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ABSTRACT
The disparity between last-level cache and memory latencies
motivates the search for e�cient cache management policies.
Recent work in predicting reuse of cache blocks enables opti-
mizations that significantly improve cache performance and
e�ciency. However, the accuracy of the prediction mecha-
nisms limits the scope of optimization.

This paper introduces multiperspective reuse prediction,
a technique that predicts the future reuse of cache blocks
using several di↵erent types of features. The accuracy of the
multiperspective technique is superior to previous work. We
demonstrate the technique using a placement, promotion,
and bypass optimization that outperforms state-of-the-art
policies using a low overhead. On a set of single-thread bench-
marks, the technique yields a geometric mean 9.0% speedup
over LRU, compared with 5.1% for Hawkeye and 6.3% for
Perceptron. On multi-programmed workloads, the technique
gives a geometric mean weighted speedup of 8.3% over LRU,
compared with 5.2% for Hawkeye and 5.8% for Perceptron.

CCS CONCEPTS
• Computer systems organization → Multicore archi-
tectures; • Hardware → Static memory ;
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1 INTRODUCTION
LLC misses are a significant source of performance loss be-
cause of the large number of CPU cycles required to access
DRAM. Recent work has focused on predicting whether a
block will be reused in the last-level cache (LLC). If blocks
with a low probability of reuse can be accurately identified,
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Figure 1: Receiver operating characteristic (ROC)
curves for three reuse predictors. In a range of false
positive rates allowing for a bypass optimization,
multiperspective prediction identifies more true pos-
itives (dead blocks).

they can be quickly evicted or even bypassed altogether,
avoiding costly capacity misses by allowing blocks with more
locality to remain in the cache. Previous work has identified
features correlated with block reuse that may be used in
the design of reuse predictors. Each proposed technique uses
one or two features resulting in increasingly accurate reuse
predictors.

This paper introduces multiperspective reuse prediction.
We propose using many features that examine various prop-
erties of program and memory behavior to give a prediction
informed from multiple perspectives. The features are drawn
from an abstract set of seven parameterized features, each
tracking a distinct property related to block reuse. The result
is a highly accurate reuse predictor capable of driving a cache
management optimization, Multiperspective Placement, Pro-
motion, and Bypass (MPPPB).

Figure 8(a) shows a portion of the receiver operating char-
acteristic (ROC) curves for three reuse predictors: sampling-
based dead block prediction (SDBP) [15], perceptron-learning-
based reuse prediction (hereafter, Perceptron) [28], and our
multiperspective technique. On an access to a block, each
predictor gives a confidence value. If this value exceeds some
threshold, the block is classified as “dead,” i.e., it is pre-
dicted not to be reused before it is evicted. ROC curves plot
the false positive rate against the true positive rate for all
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the feasible threshold values. The false positive rate is the
fraction of live blocks that are mispredicted as dead, while
the true positive rate is the fraction of dead blocks that are
correctly predicted. A higher false positive rate is a liability
as it increases the chances of a cache miss, while a higher
true positive rate increases the opportunity for applying the
optimization.

We consider an aggressive bypass optimization. The reuse
predictor decides whether a block brought to the LLC from
DRAM is “dead-on-arrival,” i.e. it will not be reused in the
cache. In this case, the block is not placed in the LLC, but
bypassed to the core cache. For each predictor, the false
positive rate giving the best performance is between 25% and
31%, with the exact value decided by the granularity of the
possible threshold values. At every point in this region, the
multiperspective technique provides a lower false positive rate
and higher true positive rate, resulting in higher performance
for the bypass optimization.

1.1 Contributions
This paper makes the following contributions:

(1) It introduces a last-level cache block reuse predictor
based on combining seven parameterized features cor-
related with block reuse. The features and selection of
their parameters for accuracy are described.

(2) Each feature may use a di↵erent recency position for
deciding the last access to a given block. Thus, each fea-
ture may simulate a di↵erent associativity, allowing the
set of parameterized features to be greatly expanded.

(3) The predictor drives an optimization for three aspects
of cache management: block placement, replacement,
and bypass. On a set of 33 single-thread benchmarks,
the technique yields a geometric mean 9.0% speedup
over LRU, compared with 5.1% for Hawkeye [11] and
6.3% for Perceptron [28], two state-of-the-art cache
management policies. On a set of 900 4-core multi-
programmed workloads, the technique yields a geomet-
ric mean weighted speedup of 8.3% over LRU, com-
pared with 5.2% for Hawkeye and 5.8% for Perceptron.

2 BACKGROUND AND RELATED
WORK

This section reviews recent work in reuse prediction.

Reuse Distance Prediction. Recent work proposes tech-
niques to determine the distance to the next reuse of a block.
Re-reference Interval Prediction (RRIP) [12] is an e�cient im-
plementation of reuse-distance prediction [14]. RRIP groups
blocks into recency categories based on the predicted inter-
val to the next reference [12]. Static RRIP (SRRIP) places
all incoming blocks into the same category, while Dynamic
RRIP (DRRIP) uses set-dueling [23] to adapt the placement
position to the particular workload. RRIP is simple, requir-
ing little overhead and no complex prediction structures,
while resulting in significant performance improvement. The
multi-programmed version of our technique uses SRRIP with

two-bit re-reference interval values as the default replacement
policy.

Dead Block Prediction. Dead block predictors attempt to
detect whether a block will be referenced again before it is
evicted. There are numerous dead block predictors applied to
a variety of applications in the literature [1, 10, 15–19, 25, 29].
Our work uses of the notion of a sampler from Sampling Dead
Block Prediction (SDBP) [15]. The sampler structure keeps
partial tags of sampled sets corresponding to a set in the
cache. When a sampled cache set is accessed, the matching
set in the sampler will be accessed as well. Three tables of
two-bit saturating counters are accessed using a technique
similar to a skewed branch predictor [20]. When a block
is hit in a sampled set, the program counter (PC) of the
relevant memory instruction is hashed into the tables and the
corresponding counters are decremented. For each eviction
from a sampled set, the counters corresponding to the PC of
the last instruction to access the victim block are incremented.
To make the predictions for the rest of the blocks in the LLC,
when there is an access, the predictor is consulted by hashing
the PC of the memory access instruction into the tables
and taking the sum of the indexed counters. If the sum
exceeds some threshold, the accessed block is predicted dead.
The sampler is managed by the LRU policy with a reduced
associativity from that of the LLC. The SDBP work applies
the predictions to a replacement and bypass optimization.

Perceptron Learning for Reuse Prediction. Teran et al.
propose using perceptron learning for reuse prediction (here-
after Perceptron) driving a bypass and replacement optimiza-
tion [28]. In that work, perceptron learning is used to set
weights selected by hashes of multiple features consisting of
the PC, several recent PCs, and two di↵erent shifts of the tag
of the referenced block. Each feature is hashed to index its
own table of weights. The selected weights are summed and
thresholded to make a prediction. When a sampled block is
reused or evicted, the corresponding weights are decremented
or incremented, respectively, according to the perceptron
learning rule. That work is inspired by the organization of
the hashed perceptron branch predictor [26]. The structure of
our predictor is similar to Perceptron, but the set of features
is greatly expanded, and the confidence value produced by the
predictor is used for block placement as well as bypass and
replacement. Crucially, Perceptron requires keeping an extra
bit per block to keep track of whether a block is dead, where
our technique uses block placement position to implicitly
record whether a block has been predicted dead.

Features Correlating with Reuse. Several features correlate
with block reuse in caches. The sequence, or trace, of memory
access instruction addresses (PCs) leading to a block’s use
is highly correlated with whether that block will be used
again [18, 19]. Accesses to LLCs are filtered by first- and
second-level caches, so this trace does not provide good ac-
curacy for the LLC [15]. The PC of the memory instruction
that last touched the block in question is a simpler feature.
The PC gives good accuracy in the LLC, but since there
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are multiple paths to the same PC, some information about
program behavior is lost, limiting the accuracy that can be
achieved. Bits from the memory address can also be used [19].
Typical programs reference many more memory addresses
than PCs, so there is a trade-o↵ between memory address
bits used as input features and destructive interference and
training times in prediction tables. Other features such as
the compressibility of a block [21] or reference counts [16]
have been proposed; however, these ideas have a significant
overhead in terms of complexity or space overhead.

Combining Features. Bits from the memory address and
PC traces can be combined by appending or hashing to gen-
erate an index into the predictions table [19]. However, this
combination risks destructive interference and longer training
times in the predictor as each possible pattern may index a
di↵erent counter. Perceptron learning for reuse prediction [28]
uses recent PCs and bits extracted from the memory address
to index distinct tables, mitigating the e↵ects of interference
in a given table in a way similar to hashed perceptron branch
predictors [26]. Our work uses the same idea of multiple
distinct tables, but greatly augments the set of available
features.

3 MULTIPERSPECTIVE REUSE
PREDICTION

In this section we present the multiperspective reuse pre-
diction technique. The predictor is organized as a hashed
perceptron predictor [26] indexed by a diverse set of features
and trained with a modified version of perceptron learning
that allows features to be parameterized by variable associa-
tivities.

3.1 Combining Multiple Features
As with perceptron-based reuse prediction, our predictor com-
bines multiple features. To make a prediction, each feature is
used to index a distinct table of 6-bit integer weights that are
then summed. The sum is used as a confidence estimate to
drive three cache management decisions: bypass, placement,
and promotion. A sampler is used to train the predictor using
accesses to a small number of cache sets in a manner similar
to SDBP [15]. The sampler is like a simulator for a subset of
the cache. It is managed with LRU replacement. Each access
to the sampler is an opportunity to train the predictor, as
the sampler keeps track of the vector of input features used
to estimate the confidence on the last access to that block.
If the sum is below 0 for dead (evicted) blocks, or above
0 for live (reused) blocks, the corresponding counters are
incremented or decremented, respectively. Unlike previous
work, the training of each table is selective based on an asso-
ciativity parameter for the feature used for that table: a block
might be considered dead for one table but live for another.
Thus, for a given training opportunity, some counters may
be incremented, some left alone, and some decremented. The
magnitudes of the weights is proportional to the correlation of
the feature to block reuse for that access. Weights with values
near 0 contribute very little to the sum, while weights with

large values can a↵ect the sum much more. Thus, the predic-
tion can be thought of as an aggregate of many predictions
taking into account each prediction’s confidence.

3.2 The Features
We introduce seven parameterized features used to form in-
dices into the prediction tables. The range of the features is
from 1 to 8 bits. We have found that each feature has some
correlation with whether a block will be reused. The features
are very general, with thousands of possible parameteriza-
tions. In Section 5 we describe our heuristics for finding a
good set of features and parameters.

The first feature for each parameter is the LRU stack po-
sition (A) beyond which a block is considered dead for the
purpose of training the corresponding table. Our original
SDBP work found that a sampler with a di↵erent associativ-
ity from the main cache improved predictor accuracy [15]. In
this work, we extend this observation to each feature. Intu-
itively, a block passing a certain stack position may signal
a high probability that it is on its way to being evicted, so
considering a variety of such positions enriches the feature
space for the predictor.

Each feature also has as its last parameter a Boolean (X)
that, if true, causes the PC of the current memory instruction
to be exclusive-ORed with the feature bits, allowing features
to be distributed across the weights and exploit correlations
between features and PCs.

Following is a list of the features with their parameters:

(1) pc(A, B, E, W , X). This feature is bits B to E of the

PC of the W th most recent memory access instruction.
As with every parameter, A is the recency stack posi-
tion beyond which a block is considered dead for this
feature, and if X is true then the feature is XORed with
the PC of the current memory access instruction. As
described above, the PC and history of PCs is known
to correlate with block reuse. A “fake” PC address is
used for all hardware prefetches.

(2) address(A, B, E, X). This feature is bits B to E of
the physical address for the memory access. Bits from
the address are known to correlate with block reuse, as
certain regions of memory are reused more than others.

(3) bias(A, X). This feature is simply the value 0. If X is
false, this feature yields a simple global counter that
is incremented when any block goes beyond position
A and decremented with it is accessed below position
A, tracking the general short-term bias of blocks to be
dead or live. IfX is true, this feature yields a traditional
PC-based predictor like SDBP or SHiP [29], tracking
the tendency of a given PC to lead to dead or live
blocks.

(4) burst(A, X). This single-bit feature is 1 if and only if
this access is to a most-recently-used (MRU) block. Suc-
cessive accesses to an MRU block, or a cache burst [19],
may signal high locality for given access and thus a↵ect
the probability of reuse.
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Figure 2: Prediction drives bypass, placement, and promotion. When a block is placed or reused, the predictor
is consulted. Features index tables of weights that are summed to a confidence value. On a miss, the sum is
thresholded to decide bypass or placement. On a hit, the block is not promoted if the sum exceeds a threshold.

(5) insert(A, X). This single-bit feature is 1 if and only
if this access is an insertion, i.e. the block is being
placed in the cache as a result of a cache miss. The
behavior of newly inserted blocks may di↵er from that
of re-referenced blocks, so this feature may provide
useful information about block reuse.

(6) lastmiss(A, X). This single-bit feature is true if and
only if the last access to the cache set in question
was a miss. This feature gives some indication of the
pressure on this set, allowing the predictor to distin-
guish between hot and cold sets when estimating the
probability of reuse.

(7) o↵set(A, B, E, X). This feature, from 1 to 6 bits in
a system with 64B blocks, gives bits B to E of the
block o↵set of this memory access. The o↵set may have
some correlation with reuse because it can given an
indication of which fields of an object are being access,
and thus provide some insight into program behavior.

3.3 The Sampler
Our predictor uses a sampler inspired by similar structures
in previous work [14, 15, 28]. A small number of sets in the
main cache are designated as sampled sets. For each sampled
set, a corresponding set of partial tags and other metadata
are kept in the sampler and managed with LRU replacement.
Each time a sampled set is accessed, the corresponding set
in the sampler is also access and used to train the predictor.

In previous work, hits and evictions in the sampler de-
termine how the predictor is trained. If a sampled block is
evicted, the predictor is trained positively, i.e. the predictor
learns that the block is dead and the counters corresponding
to the input features are incremented. If a sampled block is
accessed, the predictor is trained negatively with the corre-
sponding counters being decremented.

In our sampler, we extend the notion of associativity to be
a parameter to each feature. When a sampled set is accessed,

if the access causes a block to be demoted beyond the recency
position specified for a given feature, the table for that feature
is trained that the block is dead. If a sampled block is accessed
beyond the recency position (A) for a given feature, the table
for that feature is not trained that the access is a reuse, since
it would have been a miss if the cache had associativity A.

Each set in the sampler has 18 ways; we find empirically
that representing more than 18 possible recency positions
uses hardware resources than the benefit it provides. Each
entry in a sampled set consists of the following fields:

(1) A partial tag used to identify the block. Since access to
the sampler do not have to be correct, it is permissible
to allow a small number of distinct tags to map to the
same block. We find that using 16 bits for each tag
gives a good trade-o↵ between low a aliasing rate and
making best use of hardware resources.

(2) A 9-bit signed integer giving the most recently com-
puted confidence value for that block.

(3) The vector of indices into the prediction tables that
were used to compute the current confidence value
for that block. These indices are used to index the
prediction tables for training. No table is larger than
256 entries requiring an 8-bit index, and some are very
small, e.g. 1 entry for a bias(A,0) feature requiring no
index bits, so the number of bits needed for this vector
is small.

(4) Four bits storing the LRU recency stack position for
that block.

3.4 Predictor Organization
The predictor is organized as a set of independently in-
dexed tables, one per feature. Each table has a small number
of weights. Features that use the PC, physical address, or
exclusive-OR with the PC generate 8-bit indices requiring 256
weights per table. The o↵set feature requires up to 64 weights.
Single-bit features such as insert, burst, lastmiss require two
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weights per table. The bias feature requires one weight. We
find that 6 bit weights ranging from -32 to +31 provide a
good trade-o↵ between accuracy and area. A vector of feature
values is kept per core and updated on every memory access.
The lastmiss feature requires keeping a single extra bit for
every set.

3.5 Making a Prediction
On a last-level cache access, the predictor is consulted. Each
feature is used to produce an index into a distinct prediction
table to select a weight. The weights are summed to produce
a confidence value.

3.6 Driving Bypass, Placement, and
Promotion

On a cache miss, the confidence value is used to decide
whether the bypass the block or place it in one of three
recency positions ⇡1, ⇡2, or ⇡3 in the set. Four thresholds are
used to guide this decision: ⌧0, ⌧1, ⌧2, and ⌧3. If the confidence
value exceeds ⌧0, the block is bypassed; otherwise, the block
is placed in position ⇡i such that the confidence value exceeds
⌧i but not ⌧i�1. If the confidence value is below ⌧4 it is placed
in the position corresponding to most-recently-used.

On a cache hit, if the value exceeds a threshold ⌧4, then
the block is not promoted but rather remains in the same
recency position it previously occupied.

3.7 Default Replacement Policies
In this work, we explore two default replacement policies:
static minimal disturbance placement and promotion (static
MDPP) [27], and static re-reference interval prediction (SR-
RIP) [12]. Static MDPP uses tree-based pseudoLRU with
an enhanced promotion policy. In a 16-way cache, MDPP
allows placement or promotion into one of 16 distinct recency
positions. SRRIP classifies blocks into one of four recency
positions, initially placing blocks into a less favorable position
and then promoting them as they are accessed. We tune our
thresholds and positions (⇡i) to minimize misses for each
default replacement policy.

3.8 Training the Predictor
When a sampled set is accessed, the predictor has an op-
portunity to be trained. Evictions from the sampler have no
special significance because each feature has its own max-
imum recency position (the A parameter). Thus, the only
event triggering training is an access that places or hits in
the sampler. Such an access may cause several instances
of training: one for the block that is placed or reused, and
more for any block demoted beyond a particular feature’s A
parameter.

Training on Block Placement or Reuse. When a block is
placed or reused in the sampler, the vector of feature indices
for that block is used to index each table. For each feature
Fi, the corresponding prediction table Ti may be trained.
Suppose a reused block occupies recency position p. If p is

less than the A parameter for Fi, then the selected weight in
Ti is incremented with saturating arithmetic.

Training on Block Demotion. After a reused block is used
to train the predictor, it is promoted to the MRU position
according to the LRU replacement policy. This promotion
may result in the demotion of other blocks. For each feature
Fi, if a block is demoted to that feature’s A parameter, it is
treated as an eviction for the purposes of that feature. The
weight in Ti indexed in the vector of feature indices for that
demoted block is decremented with saturating arithmetic.

Complexity of Training. Although di↵erent A parameters
may trigger training for several blocks on a given access
to the sampler, the training can be completed in at most
two rounds of table accesses: one for the reused block, and
one for any demoted blocks. Since LRU recency positions
are distinct, only one block at a time might be demoted to
a given feature’s A parameter. Thus, the second round of
training requires no more than one access per table. Note:
although MDPP or SRRIP are used in the main cache, only
true LRU is used in the sampler.

4 METHODOLOGY

4.1 Performance Models
We model performance with an in-house simulator using
the following memory hierarchy parameters: L1 data cache:
32KB 8-way associative, L2 unified cache: 256KB 8-way,
DRAM latency: 200 cycles. It models an out-of-order 4-wide
8-stage pipeline with a 128-entry instruction window. The
single-thread simulations use a 2MB L3 cache while the
multi-programmed simulations use an 8MB L3 cache. The
simulator models a stream prefetcher. It starts a stream
on a L1 cache miss and waits for at most two misses to
decide on the direction of the stream. After that it starts to
generate and send prefetch requests. It can track 16 separate
streams. The replacement policy for the streams is LRU. This
infrastructure enables collecting instructions-per-cycle figures
as well as misses per kilo-instruction and reuse predictor
accuracy information.

4.2 Workloads
We use the 29 SPEC CPU 2006 benchmarks as well as
three server workloads from CloudSuite [7]: data caching,
graph analytics, sat solver as well as a machine learning work-
load mlpack cf from mlpack [5]. We use SimPoint [22] to
identify up to 6 segments (i.e. simpoints) of one billion in-
structions each characteristic of the di↵erent program phases
for the SPEC and mlpack workloads. For CloudSuite, we
fast-forward at least 30 billion instructions to get past the ini-
tialization phases. In total, we use 99 segments representing
33 benchmarks.

Single-Thread Workloads. For single-thread workloads, the
results reported per benchmark are the weighted average of
the results for the individual simpoints. The weights are gen-
erated by SimPoint and represent the portion of all executed
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instructions for which a given simpoint is responsible. Each
program runs the first ref input provided by the runspec

command. For each run, the 500 million instructions previous
to the simpoint are used to warm microarchitectural struc-
tures, then the subsequent one billion instructions are used
to measure and report results.

Multi-Programmed Workloads. For 4-core multi-programmed
workloads, we generated 1000 distinct workloads consisting
of mixes from the 99 segments described above. We follow
the sample-balanced methodology of FIESTA [9]. We select
regions of equal standalone running time for each simpoint.
Each region begins at the start of the simpoint and ends
when the number of cycles in a standalone simulation reaches
one billion cycles. Each workload is a mix of 4 of these regions
chosen uniformly randomly without replacement. For each
workload the simulator warms microarchitectural structures
until 100 million total instructions have been executed, then
measures results until each benchmark has executed for at
least one billion additional cycles. When a thread reaches
the end of its one billion cycle region, it starts over at the
beginning. Thus, all 4 cores are active during the entire
measurement period.

4.3 Cache Management Policies Simulated
We compare our proposed technique against two recent pro-
posals: Hawkeye [11] and perceptron-learning-based reuse
prediction [28]. For both techniques, we used code generously
provided by the original authors. For single-thread bench-
marks, we also simulate Bélády’s optimal replacement policy
(MIN) [3] adapted to also provide optimal bypass. (For multi-
programmed workloads, the simulation of MIN is problematic
due to the replacement policy’s ability to a↵ect the inter-
thread ordering of memory operations.) There is voluminous
other work in reuse prediction [1, 2, 6, 10, 12, 13, 15, 16, 18,
19, 27, 29]. We observe that Hawkeye and Perceptron provide
the best performance out of previous work.

We explore two versions of multiperspective placement,
promotion, and bypass (MPPPB). For single-thread work-
loads, we use a default static MDPP replacement policy. This
policy requires only 15 bits per set, allowing for an inexpen-
sive implementation. For multi-programmed workloads, we
use a default SRRIP replacement policy. SRRIP provides per-
formance comparable to MDPP, but because it has only four
recency levels instead of 16, it allows for simpler design-space
exploration of the space of threshold parameters. This sim-
plicity is important because the design space exploration of
multi-programmed workloads is far more compute-intensive
than it is for single-thread benchmarks.

4.4 Overhead for Predictors
The area overhead for the multiperspective predictor is domi-
nated by various tables. We design the structures to consume
a very small fraction of the capacity of the cache, and en-
sure that Hawkeye and Perceptron use an equivalent amount
of storage. In choosing the parameters a↵ecting hardware
budget, we target the single-core budget used by Hawkeye of

28KB. We choose 64 sampled sets per core. Each block in a
sampler entry consists of the vector of feature indices, 9 bits
of confidence value, 16 bits of partial tag, and 4 bits of LRU
state. The sampler is 18-way set-associative.

Single-Thread Overhead. The set of single-thread features
given in Table 1(b) uses 118 vector total index when taking
into account the sizes of the various tables used for those
features. The other single-core feature require fewer bits as
they have more single-bit features; thus, we use (b) for the
area estimate. Thus, the sampler consumes (9 + 16 + 4 +
118)⇥ 80⇥ 16 = 20.67KB. The 16 variable-sized prediction
tables of 6 bit weights consume 2.64KB total. The vector of
feature values kept for the current memory access consumes
0.44KB. The default MDPP replacement policy uses 15 bits
for each of the 2,048 sets or 3.75KB. Thus, the total size
required to support single-core MPPPB is 27.5KB, or 1.3%
of the capacity of the cache. This is comparable to Hawkeye,
which uses 28KB total for its structures. Perceptron uses only
about 10KB. We compensate by allowing it to have more
sampler sets so that it uses an equivalent hardware budget.

Multi-Core Overhead. For the 4-core set of features, there
are more single-bit and o↵set features, so only 93 bits are re-
quired to store the vector index bits per sampler entry, and the
predictor is slightly smaller. We scale up the sampler by a fac-
tor of four to contain 256 sampled sets, requiring 68.63KB for
the sampler. The 16 variable-sized prediction tables consume
1.94KB. The four per-core vector of feature values consume
1.29KB total. We use SRRIP for multi-core MPPPB, using
two bits per cache block in an 8MB cache, requiring 32KB.
Thus, the total overhead for multi-core MPPPB is 104KB,
or 1.3% of the capacity of the cache. The code provided by
the Hawkeye authors scales its resource usage based on the
number of sets in the cache resulting in a roughly equivalent
sized structure. Again, we augment Perceptron with a larger
number of sampler sets so that it uses an equivalent hardware
budget.

The implementation complexity of the perceptron-based
reuse predictor is approximately the same as Perceptron. The
small tables, sampler, and summing logic are conceptually
similar to the Perceptron algorithm. Conditional branch pre-
dictors based on perceptron learning have been implemented
in Oracle, AMD, and Samsung processors [4, 8, 24]. Branch
predictors operate under very tight timing constraints. Pre-
dictors in the last-level cache have a much higher tolerance
for latency. We are confident that the multiperspective pre-
dictor can be implemented given the timing constraints of a
last-level cache reuse predictor.

4.5 Reporting Performance
In Section 6 we report performance relative to LRU for the
various techniques tested. For single-thread workloads, we
report the speedup over LRU, i.e. the instructions-per-cycle
(IPC) of a technique divided by the IPC given by LRU. For
the multi-programmed workloads, we report the weighted
speedup normalized to LRU. That is, for each thread i sharing
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the 8MB cache, we compute IPCi. Then we find SingleIPCi

as the IPC of the same program running in isolation with
a 8MB cache with LRU replacement. Then we compute the
weighted IPC as

P
IPCi/SingleIPCi. We then normalize

this weighted IPC with the weighted IPC using the LRU
replacement policy.

5 DEVELOPING SETS OF FEATURES
In this section, we describe our search for a good set of
features and parameters for MPPPB. For both single-thread
and multi-programmed workloads, we use use a methodology
of using di↵erent training and testing sets. We empirically
determined that a set of 16 features provided enough diversity
of features to yield good accuracy while not requiring too
much hardware.

5.1 Finding Features
Our methodology for finding good features and parameters is
to start with a large set of randomly chosen features, evaluate
them with a fast simulator that only measures average MPKI
for a set of workloads, and then choose the best set of features
for further refinement with a hill-climbing algorithm. The
hill-climbing algorithm randomly chooses a feature from the
current set of features and changes it randomly by either
replacing it with a randomly generated feature, replacing it
with a copy of another feature, or slightly perturbing one
of its parameters. If the change lowers average MPKI, it is
kept, otherwise it is discarded. The hill-climbing procedure is
allowed to continue until it appears to have reached a state
of convergence, i.e. no random changes benefit the set of
features within a certain time limit. Previous work has used
genetic algorithms for a more robust search [13]. We tried
using a genetic algorithm for this work, but found that the
computationally intensive nature of evaluating average MPKI
led to unsatisfactory results. The design space exploration for
this project consumed approximately 10 CPU years spread
across our local cluster and a supercomputer to which we
had access.

5.2 Single-Thread Features
For single-thread workloads, we used a cross-validation method-
ology to develop two sets of features. We first randomly gen-
erated 4,000 sets of 16 parameterized features and evaluated
them on all 99 workloads. We divided the 99 program seg-
ments described in Section 4.2 randomly into two subsets of
50 and 49. Somewhat surprisingly, we found that the same
set of parameterized features provided the lowest average
MPKI for both subsets. We then proceeded with separate
hill-climbing for each subset at which point the set of features
diverged. For reporting performance and miss rate results
for each segment, we used the set of features developed for
the other segment. Thus, there is no overfitting of features to
benchmarks. Table 1 shows the two sets of features developed
for the single-thread workloads.

Figure 3 illustrates the search methodology. For the 99
single-thread program segments, we evaluate 4000 randomly

bias(16,0)
burst(6,0)
insert(16,0)
insert(16,1)
insert(17,1)
insert(8,1)
lastmiss(9,0)
o↵set(10,0,6,1)
o↵set(15,1,6,1)
pc(10,1,53,10,0)
pc(16,3,11,16,1)
pc(16,8,16,5,0)
pc(17,6,20,0,1)
pc(17,6,20,0,1)
pc(17,6,20,14,1)
pc(7,14,43,11,0)

address(11,8,19,0)
bias(6,1)
insert(15,0)
insert(16,1)
insert(6,1)
o↵set(15,1,6,1)
o↵set(15,3,7,0)
pc(11,2,24,4,1)
pc(15,14,32,6,0)
pc(15,5,28,0,1)
pc(16,0,16,8,1)
pc(17,6,20,0,1)
pc(6,12,14,10,1)
pc(7,1,24,11,0)
pc(7,14,43,11,0)
pc(8,1,61,11,0)

(a) (b)

Table 1: Two sets of features developed for single-
thread benchmarks using cross-validation.

bias(6,0)
address(9,9,14,5,1)
address(9,12,29,0)
address(13,21,29,0)
address(14,17,25,0)
lastmiss(6,0)
lastmiss(18,0)
o↵set(13,0,4,0)
o↵set(14,0,6,0)
o↵set(16,0,1,0)
pc(6,13,31,4,0)
pc(9,11,7,16,0)
pc(13,16,24,17,0)
pc(16,2,10,2,0)
pc(16,4,46,9,0)
pc(17,0,13,5,0)

Table 2: Set of features developed for multi-
programmed workloads using 100 training mixes.

chosen sets of 16 features. The figure shows the simulated
MPKI of these feature sets sorted in descending order of
MPKI. It also shows the MPKI for LRU, MIN, and the result
of the cross-validated hill-climbed feature sets used to for our
final single-thread numbers. Random feature selection yields
MPKIs ranging from worse than LRU to almost halfway
between LRU and MIN. Hill-climbing provides an additional
boost in performance, but most of the benefit comes from
the initial random search. As hill-climbing is prone to getting
caught in local minima, we believe a better search technique
will improve performance.
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5.3 Multi-Programmed Workloads
For the multi-programmed workloads, we randomly generated
1000 mixes of 4 program segments without replacement. We
used the first 100 of these mixes as a training set to develop
features. For reporting performance and miss rate results, we
use the remaining 900 mixes. Thus, the performance and miss
rate numbers reported in this paper are for multi-programmed
workloads that were not used for finding features. Table 2
shows the features found for multi-programmed workloads.

5.4 Discussion of Features
We make no claim that the features found by the hill-climbing
methodology are optimal. However, we can make interesting
observations about the features found:

(1) The single-thread features appear to have little use for
the address feature. It appears only once in one set of
features. On the other hand, the multi-programmed
features use four instances of address. We hypothesize
that di↵erent benchmarks within a multi-programmed
workload have di↵erent working sets of physical address
ranges, allowing the predictor to distinguish among be-
havior from the four di↵erent programs. Single-thread
behavior is more uniform so the address may provide
less information than the other features.

(2) Both single-thread and multi-programmed features
make heavy use of the pc feature. This confirms previ-
ous research that finds high correlation between previ-
ous PC values and program behavior [15, 18, 19, 28, 29].

(3) The burst feature is only used in one of the single-thread
feature sets, and is not used for the multi-programmed
features. Recall that the Boolean burst feature is true

Feature Sets Sorted by MPKI
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A
v
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r
a
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LRU
Random Features
Hill-climbed Features
MIN

Figure 3: Results for developing features for single-
thread benchmarks. Four thousand randomly chosen
sets of 16 features yield a range of MPKI values. Hill-
climbing improves MPKI but most of the benefit
comes from initial random search.

when an access is to a most-recently-used block. Since
the sampler and the main cache use di↵erent replace-
ment policies, the signal given by the burst feature
might be inconsistent between training and prediction.
For the multi-programmed cache that uses SRRIP as
the default replacement policy, this feature is partic-
ularly problematic. In SRRIP, recency positions are
not exclusive among cache blocks. Theoretically, all of
the blocks in an SRRIP-replaced set could occupy the
most-recently-used position simultaneously.

(4) The lastmiss feature is used only once in the two sets
of single-thread features. It may be of limited use in
that context. Eliminating it from consideration would
cut down the area expense of storing an additional bit
per set tracking misses.

(5) One of the single-thread feature sets, as well as the
multi-programmed feature set, include the bias feature
without exclusive-ORing the PC. This gives a simple
global up/down counter that tracks the tendency of
recent blocks to be dead.

(6) The insert feature figures prominently in both sets of
single-thread features, but does not appear at all in
the multi-programmed features. In Section 6.4 we will
see that the value of the insert feature is unclear.

Note that the two sets of single-thread features share some
elements, for instance, pc(17,6,20,0,1) appears in both sets of
features, and even twice in one of them. This is due to the fact
that the same initial random set of features minimized MPKI
for both randomly chosen subsets of program segments, and
because the hill-climbing algorithm may choose to duplicate
a feature.
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Figure 4: Normalized Weighted Speedup over LRU
for 4-Core Multi-Programmed Workloads
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5.5 Other Parameters
The four thresholds ⌧0, ⌧1, ⌧2, ⌧3, and ⌧4 as well as the three
placement positions ⇡1, ⇡2, and ⇡3 are chosen using the
same cross-validation methodology as the feature sets. For
each subset of workloads uses to train the parameters, the
bypass threshold ⌧0 is set first by an exhaustive search of
all possible values. Then the values of ⌧1, ⌧2, ⌧3, ⇡1, ⇡2, and
⇡3 are searched by generating thousands of random feasible
combinations of these values and selecting the combination
yielding the minimum average MPKI. For the multi-core
version of MPPPB, we use SRRIP as the default replacement
policy to limit the number of combinations of ⇡1, ⇡2, and ⇡3,
allowing us to exhaustively enumerate the combination of
placement positions with randomly generated thresholds.

6 RESULTS
This section gives results for the various policies tested. It
presents misses per kilo-instruction (MPKI) and speedup re-
sults. First, results are given for multi-programmed workloads.
Then, results are given for single-thread workloads.

6.1 Multi-Programmed Results
This section gives results for the 900 4-core multi-programmed
workloads.

6.1.1 Performance. Figure 4 shows weighted speedup nor-
malized to LRU for Perceptron, Hawkeye, and MPPPB with
an 8MB last-level cache. See 4.5 for the definition of weighted
speedup. The figure shows the speedups for each of the 900
testing workloads in ascending sorted order to yield S-curves.
Perceptron yields a geometric mean 5.8% speedup and Hawk-
eye yields a 5.2% speedup. MPPPB gives a geometric mean
speedup of 8.3%. The superior accuracy of multiperspec-
tive prediction gives a significant boost in performance over
the other two reuse predictors. Interestingly, Hawkeye yield
performance slightly below LRU for only 18 workloads. Per-
ceptron gives performance inferior to LRU for 201 workloads,
while MPPPB giver lower performance than LRU for 115
workloads. Both Perceptron and MPPPB more than make
up for that poor showing in terms of average and best-case
speedup, but it is clear that Hawkeye has some advantage
over the other techniques in delivering stable performance.
We intend to study this advantage in future research.

6.1.2 Misses. Figure 5 shows misses per 1000 instructions
(MPKI) various techniques sorted in descending order, i.e.
worst-to-best from left-to-right, to yield S-curves with a log
scale y-axis. MPPPB, at an arithmetic mean 10.97 MPKI,
delivers fewer misses than the other techniques. LRU, Per-
ceptron, and Hawkeye yield 14.1 MPKI, 12.49 MPKI, and
11.72 MPKI, respectively.

6.2 Single-Thread Results
This section discusses the single-thread performance and
misses for the 29 SPEC CPU benchmarks with a 2MB LLC.
Prefetching is enabled.
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Figure 5: Misses per 1000 Instructions for 4-Core
Multi-Programmed Workloads

6.2.1 Performance. Figure 6 shows single-thread speedup
of the techniques over LRU. The benchmarks are sorted by
speedup with MPPPB. Perceptron and Hawkeye achieve a
geometric mean 6.3% and 5.1% speedup over LRU, respec-
tively. MPPPB yields a 9.0% geometric mean speedup. The
optimal MIN policy achieves a 13.6% speedup. Thus, MPPPB
yields two thirds of the maximum speedup achievable. For 22
out of the 33 benchmarks, MPPPB yields the best speedup
over Hawkeye and Perceptron. For 28 out of the 33 bench-
marks, MPPPB exceeds the performance of LRU, and never
performs below 95% of the performance of LRU. For 8 bench-
marks for which MPPPB does not provide the best speedup
of the realistic techniques, Hawkeye gives the best speedup.
This result suggests that MPPPB might be combined with
Hawkeye to provide superior performance.

6.2.2 Misses. Figure 7 gives the MPKI for the 33 bench-
marks. Note the y-axis is a log scale. Perceptron and Hawkeye
have an average 3.7 and 3.8 MPKI, respectively. MPPPB
gives 3.5 MPKI. The average MPKI figures are somewhat
low because most of the benchmarks fit a large part of their
working sets into a 2MB cache. For mcf, a benchmark with a
high number of misses, Perceptron gives 25.2 MPKI, Hawkeye
yields 26.9 MPKI, and SPPPD gives 23.5 MPKI.

6.3 Accuracy
Figure 8(a) shows receiver operating characteristic (ROC)
curves for three reuse predictors with wide-ranging confidence
values: sampling-based dead block prediction (SDBP) [15],
perceptron-learning-based reuse prediction (hereafter, Per-
ceptron) [28], and our multiperspective technique. For each
technique, we modify the simulator to make the prediction
but not apply the optimization so that we can measure the
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Figure 6: Speedup over LRU for Single-Thread Workloads.
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Figure 7: Misses per 1000 Instructions for Single-Thread Workloads.

accuracy of the predictors without feedback from their de-
cisions a↵ecting the measurement. The curves are averaged
over the 33 single-thread benchmarks.

ROC curves plot the false positive rate against the true
positive rate for all the feasible threshold values. The false
positive rate is the fraction of live blocks that are mispredicted
as dead, while the true positive rate is the fraction of dead
blocks that are correctly predicted. A higher false positive
rate is a liability as it increases the chances of a cache miss,
while a higher true positive rate increases the opportunity
for applying the optimization.

We do not report ROC for Hawkeye. SDBP, Perceptron,
and multiperspective each classify blocks as “dead” or “live”
learning from an LRU-replaced sampler. Hawkeye classifies
blocks as “cache friendly” or “cache averse” learning from
an approximation of MIN. The false and true positive rates
given by Hawkeye are not directly comparable to the other
predictors. Näıvely mapping “cache averse” to “dead” and

“cache friendly” to “live,” results in false and true positive
rates worse than the other predictors.

Consider the bypass optimization. For each predictor, the
maximum tolerable false positive rate for best performance
is between 25% and 31%, with the exact value decided by
the granularity of the possible threshold values (i.e., possible
values for ⇡0 for MPPPB). See Figure 8(b). At every point in
this region, the multiperspective technique provides a lower
false positive rate and higher true positive rate, resulting in
higher performance for bypass.

6.4 Analysis
We perform three experiments to examine the impact of two
aspects of the features on performance.

Figure 9 illustrates the e↵ect of allowing each feature to
have its own associativity parameter. For the 900 multi- pro-
grammed workloads, we fix the A parameter for each feature
from 1 through 18 and observe the resulting performance.
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Figure 8: Receiver operating characteristic (ROC) curves for three reuse predictors. Each predictor has a
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bypass optimization, multiperspective prediction identifies more true positives (dead blocks).

With A = 1 for all features, performance reaches a 6.4%
geometric mean weighted speedup over LRU. With A = 18,
the maximum associativity allowed by the sampler, MPPPB
reaches a speedup of 7.8% over LRU. Allowing the original
set of features with its variable associativities per feature
results in an 8.0% speedup. Thus, variable associativities
help performance, but not by as large a margin as we had
expected.
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Figure 9: Performance impact of uniform associativ-
ity for each feature

Figure 10 analyzes the feature set given in Table 1(a).
Each bar shows the speedup obtained over the 900 multi-
programmed workloads when a given feature is removed from
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Figure 10: Performance impact of removing each fea-
ture from the predictor
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Instruction Memory MPKI MPKI Percent
Simpoint Footprint Footprint Feature without with Increase

603.bwaves s-891B 9KB 1.6GB bias(6,1) 4.2 4.2 0.02%
623.xalancbmk s-10B 233KB 30MB insert(15,0) 8.2 7.6 7.82%
621.wrf s-575B 1.1MB 75MB insert(16,1) 3.2 3.2 1.11%
657.xz s-2302B 43KB 43MB insert(6,1) 1.3 1.2 1.88%
654.roms s-1390B 83KB 387MB o↵set(15,1,6,1) 6.8 6.6 2.24%
602.gcc s-2226B 23KB 196MB o↵set(15,3,7,0) 1.5 1.4 8.82%
657.xz s-3167B 43KB 48MB pc(11,2,24,4,1) 1.0 1.0 1.99%
605.mcf s-472B 11KB 845MB pc(15,14,32,6,0) 15.7 12.7 18.88%
619.lbm s-2677B 4KB 2.23GB pc(15,5,28,0,1) 44.3 44.3 0.06%
605.mcf s-1554B 13KB 184MB pc(16,0,16,8,1) 28.1 25.8 8.38%
654.roms s-293B 48KB 1.1GB pc(17,6,20,0,1) 3.7 3.6 2.67%
641.leela s-334B 148KB 5.8MB pc(6,12,14,10,1) 0.1 0.0 14.06%
621.wrf s-8065B 1.2MB 68MB pc(7,1,24,11,0) 1.8 1.8 0.99%
625.x264 s-12B 299KB 39MB pc(7,14,43,11,0) 0.5 0.5 1.06%
620.omnetpp s-141B 158KB 165MB address(11,8,19,0) 7.0 6.9 1.04%

Table 3: Features contributing the most benefit for some SPEC CPU 2017 simpoints

the set of features, showing the impact of that feature. One
surprising result is that removing the insert(17,1) feature ac-
tually improves performance; thus, that insert feature seems
to be useless. Other insert features provide some value, but
it is possible insert altogether in favor of other features could
help performance.

The most valuable feature is o↵set with associativity 15
considering bits 1 to 6 of the block o↵set exclusive-ORed with
the PC. When it is removed, speedup drops from 8.0% to
7.6%. Two pc features as well as the global bias counter are
similarly valuable. Note that, although this set of features was
developed for single-thread benchmarks, it provides reason-
able performance for the multi-programmed workloads: 8.0%
speedup versus 8.3% for the features specifically developed
for multi-programmed workloads.

Table 3 shows how di↵erent features dominate predictor
performance for di↵erent programs and phases. We find 95
simpoints from the SPEC CPU 2017 benchmarks. We choose
the SPEC CPU 2017 benchmarks as they became available
between the acceptance and camera ready versions of this
paper, providing a good testing set as they had not been used
at all in the design of the features. For each simpoint, we
run the same experiment as in Figure 10 using the features
from Table 1(b), i.e. we run the simulator 16 times, omitting
a di↵erent feature each time. The table shows, for 15 of the
16 features, a simpoint where that feature contributes the
most to MPKI reduction (one feature was never the best for
any simpoint). The table shows the name of the simpoint as
the name of the benchmark followed by the instruction count
where the interval starts. It shows the name and parameters
of the feature, the MPKI both with and without the given
feature as well as the percentage increase in MPKI when the
feature is removed. It also shows the size of the instruction
and memory footprints for the simpoint.

We can see that a particular pc feature, pc(15,14,32,6,0),
improves performance for a 605.mcf simpoint by over 18%,
showing strong PC correlation for that benchmark. An o↵set
feature improves a 602.gcc feature by 8.8%. 602.gcc is a
compiler that makes heavy use of field dereferencing in ob-
jects, an activity which is likely to trigger the o↵set feature.
An insert feature improves 621.wrf by 1.1%. The instruc-
tion footprint for this simpoint is somewhat large, so the
pc features might experience significant destructive aliasing
in the predictor tables. Thus, the availability of the insert
feature, which is less a↵ected by aliasing, gives an advantage.
623.xalancbmk is also improved by an insert feature, this
time with the XOR flag set to false, i.e., the insert feature is
a single bit indexing one of two counters. This simple feature
improves performance by 7.8% for this simpoint.

7 CONCLUSION AND FUTURE WORK
Many features correlate with reuse behavior. Previous work
focuses on one or two features at a time. Multiperspective
prediction uses many features, each contributing to the overall
prediction. It enables a placement, promotion, and bypass
optimization that improves performance over prior work. In
future work, we will improve the search strategy for finding
good sets of features and explore other optimizations to which
multiperspective prediction can be applied.
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