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ABSTRACT
Modern software uses indirect branches for various purposes includ-
ing, but not limited to, virtual method dispatch and implementation
of switch statements. Because an indirect branch’s target address
cannot be determined prior to execution, high-performance proces-
sors depend on highly-accurate indirect branch prediction techniques
to mitigate control hazards.

This paper proposes a new indirect branch prediction scheme that
predicts target addresses at the bit level. Using a series of perceptron-
based predictors, our predictor predicts individual branch target
address bits based on correlations within branch history. Our eval-
uations show this new branch target predictor is competitive with
state-of-the-art branch target predictors at an equivalent hardware
budget. For instance, over a set of workloads including SPEC and
mobile applications, our predictor achieves a misprediction rate of
0.183 mispredictions per 1000 instructions, compared with 0.193
for the state-of-the-art ITTAGE predictor and 0.29 for a VPC-based
indirect predictor.

1 INTRODUCTION
As object-oriented languages have become ubiquitous within soft-
ware application design, so have indirect branch instructions. Early
work by Calder & Grunwald [1] shows that programs written in
object-oriented languages like C++ contain many indirect branch
instructions, on average 23 times as many compared to C pro-
grams, due to polymorphism. Polymorphism [2] uses dynamically-
dispatched function calls implemented through indirect branches to
support dynamic subtyping. Some object-oriented languages may
generate a virtual function call for every polymorphic object call [3].

More recently, Kim et al. [4] examined Windows applications
on real hardware, showing that 28% of branch mispredictions were
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due to indirect branches. For a some programs, indirect branches ac-
counted for almost half the mispredictions measured. Since indirect
branch instructions incur the same runtime misprediction penalty
as conditional branch instructions, it is imperative to have accurate
indirect branch prediction mechanisms in place.

Indirect branches are not just necessary for virtual function calls.
Other common program constructs like switch-case statements, jump
tables, function pointer calls, procedure returns, and interface calls
also depend on indirect branching. Indirect branch instructions are
inherently more difficult to predict than conditional instructions.
Rather than simply predict taken or not taken, an indirect branch’s
prediction requires predicting a specific target address value. As
an indirect branch instruction may lead to any number of different
known branch target values at runtime, its prediction is more difficult
than a simple decision between two values. Some control-flow breaks
caused by indirect branches are predictable. Kaeli and Emma’s
call/return stack [5] is shown to accurately predict procedure returns’
target address values.

Several software-based strategies have been proposed to reduce
the prevalence of indirect branch instructions in programs [6–10].
Such devirtualization techniques lower the rate of indirect branch
instructions by substituting them with one or more direct conditional
branches [11]. Unfortunately, these methods are costly, requiring
static analysis of the whole program [6, 12], extensive profiling [7, 8],
or a combination of both [9, 10]. Additionally, type inference for
C++ programs using static analysis is already a known NP-hard
problem [13]. As such, indirect branch instructions are inevitable
breaks in control flow that must be properly addressed. Section 2.1
talks about these software techniques in more depth.

An assortment of hardware-based techniques to predict indirect
branch instruction targets have been proposed [4, 6, 14–22]. These
predictors output a target prediction at runtime based on branch
history, i.e. target address values from previous branch executions.
The most well-known example of these is the branch target buffer, or
BTB [14]. Many hardware-based indirect branch predictors maintain
target values in dedicated storage [15–19, 21], which can account for
significant die area and lead to increased power consumption. Other
approaches take advantage of already-present hardware structures
to facilitate indirect prediction [4, 22]. Section 2.2 discusses these
hardware-based prediction strategies at length.

This paper introduces a new indirect branch prediction algorithm,
Bit-Level Perceptron-Based Indirect Branch Predictor (BLBP). It
uses branch history and perceptron-based learning [23, 24] to predict
individual target value bits. The processor accesses a specialized
BTB-like structure to select the target that matches most closely at
the bit level among all observed targets of the branch.
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The predictor is competitive with state-of-the-art indirect branch
prediction schemes, reducing misprediction rates by 5% over IT-
TAGE [25] while maintaining the same hardware budget.

2 RELATED WORK
Control flow breaks due to indirect branch instructions can be mit-
igated by two main strategies. The first strategy requires software-
based schemes: profiling and compiler optimizations can learn from
programs to predict branch targets, or minimize the frequency of indi-
rect branches. The other strategy depends on hardware mechanisms
that predict branch target addresses dynamically. The following two
sections detail these strategies’ related work.

2.1 Indirect Branch Target Prediction Via
Software

Wall proposed the first methods to statically predict indirect branches
based on profiling [26]. Calder & Grunwald [6] also used static
profiling along with compiler-driven optimizations and hardware
modifications (see Subsection 2.2) to reduce C++ indirect function
call overhead. Aigner & Hölzle proposed compiler optimizations
that reduces the frequency of virtual function calls [7] using pro-
file driven type feedback and class hierarchy analysis [12]. Porat et
al. [10] introduced similar inlining optimizations. Roth et al. [27]
devised a virtual function call prediction technique which uses pre-
computation to perform target address computation before execution
time. Joao et al. [28] proposed Dynamic Indirect Jump Predica-
tion, using dynamic predication to handle hard-to-predict indirect
branches without prediction. Farooq et al. [29] proposed Value-
Based BTB Indexing, or VBBI identifies hard-to-predict indirect
branches through profiling and flags via an ISA format augmen-
tation, storing multiple targets for an indirect branch in the BTB.
Compiler-Guided Value Pattern (CVP) prediction by Tan et al. [30]
is similarly value-based and compiler-driven.

Software-based strategies are not free of hardware costs, how-
ever. Many works proposed above require supplemental hardware
structures (even if minimal) and/or explicit ISA support [6, 28–31].

2.2 Hardware Indirect Branch Prediction
The simplest target prediction hardware mechanism is the Branch
Target Buffer, or BTB [14], using the branch address to index and
cache a branch’s last-taken target address. The stored target ad-
dress is later fetched for target prediction. A BTB is sufficient for
monomorphic branches leading to just one target address, like di-
rect branch instructions. However, because indirect branches can
be polymorphic, or lead to different addresses, the BTB’s last-used
prediction strategy is often insufficient [16, 19]. Calder & Grunwald
improve this scheme using a 2-bit Branch Target Buffer[6] that re-
places a target in the BTB only after two consecutive mispredictions.
However, BTB accuracy remains poor for indirect branches.

Path-based history is also correlated with branch behavior [15,
32, 33]. Unlike correlation with pattern history [34–36], path-based
correlation uses the sequence of basic block addresses leading up
to a branch. Chang et al. [16] explored tracking both pattern and
path-based history in their indirect branch prediction scheme, the
Target Cache.

Driesen & Hölzle proposed Cascaded Predictors [18, 20] that
are a hybrid of two target predictors, where the first BTB-based
predictor acts as a filter to catch easy-to-predict branches, while
hard-to-predict branches are predicted by a second two-level adaptive
predictor. The multi-stage predictor [20] generalizes the cascaded
predictor.

Taking inspiration from work on conditional branch prediction [37],
Kalamatianos & Kaelite use prediction by partial matching (PPM)
for indirect branch prediction [19]. Seznec’s TAGE, ITTAGE, and
COTTAGE predictors [21] take inspiration from a PPM-like predic-
tor [38]. The TAGE predictor predicts conditional branch directions
while the ITTAGE predictor predicts indirect branch targets. The
COTTAGE predictor incorporates both a TAGE and ITTAGE pre-
dictor in one to predict both branch directions and targets. The pre-
dictors use geometric history lengths [39] to index several partially-
tagged predicting tables.

Kim et al.’s Virtual Program Counter (VPC) predictor uses a
hardware-based devirtualization technique to predict indirect branch
targets. VPC is based on the idea that a polymorphic branch instruc-
tion with T different known targets can be thought of as a series of T
individual direct branch instructions. The predictor attempts to “de-
virtualize” indirect branch instructions in hardware to predict which
of the T targets is the correct target output. VPC’s main advantage
is that, rather than use dedicated hardware, it reuses the existing
conditional branch predictor and BTB. The conditional branch pre-
dictor is queried and the BTB accessed using a sequence of “virtual
PCs” corresponding to at least the T targets of the indirect branch.
The first virtual PC to output a taken prediction (if any) has its BTB
target value output as the target prediction. Since the virtual PCs
are are visited in series, the worst case scenario of no taken target
may result in many wasted cycles. Sorting the targets by frequency
allows the average latency to be low. A disadvantage of the VPC
approach is that the conditional branch predictor and indirect branch
predictor rely on one central prediction component that cannot be
specialized to either task, but must be tuned to give good general
overall performance.

TAP prediction [22], predicts the address of a BTB entry that
contains the predicted target value. TAP predicts the BTB entry’s
address bit-by-bit using several small branch predictors (called sub-
predictors) fashioned from the main conditional branch predictor.
The idea is similar to BLBP, but TAP predicts the address of a BTB
entry, not the target address itself. Note that TAP prediction modifies
hardware to allow multiple different BTB entries for a single indirect
branch address.

2.3 Perceptron-based Branch Prediction
Jiménez & Lin [24] first proposed the perceptron predictor, which
bases its prediction scheme on the most basic neural-learning struc-
ture, the perceptron [23]. A single-layer perceptron is composed of
a vector of integer weights w0 . . .wn. The output of a perceptron is
computed as the dot product of the weighted vector with an input
vector, x1 . . .xn, where w0 behaves as the bias input. As such, the
perceptron predictor maintains a table of weighted vectors rather
than the more common saturating bits [14, 34, 40, 41].

To predict a branch outcome, a weighted vector is chosen by
indexing the table using the branch’s PC address. The dot product
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Figure 1: Breakdown of the prevalence of each branch type per kilo-instruction. Benchmarks are sorted by increasing prevalence of
indirect branches.
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Figure 2: An overview of BLBP Target Address Prediction &
Selection

is computed with the chosen weighted vector and the global history
register (of binary branch outcome results) as input vector. If the dot
product result is positive, a taken prediction is output; otherwise, a
not taken output is given.

Due to the perceptron predictor’s long prediction latency, Jiménez
later proposed the path-based neural predictor [42]. The path-based
neural predictor increases prediction accuracy while diminishing its
prediction delay.

Piecewise linear branch predictor [43] improves on the original
perceptron predictor by learning previously-unlearnable linearly
inseparable branches.

Tarjan & Skadron’s hashed perceptron predictor [44] improves
upon the path-based predictor to further reduce prediction latency

and increase prediction accuracy while maintaining less physical
state.

3 BIT-LEVEL PERCEPTRON-BASED
INDIRECT BRANCH PREDICTOR

BLBP is based on the Scaled Neural Indirect Prediction (SNIP)
predictor [45], which originally presented at a branch prediction
workshop without published proceedings. The SNIP predictor pro-
poses a novel indirect branch predictor that predicts the individual
lower-order bits of target addresses, then finding the closest matching
address in an indirect branch target buffer.

Our extension to SNIP, BLBP, improves accuracy beyond the
state-of-the-art and provides a path to a feasible implementation,
greatly reducing the number of SRAM arrays that would be needed
for a practical implementation from 44 to 8. The individual bits are
predicted with neural predictors trained with perceptron learning.

3.1 Indirect Branch Target Buffer(IBTB)
BLBP uses a 64-way set-associative indirect branch target buffer
(IBTB) indexed by indirect branch PC to store up to 64 indirect
branch targets. Ideally there will be one set of targets per branch,
but in practice many branches may index the same set. Thus each
IBTB entry is tagged with 9 bits from the branch PC. The IBTB
is managed with re-reference interval prediction [46] replacement.
Figure 2 gives an overview of the process for predicting a target with
BLBP.

3.2 Perceptrons For Each Bit of the Target
BLBP trains perceptrons the same way as a hashed perceptron [44],
but rather than training a single weight for each target, a K-length
vector of weights is trained, one for each bit of the target address
that is being predicted.
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Figure 3: Through perceptron learning, BLBP trains weights to converge into bits of the correct target. Normalizing the trained
weight vector 0,6,0,6 would equal 0,1,0,1, which is equal to the correct target bits in the above example.

Training by updating the K-length vector is shown in Algorithm 2
and described in detail with example in Section 3.5.

BLBP has eight history features indexing tables we call sub-
predictors. Each sub-predictor predicts the values for each possible
target that reflects the confidence of that sub-predictor that the corre-
sponding bit in the target is 1. For each bit in each possible target,
BLBP adds the output of each sub-predictor for that bit and build a
vector (yout). BLBP then computes the similarity of each possible
target with the vector. The target with highest similarity will be
selected as the prediction. Figure 4 shows an example for 4 bit target
prediction. The first target has a higher similarity (Dot Product 51)
with the trained perceptron than the second target(Dot Product 43).

3.3 Training For Multiple Histories
BLBP records the outcomes (taken or not taken) of recent conditional
branches into 630 bit global history(GHIST ). Similar to hashed
perceptron learning [44], BLBP uses different lengths and sections
of global history to train seven different sub-predictors. BLBP also
records the outcomes(taken or not taken) of previous iterations of

the last 256 branches individually into 10 bit local histories. BLBP
indexes one sub-predictor with local history. More details on various
histories used in BLBP is explained in Section 3.6

3.4 Predicting with Perceptrons
Figure 4 shows how BLBP makes predictions by aggregating the
perceptrons from its eight sub-predictors and computing the sim-
ilarity with each possible target. The first sub-predictor is trained
with local history. The next seven sub-predictors are trained with
different history lengths and history intervals explained in 3.3.

Figure 3 shows a simplified numeric example of the prediction
and training algorithm with only one sub-predictor. For simplicity
we show only two targets. We also assume only 4 bits of targets to
be predicted.

First the predictor uses the history to index the weights table
and extract 4 weights, one weight for each target bit. Weights are
between -7 and 7. Here we assume each weight is equal to 3 initially.
Then the predictor calculates the dot product of weights with the
first targets bits. The same 4 weights will be used to compute the

4

30



… 

Local 
History Interval 1 Interval 5 Interval 6 Interval 7

w00w01w02w0

3

w10w11w12w13

w20w21w22w23

w50w51w52w53

w60w61w62w63

w70w71w72w73

 ∑Wi1   , ∑Wi2   ,  ∑Wi3  , ∑Wi4 
-1,19,10,32

h0

h1

 
h2

 
h5

 
h6

 
h7

Target1
0,1,0,1

-2,4,1,4

Target2
1,0,1,1

10,4,9,1

3,2,8,9

-6,7,-6,16

4,-4,3,-1

-9,6,-5,3

Dot ProductDot Product

0+19+0+32 = 51 -1+0+10+32 = 43

higher similarity

Su
b-

Pr
ed

ic
to

r 0

Su
b-

Pr
ed

ic
to

r 1

Su
b-

Pr
ed

ic
to

r 2

Su
b-

Pr
ed

ic
to

r 5

Su
b-

Pr
ed

ic
to

r 6

Su
b-

Pr
ed

ic
to

r 7

Figure 4: BLBP makes a prediction by aggregating the likeli-
hood for two example targets from eight sub-predictors. Each
sub-predictor is trained with different history lengths or local
history.

Algorithm 1 Predict Algorithm
1: function PREDICT(pc: address) : integer vector
2: for i = 1 . . .N in parallel do
3: j = hashGHIST1 . . .Gi mod M
4: yout1 . . .K← 0
5: for k = 1 . . .K do
6: youtk← youtk+Wi jk
7: sum1 . . .T ← 0
8: max← 0
9: maxTarget← 0

10: for t = 1 . . .T in parallel do
11: for k = 1 . . .K do
12: sumt← sum[t]+ youtk× target[t][k]
13: if sum[t]>max then
14: max← sum[t]
15: maxTarget← t

return maxTarget

dot product for the second target. Next, the dot products will be
compared. The target with the maximum dot product will be chosen
as the predicted target. In this example in the first prediction the
output of the second target’s dot product had a higher value than the
dot product for the first target. Thus, the second target is chosen as
the predicted target.

3.5 Training Perceptrons

Algorithm 2 Update Algorithm
1: function UPDATE(bits: address, target: address, suppress: address)
2: for k = 1 . . .K in parallel do
3: if suppressk then
4: continue
5: a← |bitsk|
6: correct← targetk = bitsk ≥ 0
7: adaptive_training(correct, a, k)
8: if (!correct or a < thetak then
9: for i = 1 . . .N do

10: j = hashGHIST1 . . .Gi mod M
11: if targetk then
12: increment_unless_at_max(W[i][j][k])
13: else
14: decrement_unless_at_min(W[i][j][k])

To show how the predictor learns from a misprediction, we continue
the same example from Figure 3. In the first prediction, we saw how
the second target was chosen as the predicted target through the dot
product and comparison. Now we assume the first target was the
actual target. Then each of the 4 weights that were used to make this
prediction is adjusted with following rule:

For each weight used to predict bit i of the actual target,

(1) if i is one then the weight is decremented,
(2) if i is zero then the weight is incremented.

Incrementing and decrementing weights will be saturated at the
maximum or minimum values for the width of the weight. See Al-
gorithm 2 for more details. In our example after the first prediction,
the actual target’s bits are (0,1,0,1) so the weights are update from
(3,3,3,3) to (2,4,2,4). Figure 3 shows how after the second mispre-
diction the weights are updated from (2,4,2,4) to (1,5,1,5), leading
to a correct prediction. Assuming that the dot product for the ac-
tual target (here 10 for the first target) does not exceed the training
threshold the weights will be updated after a correct prediction too.
Figure 3 shows in our example the four weights after the correct
prediction are update to (0,6,0,6). Normalizing the trained weight
vector (0,6,0,6) would be (0,1,0,1) which is equal to the correct
target bits. It is an example of how BLBP trains weights to converge
to bits of correct targets through perceptron learning.

3.6 Optimization Techniques
We use several optimizations to improve the accuracy of the predic-
tor:

Local History. The first weights vector predicting a given bit is
indexed with a hash of local history. In conditional branch prediction,
local history is a shift register with the outcome of previous iterations
of the branch being predicted. For our predictor, we use shift registers
with bit 3 of the target.

History Intervals. The remaining weights vectors are indexed us-
ing a hash of global history according to history intervals inspired by
the interval capability in multiperspective perceptron prediction [47]
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and strided sampling hashed perceptron prediction [48]. The inter-
vals are tuned to achieve low MPKI. The following 7 global history
intervals were used for the 7 non-local vectors: (0,13), (1,33), (23,49),
(44,85), (77,149), (159,270), (252,630). For example, the second
non-local vector was indexed by a hash of global history outcomes
from position 1 in the global history through position 33. The tuned
intervals were found by starting with geometric histories [39] and
improving with hill-climbing, changing the start or end of an interval
randomly and keeping the change if it improved MPKI.

Figure 5: A transfer function amplifies the effect of higher
weights and diminishes the effect of lower weights.

Transfer Functions. As with multiperspective perceptron predic-
tion [47], we find that applying a non-linear transfer function to the
weights before summation boosts accuracy. From previous work, we
know that a convex function can amplify the effect of higher weights
and diminishes the effect of lower weights, allowing the limited
range of weights values to more precisely model the predicted bits.
Figure 5 illustrates the transfer function we developed empirically.

Adaptive Threshold Training. As with O-GEHL and previous
perceptron predictors, we use Seznec’s adaptive threshold training
algorithm to adjust the threshold for training such that the number
of instances of training on correct predictions roughly equals the
number of mispredictions [39].

Selective Bit Training. As described, the predictor predicts every
lower-order bit in the target address. However, many branches have
a small set of potential targets. The probability that a given bit in
each target is the same is somewhat high for these small sets. Thus,
the predictor only predicts and trains on a target bit if that bit differs
in the set of potential targets. This selective bit training reduces the
impact of destructive aliasing among weights that are used for more
than one branch.

BTB Compression. Branch targets in the BTB are represented in a
compressed format using the region-based organization proposed by
Seznec for ITTAGE [25]. There are a number of regions of memory
represented as higher-order target bits and stored in an array. Targets
in the BTB are represented as one of these regions plus an offset.
The number of regions is small and the number of bits in an offset is
less than a full target, so we can represent a 64-bit target in about half

as many bits. The region array is managed with least-recently-used
(LRU) replacement. The BTB stores only partial tags for branch
PCs, trading off the low probability of an accidental tag match with
the storage benefit of partial tags.

3.7 Implementation
The prediction algorithm has several components that may seem
challenging for implementation. Here we give some ideas for bal-
ancing complexity and timing.

Computing y_out. Perceptron predictors from the literature and
in current processors compute a sum from a vector of weights read
out from distinct tables. BLBP computes K such sums, one per bit of
the target address being predicted. There are N tables whose entries
are K-length vectors of weights. The summation operation is carried
out in parallel on each of the K positions across the N tables. In our
design, N = 8, fewer than the number of tables in recently proposed
perceptron predictors in the literature or industry. Thus, the latency
of the computation is at most the latency of a perceptron-based con-
ditional branch predictor. The number of adders needed is N×K.
In our case, K = 12 so the predictor requires 96 small bit width
adders for a parallel implementation. A mixed-signal implementa-
tion of perceptron-based branch predictors can be very quick and
power-efficient even with a large number of inputs [49]. Weights are
added as analog signals according to Kirchoff’s law, and the transfer
function can be implemented by changing the sizes of transistors
in the digital to analog converters. For a more conventional digital
implementation, the adders are organized as K adder trees with a
depth no more than log2 N, or 3. The output of the final adders are 8
bits. Thus, the adders are small.

The parameter θ is tuned dynamically as described in Section 3.6.
We find four bits per weight sufficient to maintain a good trade-off
between accuracy and space-efficiency.

Computing the Cosine Similarity. Once the values in yout have
settled, the algorithm finds the non-normalized cosine similarity
between yout and the bit vectors representing the potential target
addresses.

Algorithm 1 shows the code on how the BLBP prediction scheme
computes a vector of K dot product values. Value K corresponds
with the number of lower-order bits of the target address predicted
by BLBP. N is the number of different histories. In effect, each of
the N history lengths gets its own sub-predictor, M is the number of
rows in the table of perceptron weights, i.e. the number of possible
indices produced by the hash of global history.(Thus, indexing value
j is bound by M.) Gi is the history length for the ith position in the
perceptron predictor, determined as geometric history lengths [39].
WN,M,K is a three-dimensional array of 4-bit sign/magnitude inte-
ger weights. The W array is realized as N SRAM arrays each indexed
by a different hash of global history to yield a vector of perceptron
weights, one weight per address bit predicted.

This dot product computation is equivalent to measuring the
cosine similarity between two vectors, i.e. the cosine of the angle
between two vectors. A higher cosine similarity implies a closer
match between the two vectors. The cosine similarity is usually
normalized by the product of the magnitude of the two vectors, but
in our case this is unnecessary because each bit vector is multiplied
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Figure 6: Polymorphism in workloads. Traces are ordered from fewest to most targets, relative to the percentage of instructions with
more than one target address.
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by the same value of yout, thus the dot product values are directly
comparable.

Computing the non-normalized cosine similarity is simply taking
the dot product of yout and a bit vector. This dot product computation
can be carried out very efficiently by taking the sum of the bitwise
AND of each element of yout and the corresponding sign-extended
bit in the vector. This can be accomplished with an adder tree similar
to the computation of yout itself.

Computing the Cosine Similarity Repeatedly. There are up to 64
potential target addresses, thus up to 64 possible cosine similarities
to compute. An associative lookup and parallel cosine similarity
computation would be fast but somewhat expensive in terms of power
and complexity. A sequential search would be more efficient but
have higher latency in cases where there are many targets matching
the current branch. Fortunately, in practice, the vast majority of
indirect branches have only a few observed targets. Figure 7 shows
the distribution of numbers of targets. For each value from 1 to 64 on
the x-axis, the height of the curve gives the percentage of all indirect
branches having at least that many distinct targets. We can see from
the graph that the majority of indirect branches have no more than
5 potential targets. Only 10% of indirect branches have more than

20 potential targets. Thus, a feasible implementation could compute
5 cosine similarities per cycle in parallel at a modest cost, taking
only one cycle for over half of all predictions and no more than
4 cycles for 90% of the predictions. With current decoupled fetch
engines, this modest latency would be hidden for most branches and
only exposed in those few cases with many targets where getting
the right prediction matters the most. Note that VPC may also incur
significant latency in extreme cases with many potential targets.

3.8 Searching the BTB
The algorithm requires collecting all branch targets that match a
given branch PC from the BTB. This can be accomplished with
a content addressable memory (CAM) or by a sequential lookup
similar to the strategy taken by the VPC algorithm [4]. Although
there are up to 64 potential targets for a given branch, in practice
there are very few targets for each branch and the sequential strategy
can be quick.

4 TESTING METHODOLOGY
4.1 Benchmarks
For evaluation, we use a suite of 88 workloads gathered from multi-
ple benchmark suite sources. Represented are SPEC CPU2000 [50],
SPEC CPU2006 [51] and SPEC CPU2017 [52] benchmark suites
and traces from most recent JILP Branch Prediction Competition [53]
held at ISCA 2016.

Traces were selected if they averaged more than one misprediction
per 1000 instructions for an initial simulation using an infinite-sized
branch target buffer. Table 1 summarizes the sources and qualities
of our benchmarks.

The Samsung-sourced benchmark LONG-MOBILE-8 contains more
indirect branches than conditional. In general, the Samsung work-
loads tend to have more indirect branches compared to the other
workload sources. Although Samsung did not provide much infor-
mation about the benchmarks used, it is reasonable to expect that
many of the workloads come from Android workloads in the Java
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Benchmark Source Number of Benchmarks Details of Workloads
SPEC CPU2000 1 252.eon

SPEC CPU2006 12 400.perlbench, 403.gcc, 453.povray, 458.sjeng
SPEC CPU2017 7 600.perlbench, 602.gcc, 623.xalancbmk

CBP-5 Competition 68 Industry-sourced workloads offered for CBP-5 by host Samsung. Benchmarks
are divided into two categories: MOBILE and SERVER. Trace lengths also fall in
two categories: SHORT and LONG.

Table 1: Description of the 88 workloads used for testing and evaluation. The benchmarks come from four sources, including a
Championship Branch Prediction competition.

Indirect Branch Predictor Implementation Configuration Total Hardware Budget
BTB 32K-entry, partially-tagged, direct-mapped branch target buffer 64 KB
VPC 32K-entry, partially-tagged, direct-mapped BTB with

Multi-perspective Perceptron Predictor for conditional branch prediction
128 KB

ITTAGE as described in the original paper [25] 64 KB
BLBP 64-entry, 64-way set-associative, partially-tagged IBTB,

256 10-bit local histories, 630-bit global history,
8 correlating-weights tables, and 128-entry region array

64.08 KB

Table 2: The implementation setups for the indirect branch predictors evaluated.

language. Since Java relies on virtual method dispatch by default, it
is not surprising to find many indirect branches in these traces.

Figure 6 shows the degree of polymorphism present in the traces.
Many benchmarks are dominated by monomorphic branches, but
many have a great number of indirect branches with multiple targets.

4.2 Simulation Setup
We use the branch prediction simulation infrastructure released for
the Championship Branch Prediction competition [53]. The simu-
lation infrastructure has been augmented with additional code for
a BTB and an assortment of indirect branch predictors including
BLBP. For conditional branch prediction, we use a hashed perceptron
predictor [44].

The appropriate metric for branch prediction studies is mispre-
dictions per kilo-instruction (MPKI). Unlike simple misprediction
rate, MPKI takes into account the relative frequency of branches
compared to other instructions. Previous work has demonstrated a
linear relationship between MPKI and performance [54]. Thus, it is
sufficient to measure MPKI to infer an impact on performance.

Table 2 gives detailed information on the indirect branch predic-
tors implemented for this study. We use a BTB as our indirect branch
prediction baseline. The baseline BTB is a 32K-entry cache indexed
by branch address and filled with the most recently observed branch
target for that branch address. This BTB is large compared with
recent examples from industry. For example, the BTB in Samsung’s
recent Mongoose processor has 4,096 entries [55]. Thus, this BTB
provides a practical upper limit on the accuracy of modern BTBs.

We implement the Virtual Program Counter (VPC) predictor from
Kim et al. [4] using a 64KB Multi-perspective Perceptron Predictor
(MPP) [47] as its underlying conditional branch predictor. The orig-
inal VPC implementation relies on global branch history to make
predictions for indirect branches. However, our implementation is

a hashed perceptron predictor that uses a set of 37 features to pro-
vide alternate perspectives on branch history. Our implementation
of VPC has a 32K-entry BTB for target storage. This modified VPC
gave an MPKI of 0.29 for indirect branches while maintaining a
low degradation of 2.05% in the prediction accuracy of conditional
branches.

Finally, we set up BLBP as described in Section 3. There are 8 in-
dependently accessed SRAM arrays for 8 different history intervals.
Each SRAM array has rows of 12 4-bit vectors implementing the
perceptron weights. There is a 630-bit global history and a table of
256 10-bit local histories. There is an indirect branch target buffer
(IBTB) consisting of 64 sets of 64 entries, each of which contains an
8-bit partial tag, a 7-bit region number, a 20-bit region offset, and a 2-
bit re-reference interval prediction [56] for replacement. The region
number and descriptor allow a compressed representation of targets
in the same manner as the ITTAGE predictor [25]. The total state
for the prediction tables, histories, IBTB, and region table is approx-
imately 64KB, allowing an iso-area comparison with the ITTAGE
implementation from the second branch prediction competition.

Each of the SPEC traces is a simpoint [57] of one billion instruc-
tions. The Samsung-sourced traces are of variable length averaging
in the 100s of millions of instructions. For our experiments we
measure branch target MPKI over each entire trace.

5 RESULTS
5.1 Overall Performance
Among the four predictor implementations, the baseline BTB pre-
dictor performed the worst, with an arithmetic mean of 3.40 MPKI
across the benchmarks. Next was VPC with a mean of 0.29 MPKI.
ITTAGE and BLBP rounded out our results with 0.193 and 0.183
MPKI, respectively. Thus, for the benchmark suite tested, BLBP led
to a 5% improvement in MPKI over the state-of-the-art.
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Figure 8: MPKI for 3 of 4 indirect branch predictors on a suite of 88 higher-MPKI benchmarks. BTB MPKI has been omitted due to
much-higher MPKI relative to the other predictors. Benchmarks are sorted by BLBP MPKI.

Figure 9: Percentage breakdown of predictor MPKI performance relative to each other. Benchmarks are sorted by BLBP MPKI.

In response to reviwer concerns, we also tested the predictors with
the CBP4 [58] workloads, which are different from the CBP5 traces
used to develop BLBP. Without tuning either predictor, ITTAGE
yields 0.028 MPKI while BLBP achieves 0.027 MPKI, outperform-
ing ITTAGE by 3.5%.

Figure 8 presents the MPKI results for three of the four predictors,
with the BTB baseline being omitted due to its very high MPKI
relative to the other predictors. The benchmarks (unlabeled) are
sorted by monotonically increasing BLBP MPKI performance.

Figure 9 shows similar data, but reveals MPKIs of the four pre-
dictors compared to each other.

5.2 Effect of Optimizations
Figure 10 illustrates the effect of the optimizations applied to BLBP.
The figure shows the percent improvement in average MPKI over
ITTAGE for versions of the predictor for configurations where only
one optimization is enabled, one of the optimizations is disabled, and
all or none of the optimizations are enabled. With all optimizations
turned on, BLBP achieves 5.3% improvement over ITTAGE. With
no optimizations, BLBP achieves an average 8.8% higher MPKI
than ITTAGE. Thus, doing at least some optimizations is essential
to BLBP.

Let us explore what happens when turning on only one of the
optimizations at a time. Turning on the local history improves the
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Figure 10: Effect of Optimizations

predictor the least, followed by using intervals instead of geometric
history lengths (GEHLs), and selectively updating only bits that
differ in targets. Using a non-linear transfer function provides a large
boost to the otherwise unoptimized predictor, bringing it within 1.7%
of ITTAGE. Adaptive training provides the largest boost, only 1.4%
higher MPKI than ITTAGE.

Now let us see what happens when turning off only one opti-
mization, keeping the rest. The biggest change occurs when using
GEHL histories instead of intervals; the improvement over ITTAGE
drops from 5.3% to 2.04%. Thus, in concert with the other features,
intervals seem to provide an important boost. Omitting selective
bit updates seems to hurt the least, lowering MPKI improvement
to 2.86%. However, omitting any of the optimizations produces a
significant reduction in MPKI improvement. Thus, the optimizations
seem to work synergistically (if not additively) to improve accuracy.

5.3 Effect of Associativity
The IBTB is a set-associative structure. Each set stores 64 targets
observed from indirect branches that hash to that set. Although, as we
have seen in Section 3.7, most branches have at most 5 targets, many
branches may hash to the same IBTB set causing collisions, and
some branches actually require many targets. Thus, the associativity
of the structure must be large enough to combat conflict misses
and to accommodate branches with many targets. Figure 11 shows
the effect on accuracy of varying the associativity of the IBTB,
keeping the number of IBTB entries the same at 4,096. A 4-way
IBTB gives an unacceptably high 1.09 MPKI. An 8-way IBTB cuts
the MPKI almost in half to 0.57. A 16-way BTB gives another large
improvement, down to 0.27 MPKI. With 32-way set associativity, the
IBTB yields an MPKI of 0.19, equivalent to ITTAGE. The 64-way
IBTB gives 0.183 MPKI, a 5% improvement over ITTAGE.

6 CONCLUSIONS & FUTURE WORK
In this paper, we introduced Bit-Level Perceptron-Based Indirect
Branch Predictor, or BLBP. BLBP predicts indirect branch targets’
select lower-order bits using perceptron-based learning. A selection
of known target addresses for the branch are gathered from the IBTB

A
sso

c =
 4

A
sso

c =
 8

A
sso

c =
 1

6
A

sso
c =

 3
2

A
sso

c =
 6

4
IT

T
A

G
E

0.0

0.5

1.0

M
P

K
I

0.0

0.5

1.0

M
P

K
I

Figure 11: Effect of Associativity

for comparison; the target address that matches closest with the
predicted bits is output as BLBP’s prediction.

We have shown BLBP to outperform the state-of-the-art. Using a
suite of 88 benchmarks with significant indirect branches, we show
BLBP improves upon ITTAGE’s prediction performance by 5%,
reducing MPKI from 0.193 to 0.183.

In future work we plan to improve accuracy by exploring features
beyond global and per-branch history. For example, the recently
proposed multiperspective perceptron predictor uses a variety of
control-flow features to improve accuracy [47]. We plan to reduce
the complexity of the computations involved. The original percep-
tron predictor was quite complex with a high latency, but follow-up
work reduced the latency through ahead-pipelining and other tech-
niques [42, 43, 59]. We are confident that the same sorts of tech-
niques can be applied to BLBP to achieve lower latency and power
while maintaining high accuracy. We plan to explore ways of avoid-
ing the high-associativity of the IBTB, perhaps using a hierarchy
of structures [18, 60]. We also plan to explore how BLBP might be
used to predict conditional branches as well as indirect branches as
VPC does, allowing consolidation of the two structures.
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