer to have many more entries than the

write buffer. In our experiment, we use a 256-entry/channel

(256-entry/c) per-rank last-write buffer, i.e. the last-write

buffer is organized by rank and the total number of write

buffer entries for a channel is 256 entries.

4.2.2 Priority Mechanism

A write buffer with infinite size would be able to always pri-

oritize reads over writes, thus eliminating all write-imposed

penalty on the following reads. Given a finite write buffer, it

is better to prioritize writes over reads whenever writes will

cause less interference to subsequent reads. In our tech-

nique, the service of write requests prioritizes read requests

whenever either of the following conditions is satisfied: 1)

the rank is idle and the write buffer has more active entries

than a threshold m, or the last-write buffer has more ac-

tive entries than a threshold n, 2) the write buffer or the

last-write buffer is full. Condition 1) is to fill rank idle cy-

cles with writes, reducing the contention between reads and

writes. In condition 2), to ensure the progress of the ap-

plication, scheduled writes in write buffer must be sent to

DRAM for service when the write buffer is full to avoid

pipeline stalls. Once the last-write buffer is full, the pre-

dicted last-write blocks must also be scheduled and sent to

DRAM. Thus entries in the last-write buffer can be used to

hold the next predicted last-write requests.

Given the same group of scheduled write requests, writ-

ing them back through condition 1) imposes a smaller

penalty to subsequent reads than through condition 2).

Tracking last-write blocks using the last-write buffer allows

more opportunities to re-distribute the write requests into

idle rank cycles. The threshold conditions for the write

buffer and the last-write buffer ensure that a large number of

scheduling candidates are available to the DRAM controller

so they can be scheduled such that they can be efficiently

serviced by the DRAM. Details of choosing m and n are

given in Section 5.2.

4.2.3 Scheduling Mechanism

When writes are prioritized over reads, the memory con-

troller will schedule a sequence of a maximum number of

s write requests to DRAM for service. The memory con-

troller first schedules the row-buffer hit requests for the

write with oldest timestamp. If all the row-buffer hit re-

quests for this write have been scheduled, but the number of

scheduled requests is still less than s, then the requests to the

adjacent banks but same rank will be scheduled. The row-

buffer hit and bank-level parallelism requests in the write

buffer have high priority to be scheduled over the requests

in the last-write buffer. Choosing s is a tradeoff. If we is-

sue fewer, we cause a high bus turnaround penalty and low

row-buffer hit rate. If we issue more, the subsequent read

requests can be delayed for a long time due to the service

for writes. We choose s empirically.

Once the write request in the last-write buffer is ready to

issue, it will first search the LLC for that dirty block accord-

ing to the physical address in last-write buffer. If it is found

in the LLC, the dirty block will be pulled from the LLC and

send to DRAM for service. Then the corresponding dirty

bit for that block will be cleaned. If the block is not found,

then it has been evicted from the LLC, so this entry in the

last-write buffer will be freed.

Balancing Memory Bandwidth LLC misses tend to oc-

cur in bursts. Dirty blocks in or near the LRU position

can be evicted in a cluster. These writeback data compete

for memory bandwidth with the data being fetched into the

LLC, thus degrading system performance [13]. In our tech-

nique, the predicted last-write blocks are exposed to DRAM

controller once they access the LLC. Exposing last-write

blocks to the memory controller at the early stage balances

the memory bandwidth, allowing the service of write re-

quests at a time that causes less interference with read re-

quests.

Expanding Write Scheduling Space Write requests in

a small scheduling space tend to have low spatial locality.

Servicing write requests with low locality imposes a large

penalty on subsequent read requests. In our technique, the

last-write buffer effectively expands the write scheduling

space. The predicted last-write blocks increase the avail-

able scheduling candidates. Thus, our technique increases

the possibility of scheduling row-buffer hit and bank-level

parallelism write requests. Servicing a sequence of write

requests with high locality not only improves write service

efficiency for DRAM, but also reduces the write-imposed

penalty to the subsequent reads.

6

Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

4.3 Compared with Previous Work

Eager writeback [13] fills memory rank idle cycles with

dirty blocks in the LRU position to balance memory band-

width. But in the eager writeback technique, only write re-

quests in the write buffer can be scheduled by the memory

controller. The scheduling space in eager writeback is still

limited to the write buffer. Thus, the ability for eager write-

back to schedule high locality requests is limited.

The VWQ technique [27] uses the positions near LRU

in the LLC as a “virtual write queue.” Writes in the vir-

tual write queue are transparent to the memory controller,

thereby effectively expanding write scheduling space. But

the VWQ technique requires the memory mapping scheme

to map the rank, bank and channel bits into the cache in-

dex bits of the physical address. Thus, it is expensive for

VWQ to be applied to memory mapping schemes that do

not satisfy this requirement, such as the mapping scheme

in [8, 29]. Both eager writeback and VWQ can be treated

as using the recency of the LRU position as a predictor to

predict the last-write block. They predict that a dirty block

is a last-write block when it comes near the LRU position.

Thus, they depend on a policy that divides blocks into dis-

tinct levels.

The LWPG writeback technique uses LWP to predict

last-write blocks. The LWP is an independent structure

and can be applied to any LLC replacement policy. De-

tecting last-write blocks using LWP enables decoupling the

replacement policy from the LLC writeback policy. The

LWPG writeback technique can be applied to some inex-

pensive replacement policies like NRU and random. The

NRU policy approximates the recency stack based LRU pol-

icy but using only two levels. By contrast, the LRU policy is

organized such that each block will reside in a distinct level.

Since there can be many blocks in the lower recency level

in NRU policy, the recency level can not be an accurate in-

dication for the last-write blocks. The random policy has

no information about temporal locality, so no recency infor-

mation can be used to detect the last-write blocks. Thus,

previous work can not be adapted to these simple and light

replacement policies. Our technique can detect the last dead

blocks without recency information. It completely decou-

pled with cache replacement policy.

4.4 Storage Overhead and Power

4.4.1 Storage Overhead

In our technique, each core cache keeps a 16 bits partial

PC related to each block. For an eight-core 64 KB data

cache, it consumes 16KB of storage. In the LLC write sim-

ulator, each entry keeps a 16 bits partial PC, 16 bits par-

tial tag, 1 valid bit, 3 bits LRU position. The simulator

Leakage Power Dynamic Power

LWP 0.004 W 0.111 W

LLC 3.674 W 2.405 W

Percent 0.1% 4.6%

Table 1. Dynamic and leakage power evaluation.

has 1024 sets and 6 way associativity for a 16M capac-

ity LLC, consuming 27.75KB. The three prediction tables

for the skewed dead block predictor are each 4,096 two-bit

counters, so they consume 3KB of storage. The last-write

buffer has 256 entries per channel, each entry has a 64 bits

partial physical address stored in it, it consumes 4K Bytes

for a two-channel DRAM system. Thus, the total storage is

16KB+27.75KB+3KB+4KB=50.75KB, which is less than

0.5% of the 16M LLC capacity.

4.4.2 Predictor Power

Our technique uses a last-write predictor to predict the last-

write cache blocks. We measure the potential impact of

this structure on power using CACTI 5.3 [6]. The last-write

predictor is composed of an LLC write simulator based on

sampling and predictor table. The LLC write simulator was

modeled as a tag array of a cache, with only the tag power

being reported. The predictor table was modeled as a tag-

less RAM with three banks accessed simultaneously. In

our technique, a PC field is associated with each core cache

block. We model this PC metadata as extra data bits in data

array.

Table 1 shows the dynamic and leakage power of LWP.

As a percentage of the 2.405W total dynamic power of LLC,

the LWP uses only 4.6%. Leakage power is always a con-

cern for on-chip power budget. The LWP consumes only

0.1% of the 3.67W total leakage power of LLC. Therefore,

the LWP is a reasonably power efficient structure.

5 Evaluation

5.1 Methodology

We use the MARSSx86 [19] simulator together with

DRAMSim2 [23] to model an eight-core CMP and DDR3-

1600 system. The system configuration is shown in Table 2.

We use the SPEC CPU 2006 [5] benchmarks for the eval-

uation. Of the 29 SPEC CPU 2006 benchmarks, 24 could

be compiled and run on our platform. We run six groups of

eight-core workloads. Benchmarks are randomly chosen to

run in the same run for the six groups. The workloads are

shown in Table 3. For each workload, we made a checkpoint

by running the one of the memory intensive benchmarks to

a typical phase identified by SimPoint [25]. Then we run

7

Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

Execution core 4.8GHZ, 8 core CMP, out of order, 256 entry reorder buffer, 48 entry load queue
44 entry store queue, 4 width issue/decode, 15 stages, 256 physical registers

Caches L1 I-cache: 64KB/2 way, private, 64 bytes block size, 2-cycle, LRU

L1 D-cache: 64KB/2 way, private, 64 bytes block size, 2-cycle, LRU
L2 Cache: 16MB/16 way, shared, 64 bytes block size, 14-cycle, LRU/NRU/random

DRAM and DRAM controllers 2 memory controllers, 1/2/4 ranks per channel, burst length 8, open-page policy
8 banks per channel, 8K bytes row buffer per-bank, DDR3-1600 11-11-11

Table 2. System configuration

Name Benchmarks

Workload 1 hmmer sphinx3 libquantum GemsFDTD gobmk perlbench lbm astar

Workload 2 perlbench gobmk namd lbm gamess GemsFDTD xalancbmk cactusADM

Workload 3 omnetpp hmmer cactusADM xalancbmk GemsFDTD gcc soplex astar

Workload 4 gromacs astar h264ref lbm omnetpp gcc libquantum calculix

Workload 5 gobmk tonto zeusmp milc bzip2 mcf hmmer astar

Workload 6 omnetpp libquantum hmmer sphinx3 bwaves milc xalancbmk calculix

Table 3. Workloads

the experiment for 2 billion instructions total for all eight

cores starting from the checkpoint.

The memory scheduling technique we use for evaluation

is first-ready, first-come first-served (FR FCFS) [22, 21].

Other memory read scheduling algorithms could also work

with our writeback optimization; we choose FR FCFS for

simplicity.

We use six writeback optimizations for evaluation. In

the graphs that follow, these techniques are referred to with

abbreviated names. Table 4 gives a legend for these names.

The write buffer management policy we used for tradi-

tional writeback is rank idle write policy. That is, write

requests in the write buffer are scheduled for service when

the corresponding rank is idle and the occupancy of the

write buffer reaches a threshold, or the write buffer is full.

We also evaluated following write buffer management poli-

cies: 1) writes in the write buffer are sent to the DRAM

only when the write buffer is full, 2) writes in the write

buffer are sent to DRAM when the corresponding bank is

idle and the occupancy of the write buffer reaches a thresh-

old, or the write buffer is full. Our evaluation shows the

rank idle write buffer management policy yields the best

performance for the traditional writeback technique. To en-

sure fairness we choose to use the rank idle write buffer

management policy for evaluation, but our LWPG write-

back technique can be adapted to any buffer management

policy.

A large per-channel and per-rank write buffer is com-

plex and power inefficient. Given the same number of write

buffer entries for a channel, a write buffer organized by

bank consumes less on-chip power because memory read

requests only need to search the write entries that target

the same bank of the read request. Thus, we evaluate the

per-bank write buffer structure with large number of entries,

such as 512-entry/c, that is the total number of write buffer

entries for a channel is 512 entries. A large number of write

buffer entries is complex and space inefficient, thus 512-

entry/c per-bank write buffer is the largest write buffer we

evaluate. In the LWPG writeback technique, we use a 32-

entry/c per channel write buffer and 256-entry/c per rank

last-write buffer. We also evaluate the performance of write-

back techniques in the presence of prefetching. The result

is shown in 5.5.

5.2 Performance Evaluation

We evaluate writeback optimizations with three LLC re-

placement policies: LRU, NRU and random.

Figure 4 shows the speedups of various writeback opti-

mizations over the baseline in a simulated eight-core pro-

cessor with LRU LLC and a one-rank memory system; that

is, each channel has one rank. For each benchmark we show

the speedup of the first run in the random combination.

We choose benchmarks for which the performance of

perfect writeback could be improved more than 10% over

the baseline. Perfect writeback means all write-induced in-

terference is eliminated. If perfect writeback gives a signif-

icant improvement over the baseline for a particular bench-

mark, that means the performance of this benchmark has a

potential to be improved when using writeback optimiza-

tion. In this experiment, for 16 of 24 benchmarks, the per-

formance of perfect writeback could be improved more than

10% over the baseline. Thus, most of the benchmarks can

benefit from writeback optimization in a multi-core system.

From Figure 4, we can see that LWPG writeback tech-

nique yields better performance than other techniques. The

performance improvement for eager writeback is 4.3% on

average over the baseline. The state-of-the-art VWQ tech-

nique achieves a 8.1% speedup on average. The LWPG

writeback technique yields a average of 8.2% speedup. The

8

Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

401.bzip2

410.bw
aves

429.m
cf

433.m
ilc

434.zeusm
p

435.grom
acs

436.cactusA
D

M
450.soplex
456.hm

m
er

459.G
em

sF
D

T
D

462.libquantum
464.h264ref
470.lbm

473.astar

482.sphinx3
483.xalancbm

k
G

M
ean

0.95

1.00

1.05

1.10

1.15

1.20
S

p
ee

d
u

p

0.95

1.00

1.05

1.10

1.15

1.20
S

p
ee

d
u

p

0.95

1.00

1.05

1.10

1.15

1.20
S

p
ee

d
u

p

0.95

1.00

1.05

1.10

1.15

1.20
S

p
ee

d
u

p

0.95

1.00

1.05

1.10

1.15

1.20
S

p
ee

d
u

p

0.95

1.00

1.05

1.10

1.15

1.20
S

p
ee

d
u

p
Eager Writeback VWQ 256-entry/c per-bank WB 512-entry/c per-bank WB

LWPG Writeback

1
.2

2

Figure 4. Results running on eight-core one-rank system with LRU LLC

401.bzip2

410.bw
aves

429.m
cf

433.m
ilc

434.zeusm
p

435.grom
acs

436.cactusA
D

M
450.soplex
456.hm

m
er

459.G
em

sF
D

T
D

462.libquantum
464.h264ref
470.lbm

473.astar

482.sphinx3
483.xalancbm

k
G

M
ean

1.00

1.05

1.10

1.15

1.20

S
p

ee
d

u
p

1.00

1.05

1.10

1.15

1.20

S
p

ee
d

u
p

1.00

1.05

1.10

1.15

1.20

S
p

ee
d

u
p

1.00

1.05

1.10

1.15

1.20

S
p

ee
d

u
p

1.00

1.05

1.10

1.15

1.20

S
p

ee
d

u
p

1.00

1.05

1.10

1.15

1.20

S
p

ee
d

u
p

256-entry/c per-bank WB 512-entry/c per-bank WB LWPG Writeback1
.2

0

Figure 5. Results running on eight-core one-rank system with NRU LLC

Name Technique

32-entry/c per-channel WB Traditional writeback with 32-entry/c per-channel write buffer, this is the baseline

256-entry/c per-bank WB Traditional writeback with 256-entry/c per-bank write buffer

512-entry/c per-bank WB Traditional writeback with 512-entry/c per-bank write buffer

Eager Writeback Eager writeback

VWQ Virtual write queue

LWPG Writeback Last-write predictor guided writeback in Section 4

Table 4. Legend for various writeback optimization techniques.

traditional writeback with 256-entry/c and 512-entry/c per-

bank write buffer yields 2.4% and 6.8% speedup respec-

tively. Though the 512-entry/c per-bank write buffer has

more buffer entries than the LWPG technique, its perfor-

mance is not as good as the LWPG technique since the per-

bank write buffer structure causes conflict misses for write

requests that target to the same bank.

Figure 5 shows the IPC speedups with NRU LLC. The

NRU recency stack has two levels. The recency informa-

tion for NRU can not be used to accurately detect the last-

write cache blocks. Thus, the eager writeback and VWQ

techniques can not be applied to it. The traditional write-

back with 256-entry/c and 512-entry/c per-bank write buffer

achieve geometric mean of 2.3% and 6.7% speedups re-

spectively. The LWPG writeback technique yields 8.4% ge-

ometric mean speedup.

Figure 6 shows the average IPC improvement for one-

rank, two-rank and four-rank memory system configura-

tions with LRU, NRU and random replacement policies.

The LWPG writeback technique improves performance by

6.5%-11.4% with various DRAM configurations and LLC

replacement policies. The system with random LLC re-

placement policy yields the best performance improvement

since the random replacement policy randomly chooses a

cache block to be evicted when a new block is placed. Thus,

writes in a small write buffer have low spatial locality. The

LWPG writeback technique expands the scheduling space,

providing more scheduling candidates. For the traditional

9

Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

N
R

U
,1-rank

N
R

U
,2-rank

N
R

U
,4-rank

R
andom

,1-rank
R

andom
,2-rank

R
andom

,4-rank
L

R
U

,1-rank

L
R

U
,2-rank

L
R

U
,4-rank

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
p

ee
d

u
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
p

ee
d

u
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
p

ee
d

u
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
p

ee
d

u
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
p

ee
d

u
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
p

ee
d

u
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
p

ee
d

u
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
p

ee
d

u
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
p

ee
d

u
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
p

ee
d

u
p

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

S
p

ee
d

u
p

256-entry/c per-bank WB 512-entry/c per-bank WB
LWPG Writeback Eager writeback(LRU)
VWQ(LRU)

Figure 6. Performance evaluated for various system

configurations

writeback with 256-entry/c and 512-entry/c per-bank tech-

niques, the speedups decrease as the number of ranks per-

channel increases because increasing the number of ranks

per channel decreases the number of write buffer entries for

each bank, thus causing more conflict misses for write re-

quests.

In our technique, once the rank is idle and the write

buffer has more than m active entries for the idle rank, or the

last-write buffer has more than n active entries for the idle

rank, a sequence of scheduled write requests will be sent to

DRAM for service. Choosing the parameters m and n is

a trade-off between the ability to balancing memory band-

width and expanding the scheduling candidates. Choosing

large values for m and n increases the possibility of high lo-

cality write requests, but decreases ability to balancing the

memory bandwidth. In our experiment, m = 12, 8, 4 and

n = 96, 64, 32 for 1/2/4 rank configurations respectively

yields best performance. The maximum number of sched-

uled requests s each time issued by DRAM controller is also

trade-off. A large value of s allows high row-buffer hit rate

and low bus turnaround penalty, but can stall pipeline for a

long time. In our experiment, we found s = 12, 16, 16 for

1/2/4 rank configurations respectively achieves best perfor-

mance.

5.3 Prediction Evaluation

We evaluate the last-write predictor using false positive

rates. The false positive rate is calculated as the number of

mispredicted positive predictions divided by the total num-

ber of predictions. False positives allow the dirty cache

blocks to be written again before they are evicted from the

LLC to be written into the DRAM early, thus causing ex-

tra memory writes. Figure 7(a) shows that the LWP yields

a low false positive rate of 6.6% on average for NRU LLC

with one-rank DRAM configuration.

We evaluate the fraction of correctly predicted last-write

blocks of LWP. The fraction of correctly predicted last-write

blocks is calculated as the number of correctly predicted

last-write blocks divided by the number of last-write blocks.

A large fraction means more opportunity for optimizations.

Figure 7(b) shows the fraction of correctly predicted last-

write blocks is 68.8% on average for NRU LLC with one-

rank DRAM configuration.

We also evaluate the LWP with all the 1/2/4 rank config-

urations and LRU, NRU and Random LLC. It yields false

positive rate by 6.4%-7.1% and fraction of correctly pre-

dicted last-write blocks by 68.8%-76.0% on average with

various configurations. This large fraction of correctly pre-

dicted last-write blocks and low false positive rates allows

more opportunities for optimization without causing signif-

icant extra writebacks.

5.4 Row-buffer Hit Rate Evaluation for
DRAM Writes

Figure 8 shows results for average write row-buffer hit

rates with various configurations. Since caches filter the

spatial locality of writes, the traditional writeback with a

small write buffer yields low row-buffer hit rate. The 32-

entry traditional writeback with a randomly-replaced cache

only yields 13.7%-17.3% row-buffer hit rate on average be-

cause the random replacement policy randomly chooses a

cache block to be evicted once a new cache block comes

in. Our technique significantly improves row-buffer hit rate

for writes across various configurations to 59.6%-68.6% on

average.

5.5 Performance Evaluation with
Prefetching

Hardware prefetching improves system performance by

fetching useful data before they are accessed. We evaluate

writeback techniques in the presence of prefetching. We

model a Middle-of-the-Road Stream Prefetcher [26] with

256 streams. Each LLC request looks up the stream ta-

ble for issuing eligible prefetching requests. Write-induced

interference is a more severe problem in the presence of

prefetching because evicted write requests could cause high

contention with prefetching requests, thus reducing mem-

ory bandwidth utilization.

Figure 9 shows the speedups of various techniques with

Random LLC and a one-rank memory system. The base-

line technique uses the traditional writeback with 32-entry/c

per channel write buffer with the stream prefetcher. The

LWPG technique yields better performance improvement

over other techniques, achieving a 13.0% speedup on av-

erage.

10

Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

2

0

4

6

8

10

12

W
orkload 1

W
orkload 2

W
orkload 3

W
orkload 4

W
orkload 5

W
orkload 6

AMean

P
er

ce
n

ta
g
e

20

0

40

60

80

100

W
orkload 1

W
orkload 2

W
orkload 3

W
orkload 4

W
orkload 5

W
orkload 6

AMean

P
er

ce
n

ta
g
e

(a) False positive rate (b) Fraction of correctly predicted last-write blocks

Figure 7. False positive rate and fraction of correctly predicted last-write blocks for last-write predictor

with one-rank and NRU LLC configuration

NRU,1-rank

NRU,2-rank

NRU,4-rank

Random,1-rank

Random,2-rank

Random,4-rank

LRU,1-rank

LRU,2-rank

LRU,4-rank

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

o
w

-b
u

ff
er

 H
it

 R
a
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

o
w

-b
u

ff
er

 H
it

 R
a
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

o
w

-b
u

ff
er

 H
it

 R
a
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

o
w

-b
u

ff
er

 H
it

 R
a
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

o
w

-b
u

ff
er

 H
it

 R
a
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

o
w

-b
u

ff
er

 H
it

 R
a
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

o
w

-b
u

ff
er

 H
it

 R
a
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

o
w

-b
u

ff
er

 H
it

 R
a
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

o
w

-b
u

ff
er

 H
it

 R
a
te

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ri

te
 R

o
w

-b
u

ff
er

 H
it

 R
a
te 32-entry/c per-bank WB 256-entry/c per-bank WB 512-entry/c per-bank WB

LWPG Writeback Eager Writeback(LRU) VWQ(LRU)

Figure 8. Writes row-buffer hit rate for various configurations

401.bzip2

410.bw
aves

429.m
cf

433.m
ilc

434.zeusm
p

435.grom
acs

436.cactusA
D

M
450.soplex
456.hm

m
er

459.G
em

sF
D

T
D

462.libquantum
464.h264ref
470.lbm

473.astar

482.sphinx3
483.xalancbm

k
G

M
ean

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

ee
d

u
p

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

ee
d

u
p

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

ee
d

u
p

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

ee
d

u
p

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

ee
d

u
p

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

ee
d

u
p

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

ee
d

u
p

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

ee
d

u
p

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

S
p

ee
d

u
p

256-entry/c per-bank WB 512-entry/c per-bank WB LWPG Writeback1
.3

1

1
.3

1

Figure 9. Results running on eight-core one-rank system with Random LLC in the presence of prefetching

6 Conclusion

In this paper, we propose a decoupled last-write pre-
dictor guided LLC writeback technique. It uses a last-
write predictor to predict last-write blocks in LLC. The pre-
dicted last-write blocks are exposed to the memory con-
troller for scheduling. Our technique can balance the
memory bandwidth and effectively expands the scheduling
space of memory write requests, thus significantly reduc-
ing write-induced interference. It is completely decoupled
from LLC replacement policy. Our techniques are evalu-
ated for various DRAM configuration by using MARSSx86
simulator together with DRAMSim2. Experimental results
show a significant performance improvement over tradi-

tional writeback technique.

References

[1] M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian,
and A. Davis. Handling the problems and opportunities
posed by multiple on-chip memory controllers. In Proceed-
ings of the 19th international conference on Parallel archi-
tectures and compilation techniques, PACT ’10, pages 319–
330, New York, NY, USA, 2010. ACM.

[2] S. B.Jacob and D.T.Wang. The Memory Systems - Cache,
Dram, Disk. Elseiver, 2008.

[3] A. chow Lai, C. Fide, and B. Falsafi. Dead-block prediction
and dead-block correlating prefetchers. In In Proceedings

11

Appears in Proceedings of the 39th Annual ACM/IEEE International Symposium on Computer Architecture (ISCA-2012), June, 2012

of the 28th International Symposium on Computer Architec-
ture, pages 144–154, 2001.

[4] V. Cuppu, B. Jacob, B. Davis, and T. Mudge. High-
performance drams in workstation environments. IEEE
Trans. Comput., 50:1133–1153, November 2001.

[5] J. L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34:1–17, September 2006.

[6] HP Laboratories. CACTI 5.3. http: //quid.hpl .hp.com: 9081
/cacti/.

[7] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the
memory system: predicting and optimizing memory behav-
ior. In Proceedings of the 29th annual international sympo-

sium on Computer architecture, ISCA ’02, pages 209–220,
Washington, DC, USA, 2002. IEEE Computer Society.

[8] Intel Corporation. Intel 945G/945GZ/945GC/945P/945PL
express chipset family datasheet: Intel 82945G/ 82945GZ
/82945GC graphics and memory controller hub (GMCH)
and Intel 82945P/82945PL memory controller hub (MCH).
2008.

[9] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana. Self-
optimizing memory controllers: A reinforcement learning
approach. In Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, pages 39–
50, Washington, DC, USA, 2008. IEEE Computer Society.

[10] S. M. Khan, Y. Tian, and D. A. Jimenez. Sampling dead
block prediction for last-level caches. In Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO ’43, pages 175–186, Washing-
ton, DC, USA, 2010. IEEE Computer Society.

[11] A.-C. Lai and B. Falsafi. Selective, accurate, and timely self-
invalidation using last-touch prediction. In Proceedings of
the 27th annual international symposium on Computer ar-
chitecture, ISCA ’00, pages 139–148, New York, NY, USA,
2000. ACM.

[12] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N.
Patt. Dram-aware last level cache writeback: Reducing
write-caused interference in memory system. In HPS Tech-
nical Report, TR-HPS-2010-002.

[13] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager write-
back - a technique for improving bandwidth utilization. In
Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture, MICRO 33, pages 11–21,
New York, NY, USA, 2000. ACM.

[14] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts:
A new approach for eliminating dead blocks and increas-
ing cache efficiency. In Proceedings of the 41st annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO 41, pages 222–233, Washington, DC, USA, 2008.
IEEE Computer Society.

[15] P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and
capacity aliasing in conditional branch predictors. In Pro-
ceedings of the 24th International Symposium on Computer
Architecture, pages 292–303, June 1997.

[16] O. Mutlu and T. Moscibroda. Stall-time fair memory ac-
cess scheduling for chip multiprocessors. In Proceedings
of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 40, pages 146–160, Washington,
DC, USA, 2007. IEEE Computer Society.

[17] O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness of
shared dram systems. In Proceedings of the 35th Annual
International Symposium on Computer Architecture, ISCA

’08, pages 63–74, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[18] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair
queuing memory systems. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO 39, pages 208–222, Washington, DC, USA, 2006.
IEEE Computer Society.

[19] A. Patel, F. Afram, S. Chen, and K. Ghose. MARSSx86: A
full system simulator for x86 CPUs. In Proceedings of the
2011 Design Automation Conference, June 2011.

[20] M. K. Qureshi, M. M. Franceschini, and L. A. Lastras-
montao. Improving read performance of phase change mem-
ories via write cancellation and write pausing. In Pro-
ceedings of the 2010 IEEE 13th International Symposium
on High Performance Computer Architecture, pages 1–11,
2010.

[21] S. Rixner. Memory controller optimizations for web servers.
In Proceedings of the 37th annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 37, pages 355–
366, Washington, DC, USA, 2004. IEEE Computer Society.

[22] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens. Memory access scheduling. In Proceedings of the
27th annual international symposium on Computer architec-
ture, ISCA ’00, pages 128–138, New York, NY, USA, 2000.
ACM.

[23] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A
cycle accurate memory system simulator. Computer Archi-
tecture Letters, PP(99):1, 2011.

[24] J. Shao and B. T. Davis. A burst scheduling access reorder-
ing mechanism. In Proceedings of the 2007 IEEE 13th Inter-
national Symposium on High Performance Computer Archi-
tecture, HPCA ’07, pages 285–294, Washington, DC, USA,
2007. IEEE Computer Society.

[25] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
Proceedings of the 10th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, October 2002.

[26] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feed-
back directed prefetching: Improving the performance and
bandwidth-efficiency of hardware prefetchers. In High Per-
formance Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on, pages 63–74, 2007.

[27] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K.
John. The virtual write queue: coordinating dram and last-
level cache policies. In Proceedings of the 37th annual in-

ternational symposium on Computer architecture, ISCA ’10,
pages 72–82, New York, NY, USA, 2010. ACM.

[28] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Bala-
subramonian, and A. Davis. Micro-pages: increasing dram
efficiency with locality-aware data placement. In Proceed-
ings of the fifteenth edition of ASPLOS on Architectural sup-
port for programming languages and operating systems, AS-
PLOS ’10, pages 219–230, New York, NY, USA, 2010.
ACM.

[29] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based
page interleaving scheme to reduce row-buffer conflicts and
exploit data locality. In Proceedings of the 33rd annual

ACM/IEEE international symposium on Microarchitecture,
MICRO 33, pages 32–41, New York, NY, USA, 2000. ACM.

12

