
Morrigan: A Composite Instruction TLB Prefetcher
Georgios Vavouliotis

georgios.vavouliotis@bsc.es
Barcelona Supercomputing Center

Universitat Politècnica de Catalunya

Lluc Alvarez
lluc.alvarez@bsc.es

Barcelona Supercomputing Center
Universitat Politècnica de Catalunya

Boris Grot
boris.grot@ed.ac.uk

University of Edinburgh

Daniel A. Jiménez
djimenez@acm.org

Texas A&M University

Marc Casas
marc.casas@bsc.es

Barcelona Supercomputing Center
Universitat Politècnica de Catalunya

ABSTRACT
The effort to reduce address translation overheads has typically
targeted data accesses since they constitute the overwhelming por-
tion of the second-level TLB (STLB) misses in desktop and HPC
applications. The address translation cost of instruction accesses
has been relatively neglected due to historically small instruction
footprints. However, state-of-the-art datacenter and server applica-
tions feature massive instruction footprints owing to deep software
stacks, resulting in high STLB miss rates for instruction accesses.

This paper demonstrates that instruction address translation
is a performance bottleneck in server workloads. In response, we
proposeMorrigan, a microarchitectural instruction STLB prefetcher
whose design is based on new insights regarding instruction STLB
misses. At the core of Morrigan there is an ensemble of table-based
Markov prefetchers that build and store variable length Markov
chains out of the instruction STLB miss stream. Morrigan further
employs a sequential prefetcher and a scheme that exploits page ta-
ble locality to maximize miss coverage. An important contribution
of the work is showing that access frequency is more important
than access recency when choosing replacement candidates. Based
on this insight, Morrigan introduces a new replacement policy that
identifies victims in the Markov prefetchers using a frequency stack
while adapting to phase-change behavior. On a set of 45 industrial
server workloads, Morrigan eliminates 69% of the memory refer-
ences in demand page walks triggered by instruction STLB misses
and improves geometric mean performance by 7.6%.

CCS CONCEPTS
• Software and its engineering→ Virtual memory; •Applied
computing → Data centers.

KEYWORDS
virtual memory, address translation, translation lookaside buffer,
TLB prefetching, TLB management, markov prefetching

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480049

ACM Reference Format:
Georgios Vavouliotis, Lluc Alvarez, Boris Grot, Daniel A. Jiménez, and Marc
Casas. 2021. Morrigan: A Composite Instruction TLB Prefetcher. In MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’21), October 18–22, 2021, Virtual Event, Greece. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3466752.3480049

1 INTRODUCTION
Paging-based virtual memory is a fundamental feature of today’s
computers. To mitigate the high latency cost of page walks, Transla-
tion Lookaside Buffers (TLBs) cache the most recently used virtual-
to-physical translations. Despite the use of multi-level TLB hierar-
chies and other hardware and software schemes for accelerating
address translation, frequent data TLB misses still cause significant
performance degradation due to long miss penalties [30, 32, 40, 47,
54, 58, 63]. In response, the research community has proposed many
techniques for reducing the overhead of address translation associ-
ated with data accesses [36, 38, 53, 56, 60, 66, 68, 69, 73, 74, 79, 82].

Recent work [54, 62, 65, 83] has shown that modern server and
datacenter applications not only have big datasets, but also large
code footprints. Huge binaries and deep software stacks cause fre-
quent instruction cache and instruction TLB misses, compromising
performance due to unavoidable pipeline stalls. The instruction foot-
print of these applications increases at around 20-30% per year [54],
indicating that the front-end bottleneck is likely to get worse.

When it comes to instruction address translation, TLB pressure
caused by massive code working set sizes is amplified by contention
in the second-level TLB (STLB), which is shared between instruc-
tion and data translations. Instruction references evict useful data
translations and vice versa, imposing additional performance penal-
ties. However, instruction STLB (iSTLB) misses are more critical
than data STLB (dSTLB)1 misses since instruction references are
on the critical path of pipeline execution, while data misses can
overlap independent instructions thanks to out-of-order execution,
partially hiding their latency costs. Indeed, a recent work [65] shows
that iSTLB misses are a critical bottleneck in Facebook workloads.
Therefore, iSTLB misses are a growing problem in servers.

The impact of instruction address translation in terms of per-
formance and page walk memory references has received minimal
attention over the years. Existing software approaches comprise
either compile-time techniques for code layout optimization [64] or
operating system schemes leveraging large pages [43, 59, 83]. On
the hardware side, there are incremental and disruptive schemes
1iSTLB and dSTLB refer to instruction and data references to the STLB, respectively.

1138

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3466752.3480049
https://doi.org/10.1145/3466752.3480049

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Vavouliotis, et al.

for reducing TLB misses. While developed for data TLB misses,
these approaches could also be effective for instruction TLB misses.
Incremental approaches try to increase TLB reach [41, 68, 69], but
they are limited by coalescing opportunities exposed by the applica-
tion and the OS. Disruptive approaches call for an overhaul of the
virtual memory subsystem [28, 55], which hinders their adoption
and may introduce new security vulnerabilities.

This paper highlights that iSTLBmisses are a bottleneck in server
workloads because their large code footprints pressure the STLB,
resulting in long-latency page walks for fetching the corresponding
address translations. Specifically, on a suite of contemporary indus-
trial server workloads, we find that over 40% of all STLB misses
are caused by instruction references. Our findings corroborate the
conclusions of previous industry works showing iSTLB pressure to
be a performance bottleneck in their workloads [54, 62, 65].

Furthermore, we show that prior dSTLB prefetchers [53] are
ineffective at capturing the iSTLB misses because (i) they correlate
patterns with features that are unable to provide accurate iSTLB
prefetches, and (ii) they use access recency for choosing prefetch
candidates which does not correlate well with iSTLB misses. When
applied to iSTLB prefetching, existing dSTLB prefetchers improve
the performance on industrial server workloads by up to 1.6%,
whereas the opportunity from perfect iSTLB prefetching is 11.1%.

We also examine the state-of-the-art instruction cache prefetch-
ers [22] and conclude that they, too, are ineffective at prefetching
for the iSTLB miss stream. Instruction prefetchers target the L1
I-cache and typically find the needed cache blocks in the L2 or the
LLC [47, 72], which means that they are tuned for relatively short
prefetch distances. Meanwhile, iSTLB misses result in page walks
that cause serialized accesses to the memory hierarchy. Depending
on the memory hierarchy level where these accesses are served, the
page walk can take from tens to hundreds of cycles, which cannot
be always covered by instruction cache prefetchers.

Based on these observations, this paper introduces Morrigan, a
microarchitectural iSTLB prefetcher. To the best of our knowledge,
this is the first work to characterize iSTLB misses and the first
iSTLB prefetcher. Morrigan is composed of two complimentary
prefetching modules. The first module is the Irregular Instruction
TLB Prefetcher (IRIP), an ensemble of four prediction tables that
efficiently build and store variable length Markov chains from the
iSTLB miss stream. IRIP is enhanced with a new replacement policy,
named Random-Least-Frequently-Used (RLFU), that drives replace-
ments based on a frequency stack of iSTLB misses. RLFU uses
randomness to avoid evicting recently installed but not yet fre-
quently accessed entries, thus efficiently accommodating changes
in the instruction access patterns, e.g., due to phase-based behavior.
The second module of Morrigan is the Small Delta Prefetcher (SDP),
a sequential prefetcher activated when the IRIP module is unable
to produce new prefetches. Finally, both IRIP and SDP exploit page
table locality [69, 79] to perform cost-effective spatial prefetching.

In summary, this paper makes the following contributions:

• We provide a first study on iSTLB prefetching using a set of 45
industrial server workloads [14, 22]. Key conclusions of the study
are that (i) state-of-the-art designs of dSTLB prefetchers are unable
to cover iSTLB misses, and (ii) instruction cache prefetchers are
ineffective at eliminating iSTLB misses.

•We demonstrate that iSTLB misses (i) follow a skewed distribu-
tion, with a modest number of instruction pages responsible for the
majority of the iSTLB misses, and (ii) have spatial locality limited
to a small region around the triggering miss.

•We propose Morrigan, a novel iSTLB prefetcher composed of
two specialized prefetch engines: a novel Markov-based prefetching
module that uses a new frequency-based replacement policy to
manage its internal state, and an enhanced small delta prefetcher.

• Across a set of 45 industrial server workloads[14, 22], Morri-
gan provides a geometric mean speedup of 7.6% and reduces the
references to the memory hierarchy due to demand page walks for
instructions by 69% over a baseline without iSTLB prefetching.

2 VIRTUAL MEMORY SUBSYSTEM
Each memory access on a paging-based virtual memory system
requires a virtual-to-physical address translation. To accelerate ad-
dress translation and improve virtual memory management, mod-
ern systems use a combination of software and hardware support.

On the software side, the page table is an OS-managed and
architecturally-visible structure that contains the virtual-to-physical
translations for all pages loaded to memory. In x86-64 architectures,
the page table is implemented as a multi-level radix tree.

On the hardware side, the Translation Lookaside Buffer (TLB) and
the MMU-Caches are hardware structures dedicated to alleviate the
address translation overheads. TLBs cache the most recently used
virtual-to-physical translations. Modern architectures implement
multi-level TLB hierarchies, with small instruction and data first-
level TLBs (I-TLB and D-TLB) and a large second-level TLB (STLB).

On each memory access (either instruction or data), the corre-
sponding first-level TLB is accessed and, in case of a miss, the STLB
is looked up. On STLB misses, the page table walker is invoked,
traversing the page table to find the requested translation. Frequent
page walks have a pernicious performance impact since they re-
quire multiple accesses to the memory hierarchy. To reduce page
walk latency, MMU caches (called Page Structure Caches (PSCs) on
x86 [67]) cache partial translations, hence reducing the number of
page walk accesses to the memory hierarchy. Finally, page table
entries (PTEs) from both intermediate and leaf nodes of the page
table are also cached in the existing cache hierarchy.

Page Table Locality. In x86-64 architectures, the cache line size
is 64 bytes and each PTE occupies precisely 8 bytes. As a result, a
single 64-byte cache line can accommodate up to 8 contiguously-
stored PTEs [37, 69, 76, 79]. When a requested PTE is read from
memory, it is grouped with 7 neighboring PTEs and they are stored
into a 64-byte cache line. Therefore, a single cache line stores the
requested PTE plus 7 more PTEs that do not require additional
accesses to the memory hierarchy to be prefetched.

2.1 Translation Prefetching
STLB misses (either instruction or data) trigger long-latency page
walks. Accurately prefetching PTEs ahead of demand STLB accesses
can improve performance by reducing STLB misses.

Figure 1 depicts the operation of a system with STLB prefetching,
considering the most common scenario whereby a Prefetch Buffer
(PB) is used to store the prefetched PTEs and the prefetch logic is
engaged on STLB misses [26, 53, 79]. When an instruction or data

1139

Morrigan: A Composite Instruction TLB Prefetcher MICRO ’21, October 18–22, 2021, Virtual Event, Greece

L1
TLB

background
 critical path

.

PB
...

... ...Prefetch
 Logic

enable
H

M

H

M M M

HH

v@.

to cpu

to cpu
store to
 TLB

discard prefetch

store to
 PB

Demand
Page Walk

Prefetch
Page Walk

PB

M

H

STLB PB

Figure 1: System with STLB prefetching. Diamonds indicate
decision points, circles are actions.

memory access occurs, the corresponding first-level TLB is looked
up and, on a miss, the STLB is probed. In case the STLB misses,
the requested PTE is searched for in the PB. If the translation is
present in the PB, it is moved to the STLB, the page walk is avoided,
and the processor replays the request. On a PB miss, a demand
page walk is initiated to fetch the corresponding translation. In
case of either PB hit or miss, the STLB prefetcher is activated and
produces new prefetches. Each prefetch requires a prefetch page
walk to fetch the corresponding translation into the PB. Note that
(i) the prefetch page walks are triggered in the background, (ii)
prefetches are speculative events, thus only non-faulting prefetches
are permitted, and (iii) before issuing new prefetches, the prefetch
logic checks if the translation already resides in the PB, but not in
the STLB, since searching the STLB for duplicates would contend
with demand STLB accesses, potentially delaying the latter.

To the best of our knowledge, there is no previously proposed
instruction STLB (iSTLB) prefetcher. However, state-the-art data
STLB (dSTLB) prefetchers, discussed next, can also be used to at-
tempt to capture the iSTLB miss stream.

Sequential Prefetcher (SP). SP [53, 78] prefetches the PTE of the page
located next to the one triggered the STLB miss.

Arbitrary Stride Prefetcher (ASP). ASP [31, 53] targets varying stride
patterns. To do so, it uses a prediction table indexed by the PC of
the instruction that triggered the STLB miss.

Distance Prefetcher (DP). DP [53] correlates patterns with the dis-
tance between pages. To do so, DP uses a prediction table indexed
by the distance between the current and the previous missing pages.

Markov Prefetcher (MP). MP [53] targets irregular STLB patterns by
building Markov chains out of the STLB miss stream. MP employs
a prediction table with three fields per entry; the virtual page for
indexing, and two prediction slots that store the pages of the PTEs
to be prefetched when a new STLB miss occurs on that page.

3 MOTIVATION
This section elaborates on the front-end bottleneck of servers and
motivates the need for new approaches that alleviate the instruction
address translation overheads, highlighting the potential perfor-
mance gains of applying instruction STLB (iSTLB) prefetching.

3.1 Front-end Bottleneck
Modern server workloads have massive instruction working sets
that span many levels of the software stack, making the front-end of
the processor a major performance pain point [47]. Indeed, recent
work from Google [54, 62] demonstrates that their server work-
loads face severe problems due to pressure on front-end structures.

cassandra tomcat avrora tradesoap xalan http chirper
0.0
0.5
1.0
1.5
2.0
2.5

iS
TL

B
M

PK
I

Figure 2: iSTLBMPKI of Java serverworkloads from the Java
DaCapo [39] and Java Renaissance [71] benchmark suites.

Moreover, they highlight that the front-end bottleneck is increas-
ing, since most of these server applications exhibit high instruction
growth rates (∼20-30% per year), outpacing the growth in instruc-
tion cache and TLB sizes. Specifically, Kanev et al. [54] reveal that
the front-end stalls of the Google server workloads account for
15-30% of pipeline slots, with many workloads being starved for
instructions for 5-10% of cycles. Similarly, another recent work [65]
reveals that Facebook workloads experience serious bottlenecks
due to front-end stalls mostly caused by iSTLB misses.

To justify that instruction address translation is a significant
bottleneck in server applications, we analyze the iSTLB behavior of
server applications from (i) the Java DaCapo suite [39] (cassandra,
tomcat, avrora, tradesoap, xalan), and (ii) the Java Renaissance suite
[71] (http, chirper). We run these server applications on an Intel
Skylake CPU with a 1536-entry STLB, and gathered performance
counters associated with the iSTLB accesses using perf [17].

Figure 2 presents the iSTLB MPKI rates of these workloads. For
this experiment, we enable the Transparent Huge Page support to
use 2MB pages for data accesses while mapping the code pages into
2MB pages using libhugetlbfs since there is no transparent way to
map code pages into huge pages today (Section 5 elaborates on the
implications of using huge pages for code). We observe that, even
with huge pages, these applications experience high iSTLB MPKI
rates that range between 0.6 and 2.1, which results in over 5% of
their execution cycles spent in iSTLB miss handling.

Intuitively, the increasing instruction footprint of server appli-
cations affects the performance of the I-TLB as well as the STLB,
since more instruction page table entries (PTEs) must be allocated
to map the instruction working set of the applications. Hence, the
I-TLB experiences high MPKI rates and, as a result, more requests
for instruction address translations are sent to the STLB. Since the
STLB contains both data and instruction PTEs, there is increasing
contention between them. Higher contention leads to more fre-
quent STLB misses that must be resolved through a long-latency
page walk. However, iSTLB misses are more critical than data STLB
(dSTLB) misses because instruction references are on the critical
path of execution, while data misses can overlap the execution of
independent instructions in out-of-order processors. This is the rea-
son why processor vendors (i) employ larger I-TLBs than D-TLBs
(e.g., Intel’s Skylake 2018 chips have an 128-entry (8-way) I-TLB and
an 64-entry (4-way) D-TLB [27]), and (ii) keep increasing the STLB
size – from a 512-entry STLB for Sandy Bridge [5] to a 1024-entry
STLB for Haswell [6], and a 1536-entry STLB for Coffe Lake [9].

3.2 Analyzing Industrial Server Workloads
To validate the observations of Section 3.1, we analyze the instruc-
tion cache (I-cache) and TLB behavior of 45 industrial server work-
loads provided by Qualcomm (QMM) for CVP-1 [14] and IPC-1 [22].

1140

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Vavouliotis, et al.

L1 I-Cache I-TLB iSTLB
0
1
2
3
4
5

I-
M

P
K

I SPEC

QMM

25.4

Figure 3: Instruction MPKI for front-end structures.

QMM server workloads
5

10

15

%
 E

x
e
cu

ti
o
n

C
y
cl

e
s

Figure 4: Cycles spent serving iSTLB accesses.

100 101 102 103

Absolute Deltas (log scale)

0
25
50
75

100

P
e
rc

e
n
ta

g
e
 (

%
)

Figure 5: Accumulative distribution of deltas (absolute val-
ues) between pages that produce consecutive iSTLB misses.

The QMM workloads were also used in recent works on TLB man-
agement [61, 79]. We further study the SPEC CPU 2006 [2] and
SPEC CPU 2017 [10] benchmark suites. This analysis is conducted
using ChampSim [15] enhanced with a realistic x86 page table
walker. Section 5 explains in detail our experimental setup.

Figure 3 presents the average MPKI rates of the L1 I-cache, the I-
TLB, and the STLB (considering only the instruction misses) for the
SPEC and the QMM workloads. We observe that (i) the QMM work-
loads experience an order of magnitude more instruction misses
in the three hardware structures compared to the SPEC workloads,
corroborating the conclusions of prior industrial works fromGoogle
[54, 62], presented in Section 3.1, and (ii) the iSTLB MPKI rates of
the QMM workloads are similar to the ones of the Java DaCapo
and Java Renaissance workloads (Section 3.1).

Focusing on the QMM workloads, we measured the fraction of
the STLB misses that are caused by instruction and data references.
We found that the iSTLB misses constitute 41.6%, on average, of
the total STLB misses (the rest 58.4% are dSTLB misses). We further
measured that the average page walk latency of iSTLB and dSTLB
misses is 69 cycles and 112 cycles, respectively. Higher page walk
latency is observed for the dSTLB misses because the data footprint
is larger than the instruction footprint, thus, data PTEs experience
worse cache locality than the instruction PTEs, resulting in higher
page walk latencies. However, unlike dSTLBmisses – whose latency
can be partially hidden by exploiting ILP and MLP in out-of-order
cores – iSTLB misses cause unavoidable pipeline stalls. Hence,
iSTLB misses constitute an important performance bottleneck in
server workloads.

Intel’s VTune profiler [1, 3, 7, 42] considers instruction address
translation as a bottleneck when the stall cycles due to iSTLB ac-
cesses represent more than 5% of the total execution cycles. Figure 4
shows the cycles spent serving iSTLB accesses as a percentage of the
total execution cycles for the QMM workloads. We observe that the
QMMworkloads spend 6.6%-11.7% of their execution cycles serving
iSTLB requests, exceeding the 5% threshold. Therefore, instruction
address translation is a bottleneck for the QMM workloads.

0 400 800 1200 1600
unique instruction pages that miss in the STLB, by frequency of occurrence

0
10
20
30
40
50
60
70
80
90

100

%
 I
n
st

.
S

T
LB

 M
is

se
s

QMM-1

QMM-2

QMM-3

QMM-4
high freq

low freq

Figure 6: Instruction pages sorted by STLB miss frequency.

QMM server workloads
0

50

100

P
e
rc

e
n
ta

g
e
 (

%
)

1 2 3-4 5-8 >8

Figure 7: Number of successor pages per instruction page
that misses in the STLB.

3.3 Understanding the iSTLB Misses
To understand the behavior of iSTLB misses, Figure 5 depicts the
accumulative distribution of deltas (absolute values) between pages
that produce consecutive iSTLB misses for the QMM workloads in
order of increasing deltas. While we observe a wide distribution of
deltas, we note that small deltas occur frequently (e.g., deltas from
1 to 10 account for 19% of the total deltas).

Finding 1. iSTLB misses have only limited spatial locality mostly
restricted to a small region around the triggering miss.

Next, we analyze the distribution of iSTLB misses. Figure 6 plots
the accumulative distribution of iSTLB misses per page in order of
decreasing page occurrence frequency, considering a set of repre-
sentative QMM workloads. The rest of the QMM workloads follow
a distribution that is either close or in between the ones presented
in Figure 6. We observe that a small number of pages is responsible
for a significant fraction of all iSTLB misses. Specifically, 400-800
pages cause 90% of the iSTLB misses across all QMM workloads.

Finding 2.Most iSTLBmisses can be attributed to a modest number
of instruction pages.

We define successor page as a page immediately following a given
page in the iSTLB miss stream.2 Figure 7 shows a breakdown of the
average number of successors per each instruction page that missed
in the STLB, across all QMM workloads. It can be observed that (i)
a significant fraction of instruction pages has only 1 or 2 successor
pages, (ii) the percentage of instruction pages that have up to 4 and
up to 8 successor pages is also large, and (iii) only a small number
of instruction pages have more than 8 successor pages.

Figure 7 reveals that a significant fraction of the instruction pages
has more than 2 and up to 8 successors. However, to alleviate the
instruction address translation bottleneck, it is natural to mainly
focus on the instruction pages that miss the most in the STLB.
Figure 8 shows the probability of accessing a specific successor for
the top 50 instruction pages that miss the most in the STLB, across
2Page Y is a successor of page X if an iSTLB miss on page X is immediately followed
by an iSTLB miss on page Y.

1141

Morrigan: A Composite Instruction TLB Prefetcher MICRO ’21, October 18–22, 2021, Virtual Event, Greece

QMM server workloads
0.0

0.2

0.4

0.6

0.8

P
ro

b
a
b
ili

ty

MFS 2nd MFS 3rd MFS >4th MFS

MSF = Most Frequent Successor

Figure 8: Probability of accessing the same successor page
after an iSTLB miss for a given page.

all QMM workloads. On average, 51% of the time the most-frequent
successor is accessed after an iSTLB miss, while 21% and 11% of
the time the same second and third most-frequent successors are
accessed after a miss, respectively. The remaining 17% of the times,
the access after a miss is to a less-frequent successor page.

Finding 3. Instruction pages that miss frequently in the STLB have
only a few likely successor pages whose reference probability is high.

3.4 Can Existing dSTLB Prefetchers Help?
Followingly, we measure the effectiveness of the prior dSTLB prefe-
tchers (SP, ASP, DP, MP), presented in Section 2.1, on the iSTLB
miss stream. We set the configuration parameters of each dSTLB
prefetcher as proposed in the original papers, the prefetched PTEs
are placed into a 64-entry Prefetch Buffer (PB), and new prefetch
requests are issued on iSTLB misses (Section 2.1). Figure 9 illus-
trates the performance of the existing dSTLB prefetchers when
prefetching for the iSTLB miss stream, including the performance
of an idealized scenario; a Perfect STLB for instruction accesses
where all iSTLB lookups are hits (Perfect iSTLB). This ideal scenario
quantifies the upper bound for the performance improvement by
optimizing STLB operation for instruction references.

The ideal scenario (Perfect iSTLB) delivers a geometric speedup
of 11.1%.Meanwhile, dSTLB prefetchers provide negligible speedups
because they are mainly unable to capture the iSTLB miss patterns.
SP improves performance by 1.6% because some of the instruction
accesses are sequential but it fails at capturing the complex delta
patterns (Figure 5). ASP and DP provide almost no speedup be-
cause they use features (PC and distances, respectively) that do not
correlate well with the iSTLB misses, thus, their prediction tables
experience massive conflicting accesses (96.3% and 93.7%, respec-
tively). Intuitively, we were expecting MP to improve performance
since Figure 7 shows that the instruction pages that miss in the
STLB have a small number of successors pages. Yet we observe that
MP performs poorly, improving performance by a mere 0.2%.

To explain the poor performance of MP and examine its potential
for iSTLB prefetching, we evaluate two idealized versions of MP;
both versions have an unbounded prediction table that accommo-
dates all instruction pages that miss in the STLB. The two only differ
in the number of successor pages they can store per prediction table
entry; one version maintains up to two successors, and the other
can store any number of successor pages per entry. The unbounded
MP with two and infinite successor pages per prediction table entry
deliver 7.9% and 10.3% geomean performance, respectively.

There are two important conclusions from this study. First, in-
creasing the number of entries in the prediction table significantly
improves MP’s performance (from 0.2% speedup with the baseline
having a 128-entry prediction table to 7.9% speedup with infinite

QMM server workloads
5

0

5

10

15

S
p

e
e
d

u
p

 (
%

)

SP ASP DP MP Perfect iSTLB

Figure 9: Performance comparison between state-of-the-art
dSTLB prefetchers and an ideal scenario.

QMM server workloads
5
0
5

10
15
20

S
p
e
e
d
u
p
 (

%
)

FNL+MMA+TLB FNL+MMA

Figure 10: Performance of FNL+MMAwith and without tak-
ing into account instruction address translation. The base-
line system utilizes the next-line I-cache prefetcher.

number of prediction table entries). Our analysis indicates that the
replacement policy of MP is one of the reasons why MP does not
improve performance with practical prediction table sizes. Since
MP uses the LRU policy we conclude that recency is not a useful
feature for replacement decisions. Secondly, accommodating mul-
tiple successors per page, beyond just two, further increases the
speedup from 7.9% to 10.3%, which approaches the ideal of 11.1%.

Finding 4. AMarkov prefetcher has potential for iSTLB prefetching
but it requires dynamically building variable length Markov chains
out of the iSTLB miss stream in a storage-efficient manner and an
effective replacement policy for its prediction table.

3.5 Instruction Cache Prefetching
Modern I-cache prefetchers may trigger instruction prefetches
across page boundaries [22]. When that happens, if the correspond-
ing translation is absent in the TLB, a page walk is triggered. Hence,
I-cache prefetchers implicitly work as instruction TLB prefetchers;
however, their effectiveness in this role has not been analyzed.

To quantify how effective state-of-the-art I-cache prefetchers
are at prefetching for the iSTLB miss stream, we consider the three
top performers of the IPC-1 contest: EPI, FNL+MMA, and D-Jolt.
IPC-1 infrastructure does not model instruction address translation,
i.e., all I-cache prefetches that cross page boundaries are translated
without cost.We extend the IPC-1 infrastructure to consider address
translation costs (Section 5) and configure the IPC-1 prefetchers
to store in the STLB PB the PTEs of the beyond-page-boundaries
prefetches, thus providing iSTLB prefetches.

Our analysis indicates that FNL+MMA outperforms the other
IPC-1 prefetchers when address translation is taken into account,
thus we focus on this I-cache prefetcher. Figure 10 shows the per-
formance of FNL+MMA. Line FNL+MMA+TLB (FNL+MMA) shows
the measured performance of the prefetcher when instruction ad-
dress translation is (is not) considered. When address translation
is taken into account (FNL+MMA+TLB), we observe significantly
lower speedups than the ones reported in IPC-1. This degradation
comes from the instruction prefetches that cross page boundaries

1142

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Vavouliotis, et al.

and fail to find the corresponding translation in the TLB hierarchy,
thus requiring long-latency page walks to fetch it. Such prefetches
hurt the timeliness of the FNL+MMA and delay demand STLB
accesses by occupying the page table walker ports, resulting in
poor performance. Moreover, we observe only a small reduction
(29.6% on average) in demand iSTLB misses because FNL+MMA is
unable to cover iSTLB misses due to their poor timeliness in the
face of long-latency page walks that require serialized memory
accesses. Therefore, state-of-the-art I-cache prefetchers require a
smart iSTLB prefetcher to effectively cross page boundaries.

Finding 5. I-cache prefetchers are mainly ineffective at reducing
iSTLB misses due to poor timeliness.

4 MORRIGAN
To alleviate the instruction address translation performance bot-
tleneck, this paper proposes Morrigan (Irish goddess of destiny), a
composite iSTLB prefetcher. Morrigan is fully legacy-preserving
and does not disrupt the existing virtual memory subsystem. Morri-
gan is also synergistic with I-cache prefetchers as it improves their
timeliness when they cross page boundaries.

4.1 Design
Morrigan is inspired by our analysis findings regarding the iSTLB
miss behavior (Section 3) and consists of two complementary mod-
ules: the Irregular Instruction TLB Prefetcher (IRIP) which builds and
stores Markov chains out of the iSTLB miss stream, and the Small
Delta Prefetcher (SDP), an enhanced sequential prefetcher. Sections
4.1.1 and 4.1.2 present the IRIP and SDP modules while Section 4.2
explains the operation of Morrigan.

4.1.1 Irregular Instruction TLB Prefetcher (IRIP). The IRIP module
is designed as a Markov prefetcher since our analysis indicates that
a Markov prefetcher has potential for iSTLB prefetching (Finding
4, Section 3.4). Specifically, IRIP is an ensemble of four table-based
Markov prefetchers that efficiently build and store variable length
Markov chains from the iSTLB miss stream. IRIP also takes into
account the variable number of successor pages (Figure 7) of the
instruction pages that miss in the STLB. Designing IRIP as a Markov
prefetcher with a single prediction table and a fixed number of
successors per entry–as the state-of-the-art MP does (Section 2.1)–
results in suboptimal performance gains (Section 6.3).

IRIP employs four prediction tables (PRT-S1, PRT-S2, PRT-S4,
PRT-S8) that dynamically build a store variable length Markov
chains from the iSTLB miss stream. Each prediction table entry
stores up to a pre-defined number of successors; PRT-S1, PRT-S2,
PRT-S4, and PRT-S8 accommodate instruction pages that have one,
two, up to four, and up to eight successor pages, respectively. Each
prediction table is realized as a set-associative buffer and stores the
virtual page of themissed instruction for indexing, s prediction slots,
and s confidence counters, one per prediction slot. For example, each
PRT-S2 entry has s=2 prediction slots, and s=2 confidence counters.
The only difference in the design of the prediction tables is the
number of prediction slots and confidence counters. For simplicity,
we illustrate in Figure 11 the design and the operation of PRT-S2.

A naive IRIP design would store the full virtual page number
(VPN) in each prediction slot (as the state-of-the-art MP [53] does).

Current
 VPN

Previous
 VPN

-
Distance

.

6

9

0xA1

vi
ct

im

VPN D C D Ci i 2 2i 1 1 i i

. .
 .

0xB5

0xA1

1000 6662 0

17 20 1

Prediction Table PRT-S2

8. .
 .

. .
 .

. .
 .

. .
 .

7

Min?))

3

Max?

)

0x
B

2

0X
A

3

Prefetch Page Walk

MUX 2:1

++

0xA3
PTE of

0xA2
PTE of

0xA1
PTE of

0xA0
PTE of

0xA4
PTE of

0xA5
PTE of

0xA6
PTE of

0xA7
PTE of

Prefetch
Storage 5

)
lookahead prefetching

1

2

4

)

.
.

Figure 11: Operation of IRIP on PRT-S2 hits.

However, such a design choice is expensive, storage-wise, since each
VPN requires 36 bits of state. To lower this storage cost, IRIP stores
the distances between the current and the previous virtual pages
that produced an iSTLB miss. This approach lowers the amount of
storage for the prediction tables without any performance loss.

The confidence counters associated with the prediction slots
are exploited in a two-fold manner: (i) to drive the replacement
policy of the prediction slots, i.e., when all the prediction slots are
occupied and a new distance has to be placed in one of these slots,
the distance with the lowest confidence is replaced, and (ii) the
distance with the highest confidence is selected to apply spatial
prefetching, leveraging page table locality (Section 2). Specifically,
on PRT-S2 hits, IRIP issues one prefetch request per predicted dis-
tance of the hit entry. Each prefetch requires a page walk to fetch
the corresponding translation (Section 2.1). At the end of a prefetch
page walk, page table locality can be exploited to prefetch for free
the PTEs that share the cache line with the target PTE. However,
prefetching all the free PTEs in all prefetch page walks might harm
performance by fetching a lot of inaccurate prefetches. To mitigate
this problem, IRIP prefetches cache-line adjacent PTEs only for the
distance with the highest confidence.

Figure 11 shows an operational example of PRT-S2, starting with
an iSTLB miss for virtual page 0xA1. Initially, a PRT-S2 lookup
takes place to determine if there is an entry corresponding to vir-
tual page 0xA1 1 . In the example, the PRT-S2 lookup experiences a
hit. Hence, the predicted distances 17 and 2 of the hit entry are sep-
arately summed with the currently missed page (0xA1) to generate
new prefetch requests for pages 0xB2 and 0xA3, respectively 2 . In
parallel, IRIP finds the predicted distance with the highest confi-
dence counter 3 . Since distance 2 has the highest confidence value,
IRIP applies spatial prefetching for the prefetch 0xA3 4 . Specifi-
cally, at the end of the prefetch page walk for 0xA3, IRIP leverages
page table locality to also prefetch the PTEs adjacent to the PTE of
0xA3 5 . To update PRT-S2, IRIP calculates the distance between
the currently missed (0xA1) and previously missed (0xB5) virtual
pages and stores the outcome into a register 6 . Meanwhile, IRIP
finds which of the predicted distances for the previously missed
virtual page has the lowest confidence counter 7 . Since distance
666 has the lowest confidence, IRIP replaces it with the current
distance for future reuse, while resetting the corresponding confi-
dence counter 8 . Finally, IRIP stores the currently missed virtual

1143

Morrigan: A Composite Instruction TLB Prefetcher MICRO ’21, October 18–22, 2021, Virtual Event, Greece

v@

STLB PB
 Demand
Page Walk

Store to
 TLB

to cpu

H H

M M

.

.

1 2
3 4

5

 background

 critical path

Instr? Y .
N

enable

M
or

ri
ga

n

v@
7

IRIP : Irregular Instruction TLB Prefetcher

SDP : Small Delta Prefetcher

RLFU : Random Least Frequently Used

PRT-S1

PRT-S2

PRT-S4

PRT-S8

Prefetch

Update

) ...

MUX

PB

M
... ...

...

10

11

12 13

14

PRT-S1

PRT-S2

PRT-S4

PRT-S8

Pred.
Full?

 Remove from
 PRT-S1

RLFU

Victimize Successor

pr
ev

io
us

 v
@

Insert
PRT-S1SDP

 Prefetch
Page Walk

Page Table Locality

Transfer
to PRT-S2

 Prefetch
Page Walk

Discard Page Table

Store to
 PB

Store to
 PB

Requests

Confidence
Counter

Pred.
Full?

Pred.
Full?

RLFU

Transfer
to PRT-S4

RLFU

Transfer
to PRT-S8

 Remove from
 PRT-S2

 Remove from
 PRT-S4

Pred.
Full?

RLFU

. Locality

.

.

.)

.

.

.

..

OR

1

0

6

8

9

15

16

17

18

19 20 21
22

23

24 25

to cpu

L1 TLB

M

H

H

Figure 12: Design and operation of Morrigan. Diamonds indicate decision points, circles are actions.

page into the register holding the previously missed virtual page
to be used on the next IRIP operation 9 . Note that when Morrigan
operates, steps 7 and 8 take place only for PRT-S8; for PRT-S1,
PRT-S2, and PRT-S4 Morrigan transfers the entry coupled with the
new distance into a prediction table with more prediction slots per
entry. Section 4.2 explains the operation of Morrigan in detail.

Updating the confidence counters.When a prefetch is proved to
be accurate, i.e., it produces a hit that eliminates a demand page
walk, the confidence counter of the corresponding prediction slot
is incremented by 1.

Replacement policy. A critical aspect of the IRIP design is the
replacement policy of the prediction tables. While previous table-
based dSTLB prefetchers, like MP [53], use the LRU policy, we find
that LRU does not keep the most useful entries in the prediction
tables because it is prone to lose track of important entries (Sec-
tion 3.4). Our analysis findings indicate that the miss frequency of
virtual pages is a good feature to correlate the iSTLB miss stream.
Therefore, we employ a frequency-based replacement policy for all
the prediction tables of IRIP which (i) maintains a frequency stack of
the iSTLB misses to drive the replacement of entries on prediction
table conflicts, similar to Least-Frequently-Used (LFU) policy, and
(ii) uses a random component that gives recently installed entries,
which have not yet accumulated a large number of hits, a chance to
persist when a replacement candidate is selected. This policy gives
IRIP the ability to adjust to phase-based behavior in workloads.
We refer to this policy as Random-Least-Frequently-Used (RLFU).
Finally, the complexity of RLFU is similar to LRU.

A problem with a frequency-based replacement policy is that
it may be slow to adapt to phase changes in application behavior
(e.g., when a page causes frequent iSTLB misses in one phase but
not in another). To avoid the associated performance pathologies,
Morrigan periodically resets the frequency stack to better identify
instruction pages causing the most iSTLB misses in a given interval.

4.1.2 Small Delta Prefetcher (SDP). SDP prefetches the PTE of the
virtual page adjacent to the missed virtual page, similar to SP [53].
SDP further exploits page table locality to prefetch all the adjacent

PTEs within the target cache line. In this way, SDP captures the
majority of the small-strided iSTLB misses (Finding 1, Section 3.3).

For instance, assume an iSTLB miss for page 0xA7. First, SDP
issues a prefetch request for page 0xA8 (0xA7+1). After the com-
pletion of the prefetch page walk for page 0xA8, SDP prefetches all
the PTEs that share the cache line with the PTE of page 0xA8. Note
that in this example, fetching the PTEs of pages 0xA7 and 0xA8
requires two separate page walks since the PTE of 0xA7 resides in
the last position of a cache line (0xA7 & 0x07) while the PTE of
0xA8 is stored in the first position within another cache line.

4.2 Operation of Morrigan
This section explains the operation of Morrigan, considering the
most common case where the iSTLB prefetcher is invoked on iSTLB
misses, and the prefetched PTEs are stored into a Prefetch Buffer
(PB), as explained in Section 2.1.

Figure 12 illustrates the operation of Morrigan. When an iSTLB
miss occurs 1 , the requested translation is looked up in the PB 2 .
On PB misses, a demand page walk is initiated 3 to fetch the corre-
sponding translation into the TLB 4 . On PB hits, the demand page
walk is avoided and the corresponding translation is transferred
from the PB to the TLB 5 , and in the background we increment the
confidence counter of the prediction table entry that produced the
PB hit, if the prefetch was produced by the IRIP module 6 .

Morrigan is engaged in case of either PB hit or miss 7 . First,
Morrigan looks up in parallel all prediction tables (PRT-S1, PRT-S2,
PRT-S4, PRT-S8) of IRIP 8 (step 1 in Figure 11). When there is a
hit in one prediction table (there is no duplication of entries in the
prediction tables, thus only one hit might occur), Morrigan gener-
ates one prefetch per valid prediction slot of the hit entry 9 (step 2
in Figure 11) of the corresponding prediction table. Before issuing
the prefetch requests, Morrigan checks whether the translations al-
ready reside in the PB 10 . For the prefetches that are already stored
in the PB the corresponding requests are discarded 11 . For the rest,
separate prefetch page walks are initiated to fetch the translations
12 . At the end of the prefetch page walks the corresponding PTEs
are stored into the PB 13 . Then, Morrigan leverages page table

1144

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Vavouliotis, et al.

locality to apply lookahead prefetching by fetching in the PB the
adjacent PTEs that are transferred together with the prefetched PTE
solely for the prefetch with the highest confidence 14 (steps 3 - 5
in Figure 11). When all the prediction tables of IRIP experience a
miss, Morrigan has to store the currently missed virtual page in one
of the prediction tables. Since this page does not have any valid pre-
diction, it is always placed in the PRT-S1 15 but it might be moved
into another prediction table if future STLB misses reveal that it has
multiple successor pages. If PRT-S1 is full, Morrigan uses the RLFU
policy to find a victim entry. Therefore, on prediction table misses
Morrigan is unable to produce prefetch requests based on the IRIP
module. At this point, SDP is activated and issues prefetches 16 by
exploiting page table locality, which are eventually stored into the
PB 17 . SDP is enabled only on IRIP misses, thus Morrigan does not
loose any potential for performance improvement since it produces
new prefetches on every iSTLB miss.

In case of either hit or miss in the prediction tables of IRIP,
Morrigan inserts the new predicted distance in one of the prediction
slots of the prediction table entry that accommodates the previously
missed virtual page 18 . If the previously missed page resides in one
of PRT-S1, PRT-S2, and PRT-S4 19 and the prediction slots are fully
occupied 20 , then instead of victimizing one of the prediction slots
we simply transfer this entry into the next prediction table that
has more prediction slots 21 ; if it is full, Morrigan uses the RLFU
replacement policy to open up space for the transferred entry 22 .
Next, this entry is removed from the previous prediction table 23 . If
the previously missed page resides in the PRT-S8 and the prediction
slots are fully occupied 24 , the new distance is placed into the
prediction slot that has the lowest confidence counter 25 . Note
that in step 19 we do not search all prediction tables to find the
previously missed page, but we use a register to store the identifier
of the table that stores the previously missed page.

4.3 Additional Aspects
Operation on SMT Cores. Morrigan can operate under SMT colo-

cation by sharing the IRIP module among the threads. To do so, it
only requires a different register per thread holding the virtual page
that produced the previous iSTLB miss (step 9 , Figure 11) to ensure
that each thread builds its own Markov chains without intermixing.

Context Switches. The prediction tables of the IRIP module must
be flushed on a context switch. Their small sizes ensures that, fol-
lowing a context switch, they are quickly refilled. SDP is stateless;
as such, it requires no action on a context switch.

Multiple Page Sizes. Sections 4.1 and 4.2 focus on a single page
size to describe the design and operation of Morrigan. This is not
a limitation of the design as multiple page sizes are supported
without any modification. The page size is known only after address
translation, thus, Morrigan can issue two prefetches per request to
target 4KB and 2MB pages. Once the page size is known, Morrigan
discards the outcome of the prefetch page walk for the mismatched
page size. This approach does not add complexity in the design
since modern architectures support speculative page walks [67].

Page Replacement Policy and TLB Shootdowns. Morrigan sets the
access bit of all prefetched pages since the x86 memory consistency
model dictates that all TLB prefetches are obliged to do so [27].

Component Description

L1 I-TLB 128-entry, 8-way, 1-cycle, 4-entry MSHR

L1 D-TLB 64-entry, 4-way, 1-cycle, 4-entry MSHR

L2 TLB 1536-entry, 6-way, 8-cycle, 4-entry MSHR, 1 page walk / cycle

Page Structure 3-level Split PSC, 2-cycle.
Caches PML4: 2-entry, fully; PDP: 4-entry, fully; PD: 32-entry, 4-way.

Prefetch Buffer (PB) 64-entry, fully assoc, 2-cycle

L1 I-Cache 32KB, 8-way, 4-cycle, 8-entry MSHR, next line prefetcher

L1 D-Cache 32KB, 8-way, 4-cycle, 8-entry MSHR, next line prefetcher

L2 Cache 512KB, 8-way, 8-cycle, 32-entry MSHR, SPP [57]

LLC (per core) 2MB, 16-way, 10-cycle, 64-entry MSHR

DRAM tRP=tRCD=tCAS=12, 12.8 GB/s

Branch Predictor hashed perceptron

Table 1: System configuration.

Therefore, Morrigan does not complicate TLB shootdowns because
the information about the prefetched instruction PTEs is conveyed
to the OS as usual. Regarding the impact on the page replacement
policy, a prefetch is harmful for the page replacement policy if it is
evicted from the STLB PB without providing any hit and does not
belong to the active footprint of the application. Morrigan issues
prefetches based on the control-flow behavior and does not permit
faulting prefetches, thus the probability of negatively affecting the
page replacement policy is negligible. To annihilate this probability,
Morrigan could issue a correcting page walk to reset the access bit
of the PTEs that are evicted from the PB without providing any hit.
These correcting page walks could be issued when the TLB MSHR
is not full to avoid delaying any other page walk.

Synergy with I-Cache Prefetching. Morrigan is complementary
to I-cache prefetchers because it prefetches instruction PTEs, thus
improving the timeliness of I-cache prefetches that go beyond page
boundaries by avoiding long-latency page walks (Section 3.5). Sec-
tion 6.5 quantifies the performance gains of using Morrigan to
improve the timeliness of a state-of-the-art I-cache prefetcher.

Different Architectures. We focus on x86 architectures; however,
architectural support for virtual memory used in x86 architectures
[23, 25] is similar to other architectures (e.g., ARM [8] and RISC-
V [11]). Thus, Morrigan would be applicable to these architectures.

Page Tables. Morrigan is compatible with a 5-level radix tree
page table [12], and may deliver higher performance gains because
the extra page table level might increase the page walk latency. If
a hashed page table [77, 82] is used, Morrigan would operate the
same since hashed page tables preserve page table locality.

TLB Prefetching Strategy. TLB prefetching schemes are typically
engaged on STLB misses and store the prefetched PTEs into a PB
(Section 2.1). Our analysis indicates that these two strategies have
a positive effect on performance. Nonetheless, Morrigan could be
also activated on STLB hits and prefetch directly into the STLB.

5 METHODOLOGY
Simulation Infrastructure. To evaluate Morrigan, we use the
latest version of ChampSim [15], a detailed simulator that models a
4-wide out-of-order processor. We extend ChampSim to simulate a
realistic x86 page table walker, modeling the variable latency cost
of page walks and also the variable number of memory references

1145

Morrigan: A Composite Instruction TLB Prefetcher MICRO ’21, October 18–22, 2021, Virtual Event, Greece

they require to complete. Specifically, we added a 4-level page
table, a page table walker, and a 3-level split PSC. The page table
walker supports up to 4 concurrent TLB misses, similar to Skylake
microarchitecture [27], while one page walk can be initiated per
cycle. Finally, our baseline uses the next-line I-cache prefetcher but
we also consider the I-cache prefetchers from IPC1 [22] in Sections
3.5 and 6.5. Table 1 summarizes our experimental setup.

We also extended ChampSim to simulate a dual-threaded SMT
core to evaluate our proposal under workload colocation. Every
cycle, a different thread fetches one basic block of instructions. Our
SMTmodel fully accounts for the contention due to colocation in all
shared microarchitectural structures (TLBs, PSCs, cache hierarchy).

Our work focuses on 4KB pages, similar to prior work using the
QMM workloads [61]. So why not use huge pages to mitigate the
address translation overhead? Although profitable when the appli-
cation exhibits high locality and the system is not fragmented, huge
pages are not a stop-gap solution to the address translation bottle-
neck for both data and code accesses. In practise, using huge pages
for data and code potentially hurts performance in datacenters
and exposes security vulnerabilities, as we explain below. Further-
more, the performance of legacy systems and cloud applications
that continue to use 4KB pages still matters for their users.

Huge pages have been shown to introduce performance patholo-
gies [29, 59, 83], particularly for servers. Another problem is the lack
of flexibility in memory management with huge pages compared
to standard 4KB pages [24, 50, 70]. Specifically, huge pages require
memory contiguity and defragmentation that is not guaranteed
in datacenters due to high uptimes and the fact that datacenters
handle thousands of diverse applications [24, 54, 81]. Indeed, [59]
demonstrates that memory defragmentation can result in tail la-
tency spikes and performance variability, both of which might nega-
tively impact the performance of datacenter applications. Moreover,
a recent work [24] shows that transparent 2MB support for data
pages is not adequate anymore and there is need for creating trans-
parent support for 1GB pages. Finally, [48] reveals that huge pages
can harm the performance of NUMA machines; this problem might
be amplified with the advent of heterogeneous memories where the
OSes have to migrate data between fast and slow tiers of memory.

In addition to the above, concurrently supporting multiple page
sizes is a complex problem; this is the reason why Linux has support
for transparent 2MB pages only for data, which, in fact, took a long
time to be properly implemented [27]. Today, Linux does not have
support for 2MB transparent huge pages for code blocks. The only
way to map executable files onto huge pages in Linux is to use lib-
hugetlbfs [4]. However, libhugetlbfs does not provide automatic and
transparent support for huge page code mappings since it requires
shaping the text layout in the application’s address space [44]. In-
deed, a recent work [64] reveals that (i) mapping the .text section of
server applications onto huge pages provides performance degra-
dation since it puts pressure on the limited number of L1 I-TLB
entries that can accommodate huge pages, and (ii) mapping too
many huge pages using libhugetlbfs in production machines makes
the Linux kernel misbehave as it becomes overwhelmed by the
need to relocate physical pages to satisfy requests for huge pages.

Another concern with mapping code in huge pages is that doing
so represents a security risk. Modern systems use Address Space
Layout Randomization (ASLR) to obstruct certain security attacks

1 3 5 7 9 11 13 15 17
hardware budget (KB)

40
50
60
70
80
90

100

%
 C

o
v
e
ra

g
e

['60%', '1.88KB']

['81%', '3.76KB']
['89%', '4.95KB']

['92%', '6.26KB']
['95%', '7.53KB'] ['98%', '15.1KB']

Morrigan

Figure 13: Miss coverage of Morrigan for various budgets.

by making it difficult for an adversary to predict target addresses.
Prior work has shown that using huge pages for code significantly
diminishes the effectiveness of ASLR [34, 35, 46, 75]. Another se-
curity risk is the iTLB multihit [16] vulnerability that arises when
huge pages are used for code. Specifically, when an instruction fetch
hits multiple entries in the I-TLB it may incur a machine check error.
To mitigate this issue, cloud providers such as Microsoft Azure and
Amazon force all executable instruction pages to be mapped into
4KB pages [13, 18–21], removing the possibility of multiple hits.

For these reasons, we focus our evaluation on 4KB pages but
Morrigan is entirely compatible with larger page sizes (Section 4.2).

Workloads. We use a set of server workloads provided by Qual-
comm (QMM) for the CVP-1 [14] and IPC-1 [22] contests that were
previously used in other TLB-related research works [61, 79]. Work-
loads with an iSTLB MPKI of at least 0.5 are considered instruction
TLB intensive, thus our evaluation considers 45 instruction TLB
intensive QMM server workloads. Our simulations use 50 million
warmup instructions, then 100 million instructions are executed to
measure the experimental results, similar to prior work [61].

We also analyze the SPEC CPU 2006 [2] and SPEC CPU 2017 [10]
benchmark suites, but we find that these workloads have an iSTLB
MPKI of 0.5 or less, so they are not considered in our evaluation.
However, we use the SPEC CPUworkloads in Section 3 to show that
we are consistent with the conclusions of previous works [54, 62].

Finally, datacenters colocate applications on SMT cores for better
CPU and memory utilization [54, 80]. To consider colocation, we
simulate a dual-threaded SMT core executing two different QMM
workloads. Our evaluation (Section 6.6) considers 50 randomly
chosen pairs of QMM workloads.

6 EVALUATION
6.1 IRIP Module
The IRIP module of Morrigan is an ensemble of table-based hard-
ware Markov prefetchers. Therefore, the effectiveness of Morrigan
directly depends on the number entries in the prediction tables
(PRT-S1, PRT-S2, PRT-S4, PRT-S8) of the IRIP module. Each predic-
tion table entry requires 16 bits for storing a partial tag of the virtual
page for indexing, 15 bits per predicted distance of the prediction
slots, and a 2-bit saturating counter per predicted distance (Sec-
tion 4). Note that Sections 6.1.1 and 6.1.2 consider fully associative
prediction tables and a 64-entry Prefetch Buffer (PB); Section 6.1.3
examines different prediction table associativities and PB sizes.

6.1.1 Miss Coverage. Figure 13 presents the miss coverage of Mor-
rigan across all QMM workloads as a function of different storage
budgets. Starting with small storage budgets, we observe a large
increase in the miss coverage of Morrigan as the storage budget

1146

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Vavouliotis, et al.

1 3 5 7 9 11 13 15 17
hardware budget (KB)

30
40
50
60
70
80
90

100

%
 C

o
v
e
ra

g
e

LRU Random LFU RLFU

3.5 4.0 4.5 5.0
70

75

80

85

90

3.76

3.76

4.95

7.53

15.1

Figure 14: Miss coverage of Morrigan when the prediction
tables of the IRIPmodule use different replacement policies
for various storage budgets.

increases. However, after 5KBs, the miss coverage begins to plateau.
Going beyond 7.5KB of storage budget provides negligible benefits.

6.1.2 Replacement Policy. The prediction tables of the IRIP module
use the RLFU policy (Section 4). To highlight the benefits of RLFU
we compare against the following alternatives: (i) LRU policy, (ii)
Random policy, and (iii) LFU policy that replaces the least frequently
accessed entry. Figure 14 shows the miss coverage of Morrigan
when the IRIP module leverages the above explained replacement
policies as a function of different budgets, similar to Section 6.1.1.

Looking at Figure 14, we observe that the RLFU replacement
policy provides significantly higher miss coverage than the other
replacement policies when the prediction tables of the IRIP module
accommodate a small number of entries. As the size of the prediction
tables increases, the miss coverage gap between RLFU and the other
policies shrinks because the prediction tables can store the majority
of the virtual pages that produce iSTLB misses (Sections 3.3 and
3.4), thus making the replacement policy irrelevant.

Considering Morrigan with 3.76KB of storage budget, Figure 14
reveals that the LRU and Random replacement policies provide the
lowest miss coverage since the former evicts useful entries based
on their recency position and the latter randomly selects victims
without any insight. The LFU replacement policy provides higher
coverage than LRU and Random replacement policies, highlighting
that the iSTLB miss stream correlates well with the miss frequency
of the virtual pages. Finally, the RLFU policy improves miss cov-
erage over the LFU policy by 4.9%. This happens because RLFU
randomly replaces one of the least recently used entries, acting like
a second-chance policy for not yet frequently accessed entries.

6.1.3 Configuring IRIP. Taking into account the results of Sections
6.1.1 and 6.1.2, we conclude that there is a cost-performance trade-
off in the design space of Morrigan. For the rest of the paper, we
focus on the configuration of Morrigan with 3.76KB of storage
budget, which achieves 81% miss coverage (Figure 13). We select
this configuration because it represents an attractive point in terms
of miss coverage and required storage budget.

Using the above selected version of Morrigan, we evaluated
different capacities and associativities for the prediction tables of
IRIP. Empirically, we found the following preferred configuration:
128-entry (32 ways) PRT-S1, 128-entry (32 ways) PRT-S2, 128-entry
(32 ways) PRT-S4, and a 64-entry (16 ways) PRT-S8. Among the
prediction tables, PRT-S8 is the smallest one because the number of
instruction pages that have more than 4 and up to 8 successors is

QMM server workloads
2
0
2
4
6
8

10

S
p

e
e
d

u
p

 (
%

)

SP ASP DP MP Morrigan

Figure 15: Performance comparison between Morrigan and
the state-of-the-art data STLB (dSTLB) prefetchers.

lower than the number of instruction pages that have 1, 2, and up
to 4 successor pages (Section 3.3) and the probability of accessing a
non frequent successor page is relatively low (Figure 8). Finally, the
empirically selected configuration provides a miss coverage of 76%
(5% lower than the version with fully associative prediction tables).

Regarding the PB size, we consider a 64-entry PB because a PB
with 16 or 32 entries provides rather poor miss coverage compared
to the 64-entry PB (4%-12% reduction), whereas a 128-entry PB
increases coverage by 2% compared to the 64-entry PB.

6.2 ISO-Comparison with dSTLB Prefetchers
This section compares Morrigan with the state-of-the-art dSTLB
prefetchers (Section 2.1) that are configured to prefetch for the
iSTLBmiss stream, similar to Section 3.4. Tomake a fair comparison,
we set the configuration parameters of these prefetchers in such a
way that they match the storage budget of Morrigan (3.76KB).

Performance Comparison. Figure 15 shows the performance com-
parison between Morrigan and the dSTLB prefetchers. The baseline
considers the system without STLB prefetching. SP, DP, ASP, MP,
and Morrigan provide a geometric speedup of 1.6%, 0.1%, 0.4%, 0.7%,
and 7.6%, respectively. Morrigan significantly outperforms all pre-
viously proposed dSTLB prefetchers because the QMM workloads
exhibit highly complex patterns that the dSTLB prefetchers are
unable to capture. Specifically, SP captures only the sequential pat-
terns, DP and ASP experience massive conflicts in their prediction
tables, and MP uses the LRU policy that fails at keeping in the
prediction table the most useful instruction pages (Section 3.4).

In terms of PB hits provided by the two modules of Morrigan
(IRIP and SDP), we measured that 93% of the prefetches that hit in
the PB were triggered by the IRIP, while the remaining 7% by SDP.

Cost of Prefetching & Analysis. Figure 16 presents the distribu-
tion of the normalized number of memory references triggered
by demand and prefetch page walks for Morrigan and the prior
dSTLB prefetchers. For the purposes of this study, the term mem-
ory reference refers to a page walk reference that is served by the
memory hierarchy (L1, L2, LLC, DRAM). Note that (i) we take into
account cache locality in page walks (Section 5), and (ii) a page
walk memory reference is triggered only for references that miss
in the PSC, which we also model. The normalization factor, 100%
in Figure 16, is the number of memory references due to demand
page walks without STLB prefetching.

SP, ASP, DP, MP, and Morrigan reduce the memory references
due to demand page walks by 11%, 1%, 2%, 8%, and 69%, respectively.
Regarding the prefetch page walks, SP, ASP, DP, MP, and Morrigan

1147

Morrigan: A Composite Instruction TLB Prefetcher MICRO ’21, October 18–22, 2021, Virtual Event, Greece

SP ASP DP MP Morrigan
0

20
40
60
80

100
120
140
160

%
 N

o
rm

a
liz

e
d

M
e
m

o
ry

 R
e
fe

re
n
ce

s Demand Page Walks Prefetch Page Walks

Figure 16: Normalized page walk memory references.

QMM server workloads
0
2
4
6
8

10
12

S
p
e
e
d
u
p
 (

%
)

Morrigan-mono Morrigan

Figure 17: Performance of Morrigan when the IRIP module
uses an ensemble of four tables (Morrigan) versus a single-
table design (Morrigan-mono).

trigger 20%, 1%, 6%, 7%, and 117% additional memory references due
to prefetch page walks with respect to the baseline, respectively.

The prior dSTLB prefetchers do not reduce demand page walk
memory references for instructions, so they provide negligible per-
formance improvements, as Figure 15 shows. They also introduce
only a small number of memory references for prefetch page walks
because (i) SP issues only one prefetch per iSTLB miss, (ii) ASP
and DP experience a lot of conflicting accesses in their prediction
tables which does not allow them to produce prefetch requests, and
(iii) MP leverages the LRU replacement policy that fails at keeping
the most useful entries in the prediction table; on prediction table
lookup misses, no prefetches are issued.

While Morrigan does generate more memory references for
prefetch page walks than the existing dSTLB prefetchers, it achieves
much higher coverage than the prior designs. Indeed, Morrigan
reduces the memory references for demand page walks by 69% due
to its high coverage. The vast majority of memory references due
to prefetch page walks are caused by the IRIP module since the SDP
module (i) issues only one prefetch at a time that requires a prefetch
page walk, and (ii) is enabled only when the IRIP module is unable
to issue prefetch requests (Section 4.1.2). However, the demand page
walks are responsible for the iSTLB performance bottleneck since
they take place on the critical path of execution causing unavoid-
able pipeline stalls, while the prefetch page walks are performed in
the background without stalling the pipeline execution.

Finally, we examine the fraction of prefetch page walk mem-
ory references served by each level of the memory hierarchy. We
find that 20%, 25%, 45%, and 10% of Morrigan’s prefetch page walk
memory references are served by L1, L2, LLC, and DRAM, respec-
tively. Hence, the large reduction of demand page walk memory
references that Morrigan achieves, lowers the instruction address
translation overhead, thus providing significant performance gains.

6.3 Comparing Different IRIP Designs
This section highlights the benefits of using multiple prediction
tables with different number of prediction slots per entry for the

QMM server workloads
-25
-20

...
0
5

10
15

S
p
e
e
d
u
p
 (

%
)

ISO-Storage

P2TLB

ASAP

Morrigan

Morrigan+ASAP

Perfect iSTLB

Figure 18: Performance comparison with other approaches
that improve TLB performance.

IRIP module over the state-of-the-art approach that uses a single
prediction table with fixed number of successors per entry. To do
so, we implement Morrigan-mono whose operation is identical to
Morrigan but its IRIP module leverages a single prediction table
with a fixed number of successors per entry, as the state-of-the-
art MP [53] does. We opt to provide an ISO-storage comparison
between Morrigan and Morrigan-mono, so we configure the IRIP
module of Morrigan-mono with a 203-entry prediction table with
8 prediction slots per entry,3 and a 2-bit confidence counter per
prediction slot to match the storage and the operation of Morrigan’s
IRIP module.

Figure 17 reveals that Morrigan outperforms Morrigan-mono
(1.9% on average) across all the QMM server workloads. We observe
this behavior because Morrigan makes better use of the available
storage budget, hence tracking a much larger effective working set.
Whereas Morrigan dynamically tracks the required number of pre-
diction slots per instruction page and enables efficient transferring
of entries between the prediction tables, Morrigan-mono accommo-
dates eight prediction slots per prediction table entry. Specifically,
Morrigan-mono tracks 203 entries and Morrigan effectively tracks
448 entries (128*3+64). Indeed, we find that Morrigan-mono re-
quires 6.9KB of storage to match the performance of Morrigan
having a 3.76KB storage budget.

6.4 Comparison with Other Approaches
Figure 18 compares Morrigan with other approaches that improve
TLB performance and the ideal case of the Perfect STLB for instruc-
tion references (Perfect iSTLB), as explained in Section 3.4.

ISO-Storage Comparison.We compare Morrigan against a system
that does not apply STLB prefetching but for fairness it is enhanced
with an enlarged STLB. Specifically, STLB is augmented with 388
additional entries to match the storage budget of Morrigan (includ-
ing the PB) without affecting its access time. Figure 18 shows that
Morrigan outperforms the this scenario by 4.1%.

Prefetching into TLB. Prior STLB prefetchers [38, 53] and patents
[26, 52] use a PB to store the prefetched PTEs. Figure 18 shows that
placing the prefetches of Morrigan directly into the STLB (P2TLB)
provides a 18.9% performance degradation because it causes STLB
pollution when the prefetches are inaccurate. Our results are con-
sistent with prior work [27, 38, 53] stating that prefetching directly
into the STLB causes pollution and performance degradation.
3The IRIP module of Morrigan-mono is enhanced with 8 prediction slots per prediction
table entry to make a fair comparison with the IRIP module of Morrigan since PRT-S8
can store up to 8 predictions per entry.

1148

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Vavouliotis, et al.

QMM server workloads
5
0
5

10
15
20

S
p
e
e
d
u
p
 (

%
)

FNL+MMA Morrigan Morrigan+FNL+MMA

Figure 19: Impact of Morrigan on I-cache prefetching.

Prefetched Address Translation (ASAP) [60]. ASAP is a microar-
chitectural scheme which lowers the latency cost of page walks
by prefetching deeper levels of the radix tree page table, avoiding
serialized memory references on PSC misses. Figure 18 depicts that
Morrigan outperforms ASAP by 4.8% (on average) because the PSCs
experience high hit rates for the QMM workloads, thus limiting the
performance gains of ASAP. We find that, on average, 1.4 memory
references are required per page walk due to PSC misses. The leaf
page table level always triggers a memory reference, hence only
0.4 memory references (on average) are triggered due to the other
3 page table levels. Therefore, the high PSC hit rate of the QMM
workloads hurts the effectiveness of ASAP.

Combining Morrigan with ASAP. STLB prefetching is orthogonal
to techniques that aim at lowering page walk latency. Consequently,
it is natural to combine Morrigan with ASAP. The core idea is
that ASAP lowers the page walk latency, thus it can be further
used to accelerate the prefetch page walks of Morrigan. Figure 18
illustrates that combiningMorrigan with ASAP improves geometric
mean performance by 10.1%, approaching the ideal performance
results (Perfect iSTLB) for most QMM workloads. We observe such
behavior because ASAP improves the timeliness of Morrigan’s
prefetches by accelerating the corresponding prefetch page walks.

6.5 Synergy with I-Cache Prefetching
This section demonstrates that Morrigan is synergistic with I-
cache prefetching. Recall that our baseline includes next-line I-
cache prefetching that does not cross page boundaries (Section 5).
However, modern I-cache prefetchers cross page boundaries, as ex-
plained in Section 3.5. This section studies a state-of-the-art I-cache
prefetcher, FNL+MMA, which crosses page boundaries, because it
provides the highest performance among the IPC1 prefetchers [22]
when instruction address translation is considered (Section 3.5).

Figure 19 shows the performance results of (i) FNL+MMA, (ii)
Morrigan with next-line I-cache prefetcher (Morrigan), as evaluated
in all previous sections, and (iii) Morrigan when combined with
FNL+MMA (Morrigan+FNL+MMA). The baseline corresponds to a
system with a next-line I-cache prefetcher and no STLB prefetching.

Overall, FNL+MMA, Morrigan, and Morrigan+FNL+MMA pro-
vide a geometric speedup of 1.2%, 7.6%, and 10.9%, respectively.
We observe that the performance of Morrigan+FNL+MMA exceeds
the sum of the benefits of the individual prefetchers. The reason
why the total is greater than the sum of its parts is that Morrigan
improves the timeliness of FNL+MMA. Specifically, 51.7% of the
beyond-page-boundary prefetches of FNL+MMA that require a
page walk hit in the PB of Morrigan+FNL+MMA, thus improving
the timelines of the respective instruction prefetches. The main
takeaway is that Morrigan is synergistic with I-cache prefetching.

Mixes of 2 QMM server workloads
5
0
5

10
15
20

S
p
e
e
d
u
p
 (

%
)

FNL+MMA Morrigan Morrigan+FNL+MMA

Figure 20: Performance of Morrigan under SMT colocation.

6.6 Workload Colocation in SMT Cores
This section quantifies the performance of Morrigan under SMT
colocation (Section 5). For this experiment, we double the size
of the prediction tables of the IRIP module since Morrigan has
to separately build Markov chains for two threads in the same
prediction tables. This increases the storage budget of Morrigan
to 7.5KBs. We compare the same set of prefetchers as in Section
6.5: Morrigan, FNL+MMA, and Morrigan+FNL+MMA. The baseline
corresponds to a system with the next-line I-cache prefetcher and
no STLB prefetching. Figure 20 presents the performance results.

The overall trends are consistent with Section 6.5; however, the
absolute performance gains are higher under SMT, since colocat-
ing two QMM workloads increases the pressure on the cache and
the TLB hierarchy, providing higher opportunity for prefetching.
Morrigan and FNL+MMA provide speedups of 8.9% and 3.4%, re-
spectively. Morrigan+FNL+MMA improves performance by 13.7%
because it (i) eliminates the majority of the observed iSTLB misses,
and (ii) improves the timeliness of the FNL+MMA (Section 6.5).

If the size of the prediction tables of the IRIP module is not
doubled in the SMT setup, Morrigan and Morrigan+FNL+MMA
improve performance by 6.4% and 11.1%, on average, respectively.

7 RELATEDWORK

Increasing TLB reach. Prior work increases the effective capacity
of TLBs by coalescing virtually and physically contiguous PTEs into
a single TLB entry [68, 69]. These approaches are (i) limited by coa-
lescing opportunities exposed by the OS since physical contiguity is
not guaranteed, and (ii) susceptible to security issues when applied
for code pages because an adversary could exploit this contiguity
to attack the system. In addition, Bhattacharjee et al. [37] propose a
shared among cores last-level TLB that exploits page table locality
only on demand page walks. Instead, Morrigan improves the perfor-
mance of private-per-core TLBs via microarchitectural prefetching,
exploits page table locality for both demand and prefetch walks,
and does not disrupt the existing virtual memory subsystem.

Speculative address translation. Speculation-based approaches
[33, 49, 70] predict the address translation of a non TLB-resident
page, the processor continues executing instructions speculatively,
and a page walk is initiated in the background to validate whether
the predicted translation is correct. In case of valid speculation, the
verification page walk overlaps useful work, hiding its latency cost.
Speculation-based approaches are affected by the system state since
they rely on explicit virtual and physical contiguity to predict the
missing address translations which is not guaranteed in systems
today. Morrigan exploits only virtual contiguity which comes at
zero cost and is independent of the system state.

1149

Morrigan: A Composite Instruction TLB Prefetcher MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Mitigating TLB miss latency. Improving the performance of the
MMU-Caches [32, 36] is an effective way to reduce the latency
penalty of frequent TLBmisses. POM-TLB [73] is a large die-stacked
L3 TLB that reduces the page walk memory references to just
one reference. DVMT [28] allows the application to define the
appropriate page table format for an address space portion, reducing
the required page walk memory references. Alternatively, hashed
page tables [51, 77, 82] have been proposed to resolve TLB misses
faster than the conventional radix tree page tables. Morrigan is
complimentary to these approaches as it eliminates iSTLB misses
via prefetching PTEs ahead of demand STLB accesses.

TLB management. Typically TLBs employ a variation of the LRU
replacement policy. Mirbagher-Ajorpaz et al. [61] propose a new
predictive replacement policy for the STLB. However, STLB replace-
ment policies aim at keeping in the STLB the most useful PTEs
while STLB prefetchers proactively fetch the PTE(s) that would be
requested by the next memory access(es). Elnawawy et al. [45] iden-
tify heterogeneity in TLB behavior of data-intensive applications,
i.e., a few data pages have high reuse but poor temporal locality
In response, they propose Diligent TLBs, a scheme that pins in
the STLB such delinquent data pages. Although effective for data
pages, our analysis (Section 3.3) indicates that [45] needs to pin
hundreds of instruction pages in the STLB to achieve significant
MPKI reductions for instruction accesses; such extensive pinning
raises the STLB MPKI of data pages.

Software schemes. Compile-time optimization approaches [44,
64] modify hugetlbfs to place only hot functions in huge pages.
Moreover, OS schemes using superpages [43, 59, 83] map small
code regions into superpages via superpage promotion and page
table sharing. Recency-based TLB Preloading [74] builds a recency
stack of PTEs in the page table to derive prefetches based on past
access patterns. There are two major differences between Morrigan
and [74]. First, Morrigan is a microarchitectural prefetcher that does
not imply any page table or software modification while [74] is a
software prefetching scheme that modifies the page table. Secondly,
Morrigan considers access frequency for prefetching while [74]
relies on recency to drive prefetching – a feature that does not
correlate well with iSTLB prefetching (Section 3.4).

Instruction cache prefetching. Numerous I-cache prefetchers have
been proposed in recent literature [22, 72]. Although effective for
capturing the L1 I-cache miss stream, these prefetchers fall short at
prefetching for the iSTLB miss stream because they are tuned for
short prefetch distances and low latencies, as the prefetched blocks
are often found in the L2 or the LLC [47]. In contrast, iSTLB misses
require larger prefetch distances and incur higher latency, caused
by the serialized accesses to the memory hierarchy due to page
walks. Reinman et al. [72] propose FDIP, a prefetching scheme that
speculatively identifies instruction blocks that would potentially
cause an L1 I-cache miss in the future and prefetch them from the
lower level caches. Intuitively, the impact of FDIP on tolerating
iSTLB misses is relatively small since it would just bring instruction
PTEs into the STLB when the prefetched instruction blocks reside
in memory pages different from the page where the initially missed
instruction block resides. Finally, FDIP would pollute the STLB
when the prefetched PTEs are inaccurate.

8 CONCLUSIONS
This paper provides evidence that instruction address translation
is a significant performance bottleneck in server applications. To
mitigate this bottleneck, this paper proposesMorrigan, a composite
instruction TLB prefetcher whose design is based on new reuse and
locality insights of instruction TLB misses. Morrigan consists of
two complimentary prefetch engines; (i) the Irregular Instruction
TLB Prefetcher (IRIP), an ensemble of table-based hardware Markov
prefetchers that build and store variable lengthMarkov chains out of
the instruction TLB miss stream while leveraging a new frequency-
based replacement policy to manage their internal state, and (ii) the
Small Delta Prefetcher (SDP), an enhanced sequential prefetcher
that is engaged only when the IRIP module of Morrigan is unable to
issue prefetch requests. Considering an extensive set of industrial
server workloads, this paper demonstrates that Morrigan provides
large performance enhancements by saving the majority of the
instruction TLB misses while significantly reducing the references
to the memory hierarchy due to page walks.

9 ACKNOWLEDGEMENTS
The authors are profoundly grateful to (i) the anonymous reviewers
for their constructive feedback, and (ii) the anonymous shepherd for
his/her valuable comments that significantly improved the quality
of the paper. This work is partially supported by the Spanish Min-
istry of Science and Technology through the PID2019-107255GB
project, the Generalitat de Catalunya (contract 2017-SGR-1414),
the NSF grant CCF-1912617, the Semiconductor Research Corpo-
ration grant 2936.001, and generous gifts from Intel Labs. Geor-
gios Vavouliotis has been supported by the Spanish Ministry of
Economy, Industry and Competitiveness and the European Social
Fund under the FPI fellowship No. PRE2018-087046. Marc Casas
has been supported by the Spanish Ministry of Economy, Indus-
try and Competitiveness under the Ramon y Cajal fellowship No.
RYC-2017-23269.

A ARTIFACT APPENDIX
A.1 Abstract
Our artifact provides (i) the implementation of Morrigan, (ii) the
simulation infrastructure, (iii) the set of workloads, (iv) scripts for
launching simulations, and (v) python scripts to reproduce the most
important evaluation figures.

A.2 Artifact check-list (meta-information)
• Program: Memory traces of server applications provided
by Qualcomm for CVP-1 [14] and IPC-1 [22].

• Compilation: gcc.
• Metrics: Performance improvement.
• Output: We provide scripts that generate the most impor-
tant evaluation figures (Figures 15 and 18).

• Experiments: We provide scripts that submit the required
jobs. The only requirement is a SLURM manager.

• Howmuchdisk space required (approximately)?: 3.1GB.
• How much time is needed to prepare workflow (ap-
proximately)?: 20 minutes.

1150

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Vavouliotis, et al.

• How much time is needed to complete experiments
(approximately)?: 1-3 hours, depending on the machine.

• Workflow frameworkused?: SLURM for jobmanagement.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
5496052

A.3 Description
A.3.1 How to access. Our artifact is available at https://doi.org/10.
5281/zenodo.5496052.

A.3.2 Hardware dependencies. Any hardware capable of compiling
ChampSim [15].

A.3.3 Software dependencies. SLURM manager for job manage-
ment and python pandas to generate the evaluation figures.

A.3.4 Data sets. We use memory traces provided by Qualcomm
for CVP-1 [14] and IPC-1 [22].

A.4 Installation
Download the artifact from https://doi.org/10.5281/zenodo.5496052.
Then, extract it by executing the following command.

tar xvzf paper-47-AE.zip

A.5 Experiment workflow
To reproduce the most important evaluation results, take the fol-
lowing steps.

• cd paper-47-AE/ChampSim-SC
• set the paths in run_champsim.sh (line 2)
• set the paths in generate_binary.sh (lines 2, 4, 8)
• compile the binaries by executing bash micro_ae.sh
• cd /path-to/paper-47-AE
• set the paths in submit.sh (lines 52, 55)
• execute bash launch.sh (it submits the jobs in batches;
around 30 minutes to submit all jobs)

To check the status of the jobs, use the following command.
watch squeue -<user-name>

It takes 1-3 hours to finish all jobs, depending on the machine
and the number of jobs that can be launched in parallel.

A.6 Evaluation and expected results
When all jobs are finished, generate the evaluation figures by exe-
cuting the following commands.

cd /path-to/paper-47-AE/ChampSim-SC

bash generate_figures.sh

After executing these commands, there will be two figures un-
der /path-to/paper-47-AE/ChampSim-SC/Figures with names
speedup_sota.pdf and plot_other_techniques.pdf.

The collected figures for each separate study should match the
expected figures in the directory /path-to/paper-47-AE/ChampSim-
SC/Figures. Practically, figure speedup_sota.pdf should match fig-
ure speedup_sota_EXPECTED.pdf and figure plot_other_techniques.
pdf should match figure plot_other_techniques_EXPECTED.pdf.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] 1996. Before Memory Was Virtual. http://denninginstitute.com/pjd/PUBS/bvm.

pdf.
[2] 2006. SPEC CPU 2006. https://www.spec.org/cpu2006/.
[3] 2008. The Locality Principle. https://denninginstitute.com/pjd/PUBS/ENC/

locality08.pdf.
[4] 2010. Huge Pages and libhugetlbfs. https://lwn.net/Articles/374424/.
[5] 2012. Sandy Bridge - Microarchitectures. https://en.wikichip.org/wiki/intel/

microarchitectures/sandy_bridge_(client).
[6] 2013. Haswell - Microarchitectures - Intel. https://en.wikichip.org/wiki/intel/

microarchitectures/haswell_(client).
[7] 2014. Using Intel VTune Amplifier XE to tune software on the 6th generation

Intel Core processor family. https://software.intel.com/content/dam/develop/
external/us/en/documents/using-intel-vtune-amplifier-xe-on-6th-generation-
intel-core-processors-1-0.pdf.

[8] 2015-2021. ARMv8 Architecture Reference Manual. ARM. https://developer.arm.
com/documentation/ddi0553/bp.

[9] 2017. Coffee Lake - Microarchitectures. https://en.wikichip.org/wiki/intel/
microarchitectures/coffee_lake.

[10] 2017. SPEC CPU 2017. https://www.spec.org/cpu2017/.
[11] 2017. The RISC-V Instruction Set Manual. https://content.riscv.org/wp-content/

uploads/2017/05/riscv-privileged-v1.10.pdf.
[12] 2018. Intel. 5-Level Paging and 5-Level EPT. https://software.intel.com/

content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-
paper.html.

[13] 2020. A Principled Technologies report: Hands-on testing. Real-world re-
sults. https://www.principledtechnologies.com/Intel/Xeon-8272CL-Microsoft-
Azure-WordPress-science-0920.pdf.

[14] 2020. Championship Value Prediction (CVP). https://www.microarch.org/cvp1/.
[15] 2020. ChampSim. https://crc2.ece.tamu.edu/. [Online].
[16] 2020. iTLB multihit. https://www.kernel.org/doc/html/latest/admin-guide/hw-

vuln/multihit.html.
[17] 2020. perf: Linux profiling with performance counters. https://perf.wiki.kernel.

org.
[18] 2020. perl-Net-Amazon. https://ppisar.fedorapeople.org/perl_rebuild/scratch/

latest/packages/perl-Net-Amazon/hw_info.log.
[19] 2020. perl-Net-Amazon-EC2. https://ppisar.fedorapeople.org/perl_rebuild/

scratch/latest/packages/perl-Net-Amazon-EC2/hw_info.log.
[20] 2020. perl-Net-Amazon-S3. https://ppisar.fedorapeople.org/perl_rebuild/scratch/

latest/packages/perl-Net-Amazon-S3/hw_info.log.
[21] 2020. Public clouds and vulnerable CPUs: are we secure? https:

//archive.fosdem.org/2020/schedule/event/vai_pubic_clouds_and_vulnerable_
cpus/attachments/slides/3650/export/events/attachments/vai_pubic_clouds_
and_vulnerable_cpus/slides/3650/FOSDEM2020_vkuznets.pdf.

[22] 2020. The 1st Instruction Prefetching Championship. https://research.ece.ncsu.
edu/ipc/.

[23] 2021. AMD64 Architecture Programmer Manual(Volume 2). https://www.amd.
com/system/files/TechDocs/24593.pdf.

[24] 2021. Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory
allocator. https://www.usenix.org/system/files/osdi21-hunter.pdf.

[25] 2021. Intel® 64 and IA-32 Architectures Software Developer Manuals. https:
//software.intel.com/en-us/articles/intel-sdm.

[26] Abishek Bhattacharjee. 2010. Inter-core cooperative TLB prefetchers. https:
//patents.google.com/patent/US8880844B1/en.

[27] Abishek Bhattacharjee. 2018. Advanced Concepts on Address Translation, Ap-
pendix L in "Computer Architecture: A Quantitative Approach" by Hennessy and
Patterson. http://www.cs.yale.edu/homes/abhishek/abhishek-appendix-l.pdf.

[28] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. 2017. Do-It-Yourself
Virtual Memory Translation. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA,
457–468. https://doi.org/10.1145/3079856.3080209

[29] Jean Araujo, Rubens Matos, Paulo Maciel, Rivalino Matias, and Ibrahim Beicker.
2011. Experimental Evaluation of Software Aging Effects on the Eucalyptus
Cloud Computing Infrastructure. In Proceedings of the Middleware 2011 Industry
Track Workshop (Middleware ’11). Association for Computing Machinery, New
York, NY, USA, Article 4, 7 pages. https://doi.org/10.1145/2090181.2090185

1151

https://doi.org/10.5281/zenodo.5496052
https://doi.org/10.5281/zenodo.5496052
https://doi.org/10.5281/zenodo.5496052
https://doi.org/10.5281/zenodo.5496052
https://doi.org/10.5281/zenodo.5496052
/path-to/paper-47-AE/ChampSim-SC/Figures
/path-to/paper-47-AE/ChampSim-SC/Figures
speedup_sota_EXPECTED.pdf
plot_other_techniques.pdf
plot_other_techniques.pdf
plot_other_techniques_EXPECTED.pdf
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
http://denninginstitute.com/pjd/PUBS/bvm.pdf
http://denninginstitute.com/pjd/PUBS/bvm.pdf
https://www.spec.org/cpu2006/
https://denninginstitute.com/pjd/PUBS/ENC/locality08.pdf
https://denninginstitute.com/pjd/PUBS/ENC/locality08.pdf
https://lwn.net/Articles/374424/
https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/sandy_bridge_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/haswell_(client)
https://software.intel.com/content/dam/develop/external/us/en/documents/using-intel-vtune-amplifier-xe-on-6th-generation-intel-core-processors-1-0.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/using-intel-vtune-amplifier-xe-on-6th-generation-intel-core-processors-1-0.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/using-intel-vtune-amplifier-xe-on-6th-generation-intel-core-processors-1-0.pdf
https://developer.arm.com/documentation/ddi0553/bp
https://developer.arm.com/documentation/ddi0553/bp
https://en.wikichip.org/wiki/intel/microarchitectures/coffee_lake
https://en.wikichip.org/wiki/intel/microarchitectures/coffee_lake
https://www.spec.org/cpu2017/
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://software.intel.com/content/www/us/en/develop/download/5-level-paging-and-5-level-ept-white-paper.html
https://www.principledtechnologies.com/Intel/Xeon-8272CL-Microsoft-Azure-WordPress-science-0920.pdf
https://www.principledtechnologies.com/Intel/Xeon-8272CL-Microsoft-Azure-WordPress-science-0920.pdf
https://www.microarch.org/cvp1/
https://crc2.ece.tamu.edu/
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/multihit.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/multihit.html
https://perf.wiki.kernel.org
https://perf.wiki.kernel.org
https://ppisar.fedorapeople.org/perl_rebuild/scratch/latest/packages/perl-Net-Amazon/hw_info.log
https://ppisar.fedorapeople.org/perl_rebuild/scratch/latest/packages/perl-Net-Amazon/hw_info.log
https://ppisar.fedorapeople.org/perl_rebuild/scratch/latest/packages/perl-Net-Amazon-EC2/hw_info.log
https://ppisar.fedorapeople.org/perl_rebuild/scratch/latest/packages/perl-Net-Amazon-EC2/hw_info.log
https://ppisar.fedorapeople.org/perl_rebuild/scratch/latest/packages/perl-Net-Amazon-S3/hw_info.log
https://ppisar.fedorapeople.org/perl_rebuild/scratch/latest/packages/perl-Net-Amazon-S3/hw_info.log
https://archive.fosdem.org/2020/schedule/event/vai_pubic_clouds_and_vulnerable_cpus/attachments/slides/3650/export/events/attachments/vai_pubic_clouds_and_vulnerable_cpus/slides/3650/FOSDEM2020_vkuznets.pdf
https://archive.fosdem.org/2020/schedule/event/vai_pubic_clouds_and_vulnerable_cpus/attachments/slides/3650/export/events/attachments/vai_pubic_clouds_and_vulnerable_cpus/slides/3650/FOSDEM2020_vkuznets.pdf
https://archive.fosdem.org/2020/schedule/event/vai_pubic_clouds_and_vulnerable_cpus/attachments/slides/3650/export/events/attachments/vai_pubic_clouds_and_vulnerable_cpus/slides/3650/FOSDEM2020_vkuznets.pdf
https://archive.fosdem.org/2020/schedule/event/vai_pubic_clouds_and_vulnerable_cpus/attachments/slides/3650/export/events/attachments/vai_pubic_clouds_and_vulnerable_cpus/slides/3650/FOSDEM2020_vkuznets.pdf
https://research.ece.ncsu.edu/ipc/
https://research.ece.ncsu.edu/ipc/
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.usenix.org/system/files/osdi21-hunter.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://patents.google.com/patent/US8880844B1/en
https://patents.google.com/patent/US8880844B1/en
http://www.cs.yale.edu/homes/abhishek/abhishek-appendix-l.pdf
https://doi.org/10.1145/3079856.3080209
https://doi.org/10.1145/2090181.2090185

Morrigan: A Composite Instruction TLB Prefetcher MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[30] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan. 2018. Memory Hierarchy
for Web Search. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 643–656. https://doi.org/10.1109/HPCA.2018.
00061

[31] Jean-Loup Baer and Tien-Fu Chen. 1995. Effective Hardware-Based Data Prefetch-
ing for High-Performance Processors. IEEE Trans. Comput. 44, 5 (May 1995),
609–623. https://doi.org/10.1109/12.381947

[32] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2010. Translation Caching: Skip,
Don’T Walk (the Page Table). In Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA ’10). ACM, New York, NY, USA, 48–59.
https://doi.org/10.1145/1815961.1815970

[33] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2011. SpecTLB: A Mechanism for
Speculative Address Translation. In Proceedings of the 38th Annual International
Symposium on Computer Architecture (ISCA ’11). ACM, New York, NY, USA,
307–318. https://doi.org/10.1145/2000064.2000101

[34] M. Bazm, M. Lacoste, M. Sudholt, and J. Menaud. 2017. Side-channels beyond
the cloud edge: New isolation threats and solutions. In 2017 1st Cyber Security in
Networking Conference (CSNet). 1–8. https://doi.org/10.1109/CSNET.2017.8241986

[35] Mohammad-Mahdi Bazm, Marc Lacoste, Mario Sudholt, and Jean-Marc Menaud.
2017. Side Channels in the Cloud: Isolation Challenges, Attacks, and Counter-
measures. (March 2017). https://hal.inria.fr/hal-01591808 working paper or
preprint.

[36] Abhishek Bhattacharjee. 2013. Large-reach Memory Management Unit Caches.
In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO-46). ACM, New York, NY, USA, 383–394. https://doi.org/10.
1145/2540708.2540741

[37] Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. 2011. Shared
Last-level TLBs for Chip Multiprocessors. In Proceedings of the 2011 IEEE 17th
International Symposium on High Performance Computer Architecture (HPCA ’11).
IEEE Computer Society, Washington, DC, USA, 62–63. http://dl.acm.org/citation.
cfm?id=2014698.2014896

[38] Abhishek Bhattacharjee and Margaret Martonosi. 2010. Inter-core Cooperative
TLB for Chip Multiprocessors. In Proceedings of the Fifteenth Edition of ASPLOS
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS XV). ACM, New York, NY, USA, 359–370. https://doi.org/10.1145/
1736020.1736060

[39] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ’06). Association for Computing Machinery, New York,
NY, USA, 169–190. https://doi.org/10.1145/1167473.1167488

[40] Douglas W. Clark and Joel S. Emer. 1985. Performance of the VAX-11/780 Trans-
lation Buffer: Simulation and Measurement. ACM Trans. Comput. Syst. 3, 1 (Feb.
1985), 31–62. https://doi.org/10.1145/214451.214455

[41] Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient Address Translation
for Architectures with Multiple Page Sizes. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’17). ACM, New York, NY, USA, 435–448. https:
//doi.org/10.1145/3037697.3037704

[42] Peter J. Denning. 1970. Virtual Memory. ACM Comput. Surv. 2, 3 (Sept. 1970),
153–189. https://doi.org/10.1145/356571.356573

[43] Xiaowan Dong, Sandhya Dwarkadas, and Alan L. Cox. 2016. Shared Address
Translation Revisited. In Proceedings of the Eleventh European Conference on
Computer Systems (EuroSys ’16). Association for ComputingMachinery, New York,
NY, USA, Article Article 18, 15 pages. https://doi.org/10.1145/2901318.2901327

[44] Kshitij Doshi and Jantz Tran. 2006. Using Hugetlbfs for Mapping Application
Text Regions. (01 2006).

[45] Hussein Elnawawy, Rangeen Basu Roy Chowdhury, Amro Awad, and Gregory T.
Byrd. 2019. Diligent TLBs: A Mechanism for Exploiting Heterogeneity in TLB
Miss Behavior. In Proceedings of the ACM International Conference on Supercom-
puting (ICS ’19). Association for Computing Machinery, New York, NY, USA,
195–205. https://doi.org/10.1145/3330345.3330363

[46] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking Branch Predictors to Bypass ASLR. In The 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-49). IEEE Press,
Article 40, 13 pages.

[47] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of Emerging
Scale-out Workloads on Modern Hardware. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XVII). ACM, New York, NY, USA, 37–48. https:
//doi.org/10.1145/2150976.2150982

[48] Fabien Gaud, Baptiste Lepers, Jeremie Decouchant, Justin Funston, Alexandra
Fedorova, and Vivien Quéma. 2014. Large Pages May Be Harmful on NUMA Sys-
tems. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference (USENIX ATC’14). USENIX Association, USA, 231–242.

[49] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2018. Devirtualizing
Memory in Heterogeneous Systems. In Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 637–650. https:
//doi.org/10.1145/3173162.3173194

[50] Jingyuan Hu, Xiaokuang Bai, Sai Sha, Yingwei Luo, Xiaolin Wang, and Zhenlin
Wang. 2018. HUB: Hugepage Ballooning in Kernel-Based Virtual Machines.
In Proceedings of the International Symposium on Memory Systems (MEMSYS
’18). Association for Computing Machinery, New York, NY, USA, 31–37. https:
//doi.org/10.1145/3240302.3240420

[51] Jerry Huck and Jim Hays. 1993. Architectural Support for Translation Table
Management in Large Address Space Machines. In Proceedings of the 20th Annual
International Symposium on Computer Architecture (ISCA ’93). ACM, New York,
NY, USA, 39–50. https://doi.org/10.1145/165123.165128

[52] James Wang. 2009. TLB Prefetching. https://patents.google.com/patent/
US20110010521.

[53] Gokul B. Kandiraju and Anand Sivasubramaniam. 2002. Going the Distance for
TLB Prefetching: An Application-driven Study. In Proceedings of the 29th Annual
International Symposium on Computer Architecture (ISCA ’02). IEEE Computer
Society, Washington, DC, USA, 195–206. http://dl.acm.org/citation.cfm?id=
545215.545237

[54] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a Warehouse-
scale Computer. In Proceedings of the 42Nd Annual International Symposium on
Computer Architecture (ISCA ’15). ACM, New York, NY, USA, 158–169. https:
//doi.org/10.1145/2749469.2750392

[55] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,
Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Ünsal.
2015. Redundant Memory Mappings for Fast Access to Large Memories. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture
(ISCA ’15). ACM, New York, NY, USA, 66–78. https://doi.org/10.1145/2749469.
2749471

[56] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley, M. Nemirovsky,
M. M. Swift, and O. S. Unsal. 2016. Energy-efficient address translation. In 2016
IEEE International Symposium on High Performance Computer Architecture (HPCA).
631–643. https://doi.org/10.1109/HPCA.2016.7446100

[57] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C.Wilkerson, and Z. Chishti. 2016.
Path confidence based lookahead prefetching. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1–12. https://doi.org/10.
1109/MICRO.2016.7783763

[58] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting Through the Front-
End Bottleneck with Shotgun. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’18). ACM, New York, NY, USA, 30–42. https://doi.org/10.1145/
3173162.3173178

[59] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach, and Emmett
Witchel. 2016. Coordinated and Efficient Huge Page Management with Ingens.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI ’16). USENIX Association, USA, 705–721.

[60] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris Grot. 2019.
Prefetched Address Translation. In Proceedings of the 52Nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’52). ACM, New York, NY,
USA, 1023–1036. https://doi.org/10.1145/3352460.3358294

[61] S. Mirbagher-Ajorpaz, E. Garza, G. Pokam, and D. A. Jiménez. 2020. CHiRP:
Control-Flow History Reuse Prediction. In 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). 131–145. https://doi.org/10.
1109/MICRO50266.2020.00023

[62] N. P. Nagendra, G. Ayers, D. I. August, H. K. Cho, S. Kanev, C. Kozyrakis, T. Krish-
namurthy, H. Litz, T. Moseley, and P. Ranganathan. 2020. AsmDB: Understanding
and Mitigating Front-End Stalls in Warehouse-Scale Computers. IEEE Micro 40,
3 (2020), 56–63.

[63] David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest, Trevor Mudge, and
Richard Brown. 1993. Design Tradeoffs for Software-Managed TLBs. In Pro-
ceedings of the 20th Annual International Symposium on Computer Architecture
(ISCA ’93). Association for Computing Machinery, New York, NY, USA, 27–38.
https://doi.org/10.1145/165123.165127

[64] G. Ottoni and B. Maher. 2017. Optimizing function placement for large-scale
data-center applications. In 2017 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO). 233–244. https://doi.org/10.1109/CGO.2017.
7863743

[65] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. BOLT:
A Practical Binary Optimizer for Data Centers and Beyond. In Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO 2019). IEEE Press, 2–14.

1152

https://doi.org/10.1109/HPCA.2018.00061
https://doi.org/10.1109/HPCA.2018.00061
https://doi.org/10.1109/12.381947
https://doi.org/10.1145/1815961.1815970
https://doi.org/10.1145/2000064.2000101
https://doi.org/10.1109/CSNET.2017.8241986
https://hal.inria.fr/hal-01591808
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1145/2540708.2540741
http://dl.acm.org/citation.cfm?id=2014698.2014896
http://dl.acm.org/citation.cfm?id=2014698.2014896
https://doi.org/10.1145/1736020.1736060
https://doi.org/10.1145/1736020.1736060
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/214451.214455
https://doi.org/10.1145/3037697.3037704
https://doi.org/10.1145/3037697.3037704
https://doi.org/10.1145/356571.356573
https://doi.org/10.1145/2901318.2901327
https://doi.org/10.1145/3330345.3330363
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1145/3173162.3173194
https://doi.org/10.1145/3173162.3173194
https://doi.org/10.1145/3240302.3240420
https://doi.org/10.1145/3240302.3240420
https://doi.org/10.1145/165123.165128
https://patents.google.com/patent/US20110010521
https://patents.google.com/patent/US20110010521
http://dl.acm.org/citation.cfm?id=545215.545237
http://dl.acm.org/citation.cfm?id=545215.545237
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1145/2749469.2749471
https://doi.org/10.1109/HPCA.2016.7446100
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.1145/3173162.3173178
https://doi.org/10.1145/3173162.3173178
https://doi.org/10.1145/3352460.3358294
https://doi.org/10.1109/MICRO50266.2020.00023
https://doi.org/10.1109/MICRO50266.2020.00023
https://doi.org/10.1145/165123.165127
https://doi.org/10.1109/CGO.2017.7863743
https://doi.org/10.1109/CGO.2017.7863743

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Vavouliotis, et al.

[66] Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. ISCA 2017.
Hybrid TLB Coalescing: Improving TLB Translation Coverage Under Diverse
Fragmented Memory Allocations. 13. https://doi.org/10.1145/3079856.3080217

[67] David A. Patterson and John L. Hennessy. 1990. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[68] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh. 2014. Increasing TLB reach
by exploiting clustering in page translations. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA). 558–567. https:
//doi.org/10.1109/HPCA.2014.6835964

[69] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattachar-
jee. 2012. CoLT: Coalesced Large-Reach TLBs. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-45).
IEEE Computer Society, Washington, DC, USA, 258–269. https://doi.org/10.
1109/MICRO.2012.32

[70] Binh Pham, Ján Veselý, Gabriel H. Loh, and Abhishek Bhattacharjee. 2015. Large
Pages and Lightweight Memory Management in Virtualized Environments: Can
You Have It Both Ways?. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO-48). ACM, New York, NY, USA, 1–12. https://doi.org/
10.1145/2830772.2830773

[71] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr
Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon,
Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking Suite
for Parallel Applications on the JVM. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2019).
Association for Computing Machinery, New York, NY, USA, 31–47. https://doi.
org/10.1145/3314221.3314637

[72] G. Reinman, B. Calder, and T. Austin. 1999. Fetch directed instruction prefetching.
In MICRO-32. Proceedings of the 32nd Annual ACM/IEEE International Symposium
on Microarchitecture. 16–27. https://doi.org/10.1109/MICRO.1999.809439

[73] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K. John. 2017. Rethinking
TLB Designs in Virtualized Environments: A Very Large Part-of-Memory TLB. In
Proceedings of the 44th Annual International Symposium on Computer Architecture
(ISCA ’17). ACM, New York, NY, USA, 469–480. https://doi.org/10.1145/3079856.
3080210

[74] Ashley Saulsbury, Fredrik Dahlgren, and Per Stenström. 2000. Recency-based
TLB Preloading. In Proceedings of the 27th Annual International Symposium on
Computer Architecture (ISCA ’00). ACM, New York, NY, USA, 117–127. https:
//doi.org/10.1145/339647.339666

[75] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the Effectiveness of Address-Space Randomization.

In Proceedings of the 11th ACM Conference on Computer and Communications
Security (CCS ’04). Association for Computing Machinery, New York, NY, USA,
298–307. https://doi.org/10.1145/1030083.1030124

[76] Seunghee Shin, Michael LeBeane, Yan Solihin, and Arkaprava Basu. 2018.
Neighborhood-Aware Address Translation for Irregular GPU Applications. In Pro-
ceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO-51). IEEE Press, 352–363. https://doi.org/10.1109/MICRO.2018.00036

[77] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas. 2020.
Elastic Cuckoo Page Tables: Rethinking Virtual Memory Translation for Par-
allelism. In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
’20). Association for Computing Machinery, New York, NY, USA, 1093–1108.
https://doi.org/10.1145/3373376.3378493

[78] Steven P. Vanderwiel and David J. Lilja. 2000. Data Prefetch Mechanisms. ACM
Comput. Surv. 32, 2 (June 2000), 174–199. https://doi.org/10.1145/358923.358939

[79] Georgios Vavouliotis, Lluc Alvarez, Vasileios Karakostas, Konstantinos Nikas,
Nectarios Koziris, Daniel A. Jiménez, andMarc Casas. 2021. Exploiting Page Table
Locality for Agile TLB Prefetching. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 85–98. https://doi.org/10.1109/
ISCA52012.2021.00016

[80] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-Scale Cluster Management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems
(EuroSys ’15). Association for Computing Machinery, New York, NY, USA, Article
18, 17 pages. https://doi.org/10.1145/2741948.2741964

[81] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Trans-
lation Ranger: Operating System Support for Contiguity-Aware TLBs. In Pro-
ceedings of the 46th International Symposium on Computer Architecture (ISCA
’19). Association for Computing Machinery, New York, NY, USA, 698–710.
https://doi.org/10.1145/3307650.3322223

[82] Idan Yaniv and Dan Tsafrir. 2016. Hash, Don’T Cache (the Page Table). In Pro-
ceedings of the 2016 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Science (SIGMETRICS ’16). ACM, New York, NY, USA,
337–350. https://doi.org/10.1145/2896377.2901456

[83] Y. Zhou, X. Dong, A. L. Cox, and S. Dwarkadas. 2019. On the Impact of
Instruction Address Translation Overhead. In 2019 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS). 106–116.
https://doi.org/10.1109/ISPASS.2019.00018

1153

https://doi.org/10.1145/3079856.3080217
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/HPCA.2014.6835964
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1109/MICRO.2012.32
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/2830772.2830773
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1109/MICRO.1999.809439
https://doi.org/10.1145/3079856.3080210
https://doi.org/10.1145/3079856.3080210
https://doi.org/10.1145/339647.339666
https://doi.org/10.1145/339647.339666
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1109/MICRO.2018.00036
https://doi.org/10.1145/3373376.3378493
https://doi.org/10.1145/358923.358939
https://doi.org/10.1109/ISCA52012.2021.00016
https://doi.org/10.1109/ISCA52012.2021.00016
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/2896377.2901456
https://doi.org/10.1109/ISPASS.2019.00018

	Abstract
	1 Introduction
	2 Virtual Memory Subsystem
	2.1 Translation Prefetching

	3 Motivation
	3.1 Front-end Bottleneck
	3.2 Analyzing Industrial Server Workloads
	3.3 Understanding the iSTLB Misses
	3.4 Can Existing dSTLB Prefetchers Help?
	3.5 Instruction Cache Prefetching

	4 Morrigan
	4.1 Design
	4.2 Operation of Morrigan
	4.3 Additional Aspects

	5 Methodology
	6 Evaluation
	6.1 IRIP Module
	6.2 ISO-Comparison with dSTLB Prefetchers
	6.3 Comparing Different IRIP Designs
	6.4 Comparison with Other Approaches
	6.5 Synergy with I-Cache Prefetching
	6.6 Workload Colocation in SMT Cores

	7 Related Work
	8 Conclusions
	9 acknowledgements
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Methodology

	References

