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Abstract

This paper presents a new method for branch prediction. The
key idea is to use one of the simplest possible neural net-
works, the perceptron, as an alternative to the commonly
used two-bit counters. Our predictor achieves increased ac-
curacy by making use of long branch histories, which are
possible because the hardware resources for our method
scale linearly with the history length. By contrast, other
purely dynamic schemes require exponential resources.

We describe our design and evaluate it with respect to
two well known predictors. We show that for a 4K byte hard-
ware budget our method improves misprediction rates for the
SPEC 2000 benchmarks by 10.1% over the gshare predic-
tor. Our experiments also provide a better understanding of
the situations in which traditional predictors do and do not
perform well. Finally, we describe techniques that allow our
complex predictor to operate in one cycle.

1 Introduction

Modern computer architectures increasingly rely on specula-
tion to boost instruction-level parallelism. For example, data
that is likely to be read in the near future is speculatively
prefetched, and predicted values are speculatively used be-
fore actual values are available [10, 24]. Accurate prediction
mechanisms have been the driving force behind these tech-
niques, so increasing the accuracy of predictors increases the
performance benefit of speculation. Machine learning tech-
niques offer the possibility of further improving performance
by increasing prediction accuracy. In this paper, we show
that one machine learning technique can be implemented in
hardware to improve branch prediction.

Branch prediction is an essential part of modern microar-
chitectures. Rather than stall when a branch is encoun-
tered, a pipelined processor uses branch prediction to spec-
ulatively fetch and execute instructions along the predicted
path. As pipelines deepen and the number of instructions
issued per cycle increases, the penalty for a misprediction
increases. Recent efforts to improve branch prediction fo-
cus primarily on eliminating aliasing in two-level adaptive

predictors [17, 16, 22, 4], which occurs when two unrelated
branches destructively interfere by using the same prediction
resources. We take a different approach—one that is largely
orthogonal to previous work—by improving the accuracy of
the prediction mechanism itself.

Our work builds on the observation that all existing two-
level techniques use tables of saturating counters. It’s natural
to ask whether we can improve accuracy by replacing these
counters with neural networks, which provide good predic-
tive capabilities. Since most neural networks would be pro-
hibitively expensive to implement as branch predictors, we
explore the use of perceptrons, one of the simplest possible
neural networks. Perceptrons are easy to understand, sim-
ple to implement, and have several attractive properties that
differentiate them from more complex neural networks.

We propose a two-level scheme that uses fast perceptrons
instead of two-bit counters. Ideally, each static branch is al-
located its own perceptron to predict its outcome. Traditional
two-level adaptive schemes use a pattern history table (PHT)
of two-bit saturating counters, indexed by a global history
shift register that stores the outcomes of previous branches.
This structure limits the length of the history register to the
logarithm of the number of counters. Our scheme not only
uses a more sophisticated prediction mechanism, but it can
consider much longer histories than saturating counters.

This paper explains why and when our predictor performs
well. We show that the neural network we have chosen works
well for the class of linearly separable branches, a term we
introduce. We also show that programs tend to have many
linearly separable branches.

This paper makes the following contributions:
� We introduce the perceptron predictor, the first dynamic

predictor to successfully use neural networks, and we
show that it is more accurate than existing dynamic
global branch predictors. For a 4K byte hardware bud-
get, our predictor improves misprediction rates on the
SPEC 2000 integer benchmarks by 10.1%.

� We explore the design space for two-level branch pre-
dictors based on perceptrons, empirically identifying
good values for key parameters.

� We provide new insights into the behavior of branches,



classifying them as either linearly separable or insepa-
rable. We show that our predictor performs better on
linearly separable branches, but worse on linearly in-
separable branches. Thus, our predictor is complemen-
tary to existing predictors and works well as part of a
hybrid predictor.

� We explain why perceptron-based predictors introduce
interesting new ideas for future research.

2 Related Work

2.1 Neural networks

Artificial neural networks learn to compute a function using
example inputs and outputs. Neural networks have been used
for a variety of applications, including pattern recognition,
classification [8], and image understanding [15, 13].

Static branch prediction with neural networks. Neu-
ral networks have been used to perform static branch predic-
tion [3], where the likely direction of a branch is predicted at
compile-time by supplying program features, such as control-
flow and opcode information, as input to a trained neural net-
work. This approach achieves an 80% correct prediction rate,
compared to 75% for static heuristics [1, 3]. Static branch
prediction performs worse than existing dynamic techniques,
but is useful for performing static compiler optimizations.

Branch prediction and genetic algorithms. Neural net-
works are part of the field of machine learning, which also
includes genetic algorithms. Emer and Gloy use genetic algo-
rithms to “evolve” branch predictors [5], but it is important to
note the difference between their work and ours. Their work
uses evolution to design more accurate predictors, but the end
result is something similar to a highly tuned traditional pre-
dictor. We propose putting intelligence in the microarchitec-
ture, so the branch predictor can learn and adapt on-line. In
fact, their approach cannot describe our new predictor.

2.2 Dynamic Branch Prediction

Dynamic branch prediction has a rich history in the literature.
Recent research focuses on refining the two-level scheme of
Yeh and Patt [26]. In this scheme, a pattern history table
(PHT) of two-bit saturating counters is indexed by a com-
bination of branch address and global or per-branch history.
The high bit of the counter is taken as the prediction. Once
the branch outcome is known, the counter is incremented
if the branch is taken, and decremented otherwise. An im-
portant problem in two-level predictors is aliasing [20], and
many of the recently proposed branch predictors seek to re-
duce the aliasing problem [17, 16, 22, 4] but do not change
the basic prediction mechanism. Given a generous hardware
budget, many of these two-level schemes perform about the
same as one another [4].

Most two-level predictors cannot consider long history
lengths, which becomes a problem when the distance be-
tween correlated branches is longer than the length of a global

history shift register [7]. Even if a PHT scheme could some-
how implement longer history lengths, it would not help be-
cause longer history lengths require longer training times for
these methods [18].

Variable length path branch prediction [23] is one scheme
for considering longer paths. It avoids the PHT capacity
problem by computing a hash function of the addresses along
the path to the branch. It uses a complex multi-pass profiling
and compiler-feedback mechanism that is impractical for a
real architecture, but it achieves good performance because
of its ability to consider longer histories.

3 Branch Prediction with Perceptrons

This section provides the background needed to understand
our predictor. We describe perceptrons, explain how they can
be used in branch prediction, and discuss their strengths and
weaknesses. Our method is essentially a two-level predictor,
replacing the pattern history table with a table of perceptrons.

3.1 Why perceptrons?

Perceptrons are a natural choice for branch prediction be-
cause they can be efficiently implemented in hardware. Other
forms of neural networks, such as those trained by back-
propagation, and other forms of machine learning, such as
decision trees, are less attractive because of excessive im-
plementation costs. For this work, we also considered other
simple neural architectures, such as ADALINE [25] and Hebb
learning [8], but we found that these were less effective than
perceptrons (lower hardware efficiency for ADALINE, less
accuracy for Hebb).

One benefit of perceptrons is that by examining their
weights, i.e., the correlations that they learn, it is easy to un-
derstand the decisions that they make. By contrast, a criti-
cism of many neural networks is that it is difficult or impos-
sible to determine exactly how the neural network is making
its decision. Techniques have been proposed to extract rules
from neural networks [21], but these rules are not always ac-
curate. Perceptrons do not suffer from this opaqueness; the
perceptron’s decision-making process is easy to understand
as the result of a simple mathematical formula. We discuss
this property in more detail in Section 5.7.

3.2 How Perceptrons Work

The perceptron was introduced in 1962 [19] as a way to study
brain function. We consider the simplest of many types of
perceptrons [2], a single-layer perceptron consisting of one
artificial neuron connecting several input units by weighted
edges to one output unit. A perceptron learns a target Boolean
function �����	��
����
������ of � inputs. In our case, the ��� are the
bits of a global branch history shift register, and the target
function predicts whether a particular branch will be taken.
Intuitively, a perceptron keeps track of positive and negative
correlations between branch outcomes in the global history
and the branch being predicted.

Figure 1 shows a graphical model of a perceptron. A per-
ceptron is represented by a vector whose elements are the



weights. For our purposes, the weights are signed integers.
The output is the dot product of the weights vector, ����� � � ,
and the input vector, � � � � � ( ��� is always set to 1, providing a
“bias” input). The output � of a perceptron is computed as

�������! 
�"
�$#%� � � � � �

The inputs to our perceptrons are bipolar, i.e., each � � is
either -1, meaning not taken or 1, meaning taken. A negative
output is interpreted as predict not taken. A non-negative
output is interpreted as predict taken.
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Figure 1: Perceptron Model. The input values : �<;�=>=>=>; : � , are prop-
agated through the weighted connections by taking their respective
products with the weights ? ��;�=>=>=>; ? � . These products are summed,
along with the bias weight ? � , to produce the output value @ .

3.3 Training Perceptrons

Once the perceptron output � has been computed, the follow-
ing algorithm is used to train the perceptron. Let � be -1 if
the branch was not taken, or 1 if it was taken, and let A be
the threshold, a parameter to the training algorithm used to
decide when enough training has been done.

if sign BC@3D�EGFIHKJLNM or O @3D�EPF�OPQSR then
for T := 0 to U do? �WV L ? �YX M : �
end for

end if

Since � and � � are always either -1 or 1, this algorithm in-
crements the Z th weight when the branch outcome agrees with� � , and decrements the weight when it disagrees. Intuitively,
when there is mostly agreement, i.e., positive correlation, the
weight becomes large. When there is mostly disagreement,
i.e., negative correlation, the weight becomes negative with
large magnitude. In both cases, the weight has a large influ-
ence on the prediction. When there is weak correlation, the
weight remains close to 0 and contributes little to the output
of the perceptron.

3.4 Linear Separability

A limitation of perceptrons is that they are only capable of
learning linearly separable functions [8]. Imagine the set of

all possible inputs to a perceptron as an � -dimensional space.
The solution to the equation

� �  
�"
�C#%� �������[�]\

is a hyperplane (e.g. a line, if �^�,_ ) dividing the space into
the set of inputs for which the perceptron will respond false
and the set for which the perceptron will respond true [8]. A
Boolean function over variables � � � � � is linearly separable if
and only if there exist values for � ��� � � such that all of the true
instances can be separated from all of the false instances by
that hyperplane. Since the output of a perceptron is decided
by the above equation, only linearly separable functions can
be learned perfectly by perceptrons. For instance, a percep-
tron can learn the logical AND of two inputs, but not the
exclusive-OR, since there is no line separating true instances
of the exclusive-OR function from false ones on the Boolean
plane.

As we will show later, many of the functions describing
the behavior of branches in programs are linearly separable.
Also, since we allow the perceptron to learn over time, it
can adapt to the non-linearity introduced by phase transitions
in program behavior. A perceptron can still give good pre-
dictions when learning a linearly inseparable function, but it
will not achieve 100% accuracy. By contrast, two-level PHT
schemes like gshare can learn any Boolean function if given
enough training time.

3.5 Putting it All Together

We can use a perceptron to learn correlations between partic-
ular branch outcomes in the global history and the behavior
of the current branch. These correlations are represented by
the weights. The larger the weight, the stronger the correla-
tion, and the more that particular branch in the global history
contributes to the prediction of the current branch. The input
to the bias weight is always 1, so instead of learning a corre-
lation with a previous branch outcome, the bias weight, ��� ,
learns the bias of the branch, independent of the history.

Figure 2 shows a block diagram for the perceptron pre-
dictor. The processor keeps a table of ` perceptrons in
fast SRAM, similar to the table of two-bit counters in other
branch prediction schemes. The number of perceptrons, ` ,
is dictated by the hardware budget and number of weights,
which itself is determined by the amount of branch history
we keep. Special circuitry computes the value of � and per-
forms the training. We discuss this circuitry in Section 6.
When the processor encounters a branch in the fetch stage,
the following steps are conceptually taken:

1. The branch address is hashed to produce an index Zba\c�� `ed +
into the table of perceptrons.

2. The Z th perceptron is fetched from the table into a vector
register, f ��� � � , of weights.

3. The value of � is computed as the dot product of f and
the global history register.



4. The branch is predicted not taken when � is negative, or
taken otherwise.

5. Once the actual outcome of the branch becomes known,
the training algorithm uses this outcome and the value
of � to update the weights in f .

6. f is written back to the Z th entry in the table.

It may appear that prediction is slow because many
computations and SRAM transactions take place in steps 1
through 5. However, Section 6 shows that a number of arith-
metic and microarchitectural tricks enable a prediction in a
single cycle, even for long history lengths.
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Figure 2: Perceptron Predictor Block Diagram. The branch ad-
dress is hashed to select a perceptron that is read from the table.
Together with the global history register, the output of the perceptron
is computed, giving the prediction. The perceptron is updated with
the training algorithm, then written back to the table.

4 Design Space

This section explores the design space for perceptron predic-
tors. Given a fixed hardware budget, three parameters need to
be tuned to achieve the best performance: the history length,
the number of bits used to represent the weights, and the
threshold.

History length. Long history lengths can yield more ac-
curate predictions [7] but also reduce the number of table en-
tries, thereby increasing aliasing. In our experiments, the best
history lengths ranged from 12 to 62, depending on the hard-
ware budget.

Representation of weights. The weights for the percep-
tron predictor are signed integers. Although many neural net-
works have floating-point weights, we found that integers are
sufficient for our perceptrons, and they simplify the design.

Threshold. The threshold is a parameter to the perceptron
training algorithm that is used to decide whether the predictor
needs more training. Because the training algorithm will only
change a weight when the magnitude of � D�EGF is less than the
threshold A , no weight can exceed the value of A . Thus, the
number of bits needed to represent a weight is one (for the
sign bit) plus oCprqPsut�APv .
5 Experimental Results

We use simulations of the SPEC 2000 integer benchmarks to
compare the perceptron predictor against two highly regarded
techniques from the literature.

5.1 Methodology

Predictors simulated. We compare our new predictor
against gshare [17] and bi-mode [16], two of the best purely
dynamic global predictors from the branch prediction litera-
ture. We also evaluate a hybrid gshare/perceptron predictor
that uses a 2K byte choice table and the same choice mecha-
nism as that of the Alpha 21264 [14]. The goal of our hybrid
predictor is to show that because the perceptron has comple-
mentary strengths to gshare, a hybrid of the two performs
well.

All of the simulated predictors use only global pattern
information, i.e., neither per-branch nor path information is
used. Thus, we have not yet compared our hybrid against
existing global/per-branch hybrid schemes. Per-branch and
path information can yield greater accuracy [6, 14], but our
restriction to global information is typical of recent work in
branch prediction [16, 4].

Gathering traces. Our simulations use the instrumented
assembly output of the gcc 2.95.1 compiler with optimiza-
tion flags -O3 -fomit-frame-pointer running on an
AMD K6-III under Linux. Each conditional branch instruc-
tion is instrumented to make a call to a trace-generating pro-
cedure. Branches in libraries or system calls are not profiled.
The traces, consisting of branch addresses and outcomes, are
fed to a program that simulates the different branch predic-
tion techniques.

Benchmarks simulated. We use the 12 SPEC 2000 in-
teger benchmarks. All benchmarks are simulated using the
SPEC test inputs. For 253.perlbmk, the test run ex-
ecutes perl on many small inputs, so the concatenation of
the resulting traces is used. We feed up to 100 million branch
traces from each benchmark to our simulation program; this
is roughly equivalent to simulating half a billion instructions.

Tuning the predictors. We use a composite trace of the
first 10 million branches of each SPEC 2000 benchmark to



tune the parameters of each predictor for a variety of hard-
ware budgets. For gshare and bi-mode, we tune the history
lengths by exhaustively trying every possible history length
for each hardware budget, keeping the value that gives the
best prediction accuracy. For the perceptron predictor, we
find, for each history length, the best value of the threshold
by using an intelligent search of the space of values, prun-
ing areas of the space that give poor performance. For each
hardware budget, we tune the history length by exhaustive
search.

Table 1 shows the results of the history length tuning. We
find an interesting relationship between history length and
threshold: the best threshold A for a given history length w is
always exactly A^�xo + � y{zPw| +�} v . This is because adding
another weight to a perceptron increases its average output
by some constant, so the threshold must be increased by a
constant, yielding a linear relationship between history length
and threshold. Since the number of bits needed to represent a
perceptron weight is one (for the sign bit) plus o~pqPs�t�APv , the
number of bits per weight range from 7 (for a history length
of 12) to 9 (for a history length of 62).

Our hybrid gshare/perceptron predictor consists of gshare
and perceptron predictor components, along with a mecha-
nism, similar to the one in the Alpha 21264 [14], that dynam-
ically chooses between the two using a 2K byte table of two-
bit saturating counters. Our graphs reflect this added hard-
ware expense. For each hardware budget, we tune the hy-
brid predictor by examining every combination of table sizes
for the gshare and perceptron components and choosing the
combination yielding the best performance. In almost every
case, the best configuration has resources distributed equally
among the two prediction components.

Estimating area costs. Our hardware budgets do not in-
clude the cost of the logic required to do the computation. By
examining die photos, we estimate that at the longest history
lengths, this cost is approximately the same as that of 1K of
SRAM. Using the parameters tuned for the 4K hardware bud-
get, we estimate that the extra hardware will consume about
the same logic as 256 bytes of SRAM. Thus, the cost for the
computation hardware is small compared to the size of the
table.

5.2 Impact of History Length on Accuracy

One of the strengths of the perceptron predictor is its abil-
ity to consider much longer history lengths than traditional
two-level schemes, which helps because highly correlated
branches can occur at a large distance from each other [7].
Any global branch prediction technique that uses a fixed
amount of history information will have an optimal history
length For a given set of benchmarks. As we can see from Ta-
ble 1, the perceptron predictor works best with much longer
histories than the other two predictors. For example, with a
64K byte hardware budget, gshare works best with a history
length of 15, even though the maximum possible length for
gshare at 64K is 18. At the same hardware budget, the per-
ceptron predictor works best with a history length of 62.

Hardware budget History Length
in kilobytes gshare bi-mode perceptron

1 6 7 12
2 8 9 22
4 8 11 28
8 11 13 34

16 14 14 36
32 15 15 59
64 15 16 59

128 16 17 62
256 17 17 62
512 18 19 62

Table 1: Best History Lengths. This table shows the best amount
of global history to keep for each of the branch prediction schemes.
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Figure 3: Hardware Budget vs. Prediction Rate on SPEC 2000.
The perceptron predictor is more accurate than the two PHT methods
at all hardware budgets over one kilobyte.

5.3 Performance

Figure 3 shows the harmonic mean of prediction rates
achieved with increasing hardware budgets on the SPEC
2000 benchmarks. The perceptron predictor’s advantage over
the PHT methods is largest at a 4K byte hardware budget,
where the perceptron predictor has a misprediction rate of
6.89%, an improvement of 10.1% over gshare and 8.2% over
bimode. For comparison, the bi-mode predictor improves
only 2.1% over gshare at the 4K budget. Interestingly, the
SPEC 2000 integer benchmarks are, as a whole, easier for
branch predictors than the SPEC95 benchmarks, explaining
the smaller separation between gshare and bi-mode than ob-
served previously [16].

Figures 4 and 5 show the misprediction rates on the SPEC
2000 benchmarks for hardware budgets of 4K and 16K bytes,
respectively. The hybrid predictor has no advantage at the
4K budget, since three tables must be squeezed into a small
space. At the 16K budget, the hybrid predictor has a slight



advantage over the perceptron predictor by itself.
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Figure 4: Misprediction Rates at a 4K budget. The perceptron pre-
dictor has a lower misprediction rate than gshare for all benchmarks
except for 186.crafty and 197.parser.
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Figure 5: Misprediction Rates at a 16K budget. Gshare outper-
forms the perceptron predictor only on 186.crafty. The hybrid
predictor is consistently better than the PHT schemes.

5.4 Training Times

To compare the training speeds of the three methods, we ex-
amine the first 40 times each branch in the 176.gcc bench-
mark is executed (for those branches executing at least 40
times). Figure 6 shows the average accuracy of each of the
40 predictions for each of the static branches. The average
is weighted by the relative frequencies of each branch. We
choose 176.gcc because it has the most static branches of
all the SPEC benchmarks.
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Figure 6: Average Training Times for gcc. The : axis is the num-
ber of times a branch has been executed. The @ -axis is the average,
over all branches in the program, of 1 if the branch was mispredicted,
0 otherwise. Over time, this statistic tracks how quickly each predic-
tor learns. The perceptron predictor achieves greater accuracy earlier
than the other two methods.

The perceptron method learns more quickly the other two.
For the perceptron predictor, training time is independent of
history length. For techniques such as gshare that index a ta-
ble of counters, training time depends on the amount of his-
tory considered; a longer history may lead to a larger working
set of two-bit counters that must be initialized when the pre-
dictor is first learning the branch. This effect has a negative
impact on prediction rates, and at a certain point, longer his-
tories begin to hurt performance for these schemes [18]. As
we will see in the next section, the perceptron prediction does
not have this weakness, as it always does better with a longer
history length.

5.5 Why Does it Do Well?

We hypothesize that the main advantage of the perceptron
predictor is its ability to make use of longer history lengths.
Schemes like gshare that use the history register as an index
into a table require space exponential in the history length,
while the perceptron predictor requires space linear in the
history length.

To provide experimental support for our hypothesis, we
simulate gshare and the perceptron predictor at a 512K hard-
ware budget, where the perceptron predictor normally out-
performs gshare. However, by only allowing the perceptron
predictor to use as many history bits as gshare (18 bits), we
find that gshare performs better, with a misprediction rate
of 4.83% compared with 5.35% for the perceptron predictor.
The inferior performance of this crippled predictor has two
likely causes: there is more destructive aliasing with percep-
trons because they are larger, and thus fewer, than gshare’s
two-bit counters, and perceptrons are capable of learning
only linearly separable functions of their input, while gshare



can potentially learn any Boolean function.
Figure 7 shows the result of simulating gshare and the per-

ceptron predictor with varying history lengths on the SPEC
2000 benchmarks. Here, an 8M byte hardware budget is used
to allow gshare to consider longer history lengths than usual.
As we allow each predictor to consider longer histories, each
becomes more accurate until gshare becomes worse and then
runs out of bits (since gshare requires resources exponential
in the number of history bits), while the perceptron predictor
continues to improve. With this unrealistically huge hard-
ware budget, gshare performs best with a history length of
18, where it achieves a misprediction rate of 5.20%. The per-
ceptron predictor is best at a history length of 62, the longest
history considered, where it achieves a misprediction rate of
4.64%.
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Figure 7: History Length vs. Performance. The accuracy of
the perceptron predictor improves with history length, while gshare’s
accuracy bottoms out at 18.

5.6 When Does It Do Well?

The perceptron predictor does well when the branch being
predicted exhibits linearly separable behavior. To define this
term, let w � be the most recent � bits of global branch history.
For a static branch � , there exists a Boolean function �P����w � �
that best predicts � ’s behavior. It is this function, �G� , that all
branch predictors strive to learn. If �G� is not linearly sepa-
rable, then gshare may predict � better than the perceptron
predictor, and we say that such branches are linearly insepa-
rable. We compute � � ��w[� � � for each static branch � in the
first 100 million branches of each benchmark and test for lin-
ear separability of the function. (Our algorithm for this test
takes time superexponential in � , so we are unable to go be-
yond 10 bits of history or 100 million dynamic branches. We
believe these numbers are good estimates for the purpose of
this discussion.)

Figure 8 shows the misprediction rates for each bench-
mark for a 512K budget, as well as the percentage of dy-
namically executed branches that is linearly inseparable. We

choose a large hardware budget to minimize the effects of
aliasing and to isolate the effects of linear separability. We
see that the perceptron predictor performs better than gshare
for the benchmarks to the left, which have more linearly sep-
arable branches than inseparable branches. Conversely, for
all but one of the benchmarks for which there are more lin-
early inseparable branches, gshare performs better. Note that
although the perceptron predictor performs best on linearly
separable branches, it still has good performance overall.
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Figure 8: Linear Separability vs. Performance at a 512K bud-
get. The perceptron predictor is better than gshare when the dynamic
branches are mostly linearly separable, and it tends to be less accu-
rate than gshare otherwise.

Some branches require longer histories than others for ac-
curate prediction, and the perceptron predictor often has an
advantage for these branches. Figure 9 shows the relation-
ship between this advantage and the required history length,
with one curve for linearly separable branches and one for
inseparable branches. The � axis represents the advantage
of our predictor, computed by subtracting the misprediction
rate of the perceptron predictor from that of gshare. We
sorted all static branches according to their “best” history
length, which is represented on the � axis. Each data point
represents the average misprediction rate of static branches
(without regard to execution frequency) that have a given
best history length. We use the perceptron predictor in our
methodology for finding these best lengths: Using a percep-
tron trained for each branch, we find the most distant of the
three weights with the greatest magnitude. This methodol-
ogy is motivated by the work of Evers et al, who show that
most branches can be predicted by looking at three previ-
ous branches [7]. As the best history length increases, the
advantage of the perceptron predictor generally increases as
well. We also see that our predictor is more accurate for lin-
early separable branches. For linearly inseparable branches,
our predictor performs generally better when the branches re-
quire long histories, while gshare sometimes performs better
when branches require short histories.



0 20 40 60

Best History Length

0

5

10

gs
ha

re
 %

 m
isp

re
di

ct
ed

 - 
pe

rc
ep

tr
on

 %
 m

isp
re

di
ct

ed Linearly inseparable branches
Linearly separable branches

Figure 9: Classifying the Advantage of our Predictor. Above the: axis, the perceptron predictor is better on average. Below the :
axis, gshare is better on average. For linearly separable branches,
our predictor is on average more accurate than gshare. For insepara-
ble branches, our predictor is sometimes less accurate for branches
that require short histories, and it is more accurate on average for
branches that require long histories.

5.7 Additional Advantages of Our Predictor

Assigning confidence to decisions. Our predictor can
provide a confidence-level in its predictions that can be useful
in guiding hardware speculation. The output, � , of the per-
ceptron predictor is not a Boolean value, but a number that
we interpret as taken if ���,\ . The value of � provides im-
portant information about the branch since the distance of �
from 0 is proportional to the certainty that the branch will be
taken [13]. This confidence can be used, for example, to al-
low a microarchitecture to speculatively execute both branch
paths when confidence is low, and to execute only the pre-
dicted path when confidence is high. Some branch predic-
tion schemes explicitly compute a confidence in their predic-
tions [11], but in our predictor this information comes for
free. We have observed experimentally that the probability
that a branch will be taken can be accurately estimated as a
linear function of the output of the perceptron predictor.

Analyzing branch behavior with perceptrons. Percep-
trons can be used to analyze correlations among branches.
The perceptron predictor assigns each bit in the branch his-
tory a weight. When a particular bit is strongly corre-
lated with a particular branch outcome, the magnitude of the
weight is higher than when there is less or no correlation.
Thus, the perceptron predictor learns to recognize the bits in
the history of a particular branch that are important for pre-
diction, and it learns to ignore the unimportant bits. This
property of the perceptron predictor can be used with profil-
ing to provide feedback for other branch prediction schemes.
For example, our methodology in Section 5.6 could be used
with a profiler to provide path length information to the vari-
able length path predictor [23].

5.8 Effects of Context Switching

Branch predictors can suffer a loss in performance after a
context switch, having to warm up while relearning pat-
terns [6]. We simulate the effects of context switching by
interleaving branch traces from each of the SPEC 2000 inte-
ger benchmarks, switching to the next program after 60,000
branches. This workload represents an unrealistically heavy
amount of context switching, but it serves as a good indi-
cator of performance in extreme conditions, and it uses the
same methodology as other recent work [4]. Note that pre-
vious studies have used the 8 SPEC 95 integer benchmarks,
so our use of the 12 SPEC 2000 benchmarks will likely lead
to higher misprediction rates. For each predictor, we con-
sider the effect of re-initializing the table of counters after
each context switch (which would be done with a privileged
instruction in a real operating system) and use this technique
when it gives better performance.

Figure 10 shows that context switching affects the percep-
tron predictor more significantly than the other two predic-
tors. Nevertheless, the perceptron predictor still maintains an
advantage over the other two predictors at hardware budgets
of 4K bytes or more. The hybrid gshare/perceptron predic-
tor performs better in the presence of context switching; this
benefit of hybrid predictors has been noticed by others [6].
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Figure 10: Budget vs. Misprediction Rate for Simulated Con-
text Switching. The perceptron predictor is more affected by heavy
context switching than gshare or bi-mode.

6 Implementation

We now suggest ways to implement our predictor efficiently.

Computing the Perceptron Output. Since -1 and 1 are
the only possible input values to the perceptron, multiplica-
tion is not needed to compute the dot product. Instead, we
simply add when the input bit is 1 and subtract (add the two’s-
complement) when the input bit is -1. This computation is
similar to that performed by multiplication circuits, which



must find the sum of partial products that are each a function
of an integer and a single bit. Furthermore, only the sign bit
of the result is needed to make a prediction, so the other bits
of the output can be computed more slowly without having
to wait for a prediction.

Training. The training algorithm of Section 3.3 can be
implemented efficiently in hardware. Since there are no de-
pendences between loop iterations, all iterations can execute
in parallel. Since in our case both ��� and � can only be -1 or 1,
the loop body can be restated as “increment � � by 1 if ����� � ,
and decrement otherwise,” a quick arithmetic operation since
the � � are at most 9-bit numbers:

for each bit in parallel
if M�L : � then? � := ? �cXm�
else? � := ? ���|�
end if

Delay. A � }K� � } multiplier in a 0.25 � m process can oper-
ate in 2.7 nanoseconds [9], which is approximately two clock
cycles with a 700 MHz clock. At the longer history lengths,
an implementation of our predictor resembles a 54

�
54 mul-

tiply, but the data corresponding to the partial products (i.e.,
the weights) are narrower, at most 9 bits. Thus, any carry-
propagate adders, of which there must be at least one in a
multiplier circuit, will not need to be as deep. We believe
that a good implementation of our predictor at a large hard-
ware budget will take no more than two clock cycles to make
a prediction. For smaller hardware budgets, one cycle opera-
tion is feasible. Two cycles is also the amount of time claimed
for the variable length path branch predictor [23]. That work
proposes pipelining the predictor to reduce delay.

Jiménez et al study a number of techniques for reducing
the impact of delay on branch predictors [12]. For example, a
cascading perceptron predictor would use a simple predictor
to anticipate the address of the next branch to be fetched, and
it would use a perceptron to begin predicting the anticipated
address. If the branch were to arrive before the perceptron
predictor were finished, or if the anticipated branch address
were found to be incorrect, a small gshare table would be
consulted for a quick prediction. The study shows that a sim-
ilar predictor, using two gshare tables, is able to use the larger
table 47% of the time.

7 Conclusions

In this paper we have introduced a new branch predictor that
uses neural networks—the perceptron in particular—as the
basic prediction mechanism. Perceptrons are attractive be-
cause they can use long history lengths without requiring
exponential resources. A potential weakness of perceptrons
is their increased computational complexity when compared
with two-bit counters, but we have shown how a perceptron
predictor can be implemented efficiently with respect to both
area and delay. Another weakness of perceptrons is their
inability to learn linearly inseparable functions, but despite

this weakness the perceptron predictor performs well, achiev-
ing a lower misprediction rate, at all hardware budgets, than
two well-known global predictors on the SPEC 2000 integer
benchmarks.

We have shown that there is benefit to considering his-
tory lengths longer than those previously considered. Vari-
able length path prediction considers history lengths of up to
23 [23], and a study of the effects of long branch histories
on branch prediction only considers lengths up to 32 [7]. We
have found that additional performance gains can be found
for branch history lengths of up to 62.

We have also shown why the perceptron predictor is ac-
curate. PHT techniques provide a general mechanism that
does not scale well with history length. Our predictor instead
performs particularly well on two classes of branches—those
that are linearly separable and those that require long history
lengths—that represent a large number of dynamic branches.

Because our approach is largely orthogonal to many of
the recent ideas in branch prediction, there is considerable
room for future work. We can decrease aliasing by tuning
our predictor to use the bias bits that were introduced by
the Agree predictor [22]. We can also employ perceptrons
in a hybrid predictor that uses both global and local histo-
ries, since hybrid predictors have proven to work better than
purely global schemes [6]. We have preliminary experimen-
tal evidence that such hybrid schemes can be improved by
using perceptrons, and we intend to continue this study in
more detail.

More significantly, perceptrons have interesting charac-
teristics that open up new avenues for future work. Because
the perceptron predictor has different strengths and weak-
nesses from counter-based predictors, new hybrid schemes
can be developed. We also plan to develop compiler-based
branch classification techniques to make such hybrid predic-
tors even more effective. We already have a starting point
for this work, which is to focus on the distinction between
linearly separable and inseparable branches, and between
branches that require short history lengths and long history
lengths. As noted in Section 5.7, perceptrons can also be used
to guide speculation based on branch prediction confidence
levels, and perceptron predictors can be used in recognizing
important bits in the history of a particular branch.
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