
Idealized Piecewise Linear Branch Prediction

Daniel A. Jiménez
Department of Computer Science

Rutgers University, Piscataway, NJ 08854

Abstract

Traditional branch predictors exploit correlations between
pattern history and branch outcome to predict branches, but
there is a stronger and more natural correlation between
path history and branch outcome. I exploit this correlation
with piecewise linear branch prediction, an idealized branch
predictor that develops a set of linear functions, one for each
program path to the branch to be predicted, that separate
predicted taken from predicted not taken branches. Taken
together, all of these linear functions form a piecewise linear
decision surface.

Disregarding implementation concerns modulo a 64.25
kilobit hardware budget, I present this idealized branch pre-
dictor for the first Championship Branch Predictor compe-
tition. I describe the idea of the algorithm and as well as
tricks used to squeeze it into 64.25 kilobits while maintain-
ing good accuracy.

1 Introduction
This note describes my entry into the 1st JILP Champi-
onship Branch Prediction Competition. It is based on piece-
wise linear branch prediction, a generalization of both per-
ceptron and path-based neural branch predictors [2, 1]. I
paid no attention whatsoever to issues of implementation
such as delay or numbers of gates in random logic; my only
concerns were accuracy and keeping to the 64.25 kilobit
limit on state. The algorithm uses only branch address and
outcome information.

The original perceptron predictor learns the equation of
a hyperplane in n dimensional space where n is the history
length for the predictor. Dynamic branches whose pattern
histories lie above the hyperplane are predicted not taken;
pattern histories below the hyperplane are predicted taken.
This scheme is highly accurate in practice, but cannot cap-
ture the nuanced behavior of certain branches.

Piecewise linear branch prediction learns the equation
of several hyperplanes based on the path leading up to the
branch to be predicted. The intersection of these hyper-
planes forms the decision surface for prediction. Figure 1
shows a piecewise linear decision surface for predicting a
branch whose outcome is equal to the exclusive-OR of the
outcomes of the last two branches. This branch cannot be
predicted with more than 50% accuracy with perceptrons;

however, piecewise linear branch prediction classifies it per-
fectly.

Figure 1: A piecewise linear decision surface for XOR

Section 2 describes the idea of the algorithm. Section 4
gives a list of tricks used to make the algorithm more accu-
rate. Section 5 computes the size of the predictor to show
that it stays within the limits imposed by the contest.

2 The Idea of the Algorithm
I present an algorithm in Algol-like pseudocode that cap-
tures the idea of the algorithm without going into too much
detail.

2.1 Variables
The following variables are used by the algorithm:

W A three-dimensional array of integers. Addition and
subtraction on elements of W saturate at +127 and -128.
The dimensions of the array are arbitrarily large, i.e., large
enough to accommodate any access that might be made dur-
ing the algorithm.

GHL The global history length. This is a small integer.

GHR The global history register. This vector of bits ac-
cumulates the outcomes of branches as they are executed.
Branch outcomes are shifted into the first position of the
vector.

1

function predict (address: integer): boolean
begin

(* output is initialized to bias weight *)
output := W [address, 0, 0]
(* sum weights (or their negations) chosen using
the addresses of the last GHL branches *)
for i in 1..GHL do

if GHR[i] = true then
(* if the ith branch in *)
output := output + W [address, GA[i], i]

else
(* otherwise subtract it *)
output := output − W [address, GA[i], i]

end if
end for
(* predict the branch taken if the output is at least 0 *)
predict := output ≥ 0

end

Figure 2: Prediction algorithm

GA An array of addresses. As branches are executed, their
addresses are shifted into the first position of this array. In
the implementation, the elements of the array are simply the
lower 8 bits of the branch address.

output An integer. This integer is the dot product of a
weights vector chosen dynamically and the global history
register.

2.2 Prediction and Update Algorithms
Figure 2 shows the function predict that computes the
Boolean prediction function. The function accepts the ad-
dress of the branch to be predicted as its only parameter. The
branch is predicted taken if predict returns true, not taken
otherwise. Figure 3 shows the procedure train that is used
when the branch is executed and it is time to update the pre-
dictor. It accepts two parameters: the address of the branch
and a Boolean value that is true if and only if the branch was
taken. It assumes that all variables retain the values they had
at the end of the invocation of predict for this branch.

3 Examples
Perceptrons learn the equation of a hyperplane that forms
a decision surface in the feature space. For branch predic-
tion, the feature space is the outcomes of previous branches.
Consider a global history length of 2. The last branch ex-
ecuted has outcome x which is positive if the branch was
taken, negative otherwise. The second-to-last branch has
an outcome of y. The perceptron predictor learns the co-
efficients m1, m2, and b for the equation of a plane z =
m1x + m2y + b. The coefficients m1 and m2 are correlat-
ing weights and b is the bias weight. If x and y fall below
the decision surface, i.e., z > 0, then the current branch is
predicted taken, otherwise it is predicted not taken.

procedure train (address: integer; taken: boolean)
begin

if |output| < θ or output ≥ 0 6= taken then
if taken = true then

W [address, 0, 0] := W [address, 0, 0] + 1
else

W [address, 0, 0] := W [address, 0, 0] − 1
end if
for i in 1..GHL

if GHR[i] = taken then
W [address, GA[i], i] := W [address, GA[i], i] + 1

else
W [address, GA[i], i] := W [address, GA[i], i] − 1

end if
end for

end if
GA[2..GHL] := GA[1..GHL − 1]
GA[1] := address
GHR[2..GHL] := GHR[1..GHL − 1]
GHR[1] := taken

end

Figure 3: Training algorithm

The piecewise linear branch predictor learns the equa-
tions of several hyperplanes. For any given prediction, the
coefficients for that prediction are identified using the path
leading to the current branch. Taken together, each of the
hyperplanes used for successive predictions forms a piece-
wise linear decision surface in the feature space.

Figure 4 (a) shows the AND function represented in two-
dimensional space. A white dot means false, i.e. not taken,
and a black dot means true, i.e. taken. In terms of branch
prediction, this figure represents a branch that is taken if any
only if both of the previous branches in the global branch
history were taken. Figure 4 (b) shows a 2-dimensional rep-
resentation of the intersection of the z = 0 plane and a deci-
sion surface learned by the perceptron predictor for the AND
function. The darker shaded region indicates points below
the decision surface, i.e. x, y coordinates for which the pre-
dictor predicts taken. The lighter shaded region indicates
points above the decision surface for which not taken would
be predicted. Figure 4 (c) shows a decision surface learned
by piecewise linear branch prediction. Both algorithms sep-
arate the AND function perfectly.

Figure 5 (a) shows the XOR function, i.e., a branch that
is taken if and only if the previous branches in the global
history had behaviors opposite from one another. Figure 5
(b) shows a decision surface learned by the perceptron pre-
dictor. This surface classifies instances correctly only 50%
of the time. Clearly, a single plane cannot separate the
taken and not taken instances of the XOR function; it is lin-
early inseparable [3]. Nevertheless, Figure 5 (c) shows a
decision surface learned by piecewise linear branch predic-
tion that perfectly separates taken from not taken instances.
Using path information from the program that contains the
branches in question, a piecewise linear decision surface is
learned that classifies the XOR function correctly.

2

(a) (b) (c)

Figure 4: The AND function (a), a perceptron decision surface (b), and a piecewise linear decision surface (c)

(a) (b) (c)

Figure 5: The XOR function (a), a perceptron decision surface (b), and a piecewise-linear decision surface (c)

4 Tricks
In this section, I describe a number of tricks used to fit the
predictor into 64.25 kilobits as well as achieve good accu-
racy. A number of parameters to the algorithm were chosen
empirically; unfortunately, limited space does not allow me
to show their values in this note, but they are described in
my predictor.h.

4.1 Hashing
An arbitrary-sized three-dimensional array has the potential
to exceed the 64.25 kilobit limit for the contest. So I use
hashing to map indices of the arbitrary-sized array into lo-
cations of finite-sized table. Some triples of indices will
collide with one another in the table, possibly causing de-
structive interference. I settled on the following hash func-
tion that seems to reduce interference over other functions
I tried. Let N be the number of weights in the finite-sized
table. Let H1, H2, and H3 be prime numbers chosen empir-
ically. Then the hash function is:

function hash (i,j,k : integer): integer
begin

hi := i × H1

hj := j × H2

hk := k × H3

hash := (hi xor hj xor hk) mod N
end

The values chosen for N , H1, H2, and H3 are chosen
empirically and appear in predictor.h.

4.2 Separating Bias Weights from Other
Weights

I divided the weights into two pools: a pool of bias weights
and a pool of general weights. Bias weights and general
weights have different properties, e.g. the bias weight is
usually much more correlated with branch outcome than any
particular history weight, and the same bias weight is always
used for a given static branch. Separating the weights into
these two pools allows the sizes of these pools to be de-
termined empirically. It also enables another optimization
described below, dynamic adjusting the history length.

4.3 Using Global and Per-Branch History
To boost accuracy, I used a combination of global and per-
branch history rather than just global history as outlined in
the algorithms above. A table of per-branch histories is kept
and indexed by branch address modulo number of histories.
These histories are incorporated into the computations for
the prediction and training in the same way as the global
histories. This technique was used in the perceptron predic-
tor [3] and has been referred to as alloyed branch prediction
in the literature [5]. These parameters were chosen empiri-
cally.

3

4.4 Adjusting the Threshold for Taken
Branches

The algorithm predicts a branch to be taken if the value of
output is at least 0. It turns out that most of branches in the
distributed traces are biased to be not taken, so changing this
threshold from 0 to 3 gives slightly better accuracy.

4.5 Dynamically Adjusting the History
Length

With a large number of static branches, destructive interfer-
ence can be a big problem. One solution is to use a shorter
global and local history length so that fewer weights are in-
volved in any particular prediction. After 300,000 branches
have passed, my predictor estimates the number of static
branches by counting all of the bias weights whose magni-
tudes exceed 2. If this number exceeds 300, then the predic-
tor switches to lower global and local history lengths; other-
wise, it switches to higher global and local history lengths.
These history lengths as well as the figures 300,000 and 300
were determined empirically. An idea of changing history
length dynamically is described in [4].

4.6 Extra Weights
The bias weight and the first several global weights are re-
peated. That is, the algorithm uses other sources for these
weights as well as the original source. Thus, a branch
has more than one bias weight: one from the pool of bias
weights and several from the pool of general weights. A
branch also has more than one of each of the first several
global weights. This improves accuracy by reducing the ef-
fect of destructive interference as well as emphasizing the
relative predictive power of these weights in computing the
output of the predictor. The number of extra weights is de-
termined empirically and dynamically adjusted as described
above.

4.7 Inverted Bias Weights
A bias weight is normally incremented when a branch is
taken and decremented otherwise. I found that it is help-
ful to have extra bias weights that are decremented when a
branch is taken and incremented otherwise, and subtracted
from the output rather than added. The number of these in-
verted weights to use is determined empirically and dynam-
ically adjusted as above.

5 The Size of the Predictor
To simplify accounting for the sizes of these variables, all
variables representing predictor state are declared as fields
of the class PREDICTOR. I only count the bits in each vari-
able that are actually used by the algorithm, e.g. the signed
variable theta upper only accounts for 9 bits since its
maximum magnitude never exceeds 255, even though it is

represented by a 16-bit short int. Each of the weights
is 7 bits since their maximum and minimum values are 63
and -64, respectively, even though they are represented by
8-bit signed chars. Figure 1 shows how I compute the
size of the state used for the predictor.

Quantity of bits Source of bits
7 * 8590 8590 7-bit general weights

+ 7 * 599 599 7-bit bias weights
+ 8 * 48 48 8-bit global addresses

+ 48 48 bits for global history register
+ 16 * 55 55 16-bit local history registers

+ 32 output of predictor is 32-bit int
+ 16 i is a 16-bit int used as loop index
+ 8 global history length is 8-bit int
+ 8 local history length is 8-bit int
+ 8 extra bias length is 8-bit int
+ 8 extra history length is 8-bit int
+ 8 inverted bias length is 8-bit int
+ 9 theta upper is 9-bit signed int
+ 9 theta lower is 9-bit signed int

+ 16 lh is a 16-bit local history
+ 32 ntimes is a 32-bit int

65789 total number of bits

Table 1: Computing the total number of bits used

The total number of bits used by my predictor is 65,789,
which is less than the 64K + 256 = 65,792 bits allowed for
the contest.

6 Acknowledgement
This research is supported by NSF Grant CCR-0311091.

References
[1] Daniel A. Jiménez. Fast path-based neural branch prediction.

In Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 243–252. IEEE Com-
puter Society, December 2003.

[2] Daniel A. Jiménez and Calvin Lin. Dynamic branch prediction
with perceptrons. In Proceedings of the 7th Int’l Symposium
on High Performance Computer Architecture, pages 197–206,
January 2001.

[3] Daniel A. Jiménez and Calvin Lin. Neural methods for dy-
namic branch prediction. ACM Transactions on Computer Sys-
tems, 20(4):369–397, November 2002.

[4] Toni Juan, Sanji Sanjeevan, and Juan J. Navarro. Dynamic
history-length fitting: a third level of adaptivity for branch
prediction. SIGARCH Comput. Archit. News, 26(3):155–166,
1998.

[5] Kevin Skadron, Margaret Martonosi, and Douglas W. Clark. A
taxonomy of branch mispredictions, and alloyed prediction as
a robust solution to wrong-history mispredictions. In Proceed-
ings of the 2000 International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 199–206, October
2000.

4

