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Abstract—The disparity between last-level cache and memory
latencies motivates the search for efficient cache management
policies. Recent work in predicting reuse of cache blocks enables
optimizations that significantly improve cache performance and
efficiency. However, the accuracy of the prediction mechanisms
limits the scope of optimization. This paper proposes perceptron
learning for reuse prediction. The proposed predictor greatly
improves accuracy over previous work. For multi- programmed
workloads, the average false positive rate of the proposed
predictor is 3.2%, while sampling dead block prediction (SDBP)
and signature-based hit prediction (SHiP) yield false positive
rates above 7%. The improvement in accuracy translates directly
into performance. For single-thread workloads and a 4MB last-
level cache, reuse prediction with perceptron learning enables
a replacement and bypass optimization to achieve a geometric
mean speedup of 6.1%, compared with 3.8% for SHiP and
3.5% for SDBP on the SPEC CPU 2006 benchmarks. On a
memory-intensive subset of SPEC, perceptron learning yields
18.3% speedup, versus 10.5% for SHiP and 7.7% for SDBP. For
multi- programmed workloads and a 16MB cache, the proposed
technique doubles the efficiency of the cache over LRU and
yields a geometric mean normalized weighted speedup of 7.4%,
compared with 4.4% for SHiP and 4.2% for SDBP.

I. INTRODUCTION

The last-level cache (LLC) mitigates the large disparity

in latency and bandwidth between CPU and DRAM. An

efficient cache keeps as many useful blocks as possible. Reuse

predictors detect whether a given block is likely to be accessed

again before it is evicted, allowing optimizations such as im-

proved placement, replacement, and bypass. Reuse predictors

use features such as data and instruction addresses to find

correlations between past behavior and future accesses, but

extracting accuracy from these features has been problematic

in the LLC. We propose using perceptron learning to combine

features in a way that overcomes this difficulty, resulting in

better accuracy. The predictor yields significant performance

improvements when used to drive a replacement and bypass

optimization.

A. Better Accuracy with Perceptron Learning

Figure 1 shows violin plots for the accuracy of three reuse

predictors: sampling dead block prediction (SDBP) [1],

signature-based hit prediction (SHiP) [2], and our proposed

perceptron-based reuse predictor over multi-programmed

workloads. The coverage rate (shaded darker) is the per-

centage of all predictions for which a block is predicted

not to be reused. The false positive rate (shaded lighter)

is the percentage of all predictions for which a block was

incorrectly predicted as not reused. The plots show the mean
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Fig. 1. Violin plots for false positive (darker) and coverage (lighter) rates.
Perceptron learning is significantly more robust, with higher coverage, fewer
false positives, and less variance in accuracy across workloads.

as a bar in the center of the plot along with the probability

density of the data. The coverage for perceptron-based reuse

prediction is higher than that for SDBP and SHiP (52.4%

versus 47.2% and 43.2%, respectively) while the false positive

rate is lower (3.2% versus 7.4% and 7.7%, respectively).

Coverage represents the opportunity for optimization given

by the predictor, while false positives represent the potential

cache misses caused when an incorrect prediction leads to a

live block being replaced. Thus, perceptron learning leads to

increased opportunity for optimization while reducing false

positives by a factor of 2. For more on the violin plots, see

Section V-B1.

B. Perceptron Learning

This paper describes an algorithm that uses perceptron

learning for reuse prediction. Perceptrons are a simple model

of neurons in neural networks [3], [4] modeled by vectors of

signed weights learned through online training. The output of

a perceptron is the dot product of the weights and a vector of

inputs. In this work, we do not actually use perceptrons, but

we make use of the perceptron learning algorithm. There are

two components to the abstract perceptron learning algorithm:

1) To predict true or false, a vector of signed weights is

chosen according to some criteria. The dot product of978-1-5090-3508-3/16/$31.00 c© 2016 IEEE



the weights and input vectors, called yout, is computed.

If yout exceeds some threshold, the prediction is true,

otherwise it is false.

2) To update the weights after the true outcome of the

predicted event is known, we first consider the value

of yout. If the prediction was correct and |yout| exceeds

a threshold θ, then the weights remain unchanged. Oth-

erwise, the inputs are used to update the corresponding

weights. If there is positive correlation between the input

and the outcome of the event, the corresponding weight

is incremented; otherwise, it is decremented. Over time,

the weights are proportional to the probability that the

outcome of the event is true in the context of the input

and the criterion for choosing that weight. The weights

saturate at maximum and minimum values so they will

fit in a fixed bit width.

In the original paper describing branch prediction with

perceptrons, the input vector was the global history of branch

outcomes [5]. In this work, as in some subsequent branch

prediction work [6], [7], the weights in the vectors are chosen

by indexing independent tables using indices computed as

hashes of features such as branch pattern and path history.

Such hashed perceptron predictors do not use a vector of

binary weights. Rather, instead of a dot product, they simply

compute a sum which can be thought of as a dot product of the

weights vector with ~1. In this work, we use features relevant to

cache management such as the address of memory instructions

and bits from the block address, tag, or page number. Thus,

although the technique does not use classical perceptrons, it

uses perceptron learning to adjust the weights.

C. Contributions

This paper makes the following contributions:

1) It shows that perceptron learning can be used to ef-

fectively combine multiple inputs features to greatly

improve the accuracy of reuse prediction.

2) It applies perceptron-learning-based reuse prediction to

a replacement and bypass optimization, outperforming

the state-of-the-art policies for both single and multi-

programmed workloads. For 1000 multi- programmed

workloads, perceptron learning gives a geometric mean

normalized weighted speedup of 8.3%. For single-

threaded workloads, perceptron learning gives a geomet-

ric mean speedup of 6.2% over LRU, with a speedup of

18.3% on a memory-intensive subset of the benchmarks.

3) It shows that cache management based on perceptron

learning more than doubles cache efficiency over the

LRU policy.

4) It evaluates the proposed technique as well as previous

work in the presence of a stream prefetcher. Previous

work had been evaluated without considering prefetch-

ing.

II. BACKGROUND AND RELATED WORK

This section reviews the most relevant recent work in reuse

prediction and microarchitectural perceptron learning. Other

work is described and cited later in the paper as appropriate;

see in particular Section III-A. To our knowledge, the term

“reuse predictor” as applied to predicting near-term reuse of

cache blocks originates in recent work by Pekhimenko et

al. [8]. We prefer this term to “dead block predictor” or “hit

predictor” [2] because it unifies the two ideas and emphasizes

the insight of the predictors.

a) Reuse Distance Prediction: Previous work predicts

the distance to the next reuse, rather than simply whether the

block will be reused or not. Re-reference Interval Prediction

(RRIP) [9] is an efficient implementation of reuse-distance

prediction [10]. RRIP categorizes blocks as near-immediate

re-reference interval, intermediate re-reference intervals, and

distant re-reference interval [9]. Static RRIP (SRRIP) always

places into the same position while Dynamic RRIP (DRRIP)

uses set-dueling [11] to adapt the placement position to the

particular workload. RRIP is a simple policy, requiring little

overhead and no complex prediction structures, while resulting

in significant improvement in performance.

b) Dead Block Prediction: Dead block predictors predict

whether a block will be used again before it is evicted. There

are numerous dead block predictors applied to a variety of

applications in the literature [12], [13], [14], [15], [16], [17],

[18], [1]. We extend Sampling Dead Block Prediction (SDBP)

of Khan et al. [1]. In this work, a sampler structure keeps

partial tags of sampled sets separate from the cache. Three

tables of two-bit saturating counters are accessed using a

technique similar to a skewed branch predictor [19]. For each

hit to a block in the sampled set, the program counter (PC)

of the relevant memory instruction is hashed into the three

tables and the corresponding counters are decremented. For

each eviction from a sampled set, the counters corresponding

to the PC of the last instruction to access the victim block are

incremented. For an LLC access, the predictor is consulted by

hashing the PC of the memory access instruction into the three

tables and taking the sum of the indexed counters. When the

sum exceeds some threshold, the accessed block is predicted

to be dead. Tags in sampled sets are managed with true LRU

and a reduced associativity, but the LLC may be managed by

any policy. The paper applies its predictor to replacement and

bypass.

c) Signature-Based Hit Prediction: Wu et al. [2] propose

a signature-based hit predictor (SHiP) that predicts the like-

lihood that a block will be hit again. This technique uses a

table of 3-bit saturating counters indexed by a signature of

the block, e.g., the memory instruction PC that caused the

initial fill of the block. When a block with a given signature

is hit, the counter associated with that signature is incremented.

When a block with a given signature is evicted without having

been reused, the counter is decremented. The hit predictor is

used to determine insertion position for RRIP [9]. When the

counter corresponding to the signature of an incoming block

exceeds some threshold, the block is predicted to have an

“intermediate re-reference interval,” otherwise it is predicted

to have a “distant re-reference interval.” This work proposes a

sampling-based predictor using a small subset of cache sets to
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Fig. 2. (a) Previous PC-based Reuse Predictors and (b) Perceptron-based Reuse Predictor

keep metadata such as signatures, and the predictor generalizes

to the whole cache.

d) Perceptron Learning in Microarchitecture: Perceptron

learning was proposed for predicting conditional branches [5].

In this work, a perceptron weights vector is selected by a hash

of the branch address and its dot product with an input vector

of branch history outcomes. If the product is at least 0, the

branch is predicted as taken, otherwise it is predicted not taken.

The weights are updated with the perceptron update rule: if

the prediction is incorrect, or the dot product does not exceed

some threshold magnitude, then the weights are incremented

or decremented based on their correlation to the corresponding

history bits.

Subsequent work on predicting branches with perceptron-

like algorithms improved the latency of the operation by using

history bits to generate indices into weights tables rather than

as input to the dot product computation [20], [7], [6]. Our

work takes this approach as well, using input features to

index weights tables and updating the weights with perceptron

learning.

III. PERCEPTRON LEARNING FOR REUSE PREDICTION

In this section we present the prediction algorithm. The

structures are similar to those of sampling-based dead block

prediction [1], but the algorithm and inputs are altered to

provide superior accuracy.

A. Features Correlated with Last Access to a Block

Previous research has observed that multiple features are

correlated with the last access to a block. Some of the features

are:

1) The trace of memory access instructions (PCs) be-

ginning when the block is placed and ending at the

current access [13], [17]. This sequence of addresses

can be concisely summarized as a truncated sum of

those PCs, generating an integer signature to be used to

index a prediction table. In an L1 cache, this signature

is correlated with the last access to a block. However, in

an LLC, particularly in the presence of a middle-level

cache, many PCs are filtered, leaving a porous signature

that is unsuitable for prediction [1]. In this work, we

keep track of recent PCs accessing the LLC, but we

treat each PC as a separate feature.

2) The PC of the memory instruction that caused the

access. This feature is a succinct proxy for the program

behavior that led to the ultimate eviction of the block.

Unlike the instruction trace, it has reasonable accuracy in

the last-level cache [1]. However, its accuracy is limited

because a single PC can exhibit multiple behaviors

depending on the control-flow context, e.g., an access

in a given subroutine may or may not be the last access

to a block depending on the caller.

3) Bits from the memory address, e.g., the page number

or tag. Data in the same memory region are often treated

similarly by programs, so the last access (or the only

access) to one block may correlate with the last access

to a neighboring block. There are many more memory

addresses than memory access PCs, so using bits from

the memory address as an input feature may lead to

destructive interference in small prediction tables. Liu et

al. combine the trace signature with 3 bits from the block

address [17] to form a single index. Our work treats

bits from the memory addresses separately, isolating the

effects of interference.

4) A compressed representation of the data itself [8]. Data

that are similar in blocks may lead to similar behavior.

5) Time/reference count. Some reuse predictors work on

the idea that a block may be accessed a certain number

of times before it is evicted, and that this count may

be predicted. This technique requires keeping a count

for each block in the cache, an idea we dismiss as too

complex for implementation in a large last-level cache.

B. The Main Idea

Our predictor combines multiple features. To make a predic-

tion, each feature is used to index a distinct table of saturating

counters (hereafter weights) that are then summed. If the sum

exceeds some threshold, then the accessed block is predicted

not to be reused. A small fraction of the accesses are sampled

to update the predictor using the perceptron update rule: if



Fig. 3. Datapath from extracting features from an access, to making a
prediction and acting on it

the prediction is incorrect, or the sum fails to exceed some

magnitude, then the weights are decremented on an access or

incremented on an eviction.

Combining features by summing weights avoids the destruc-

tive interference and exponential blowup that can be caused

by combining them into a single index. That is, if we combine

PC bits and memory address bits by, say, summing or XORing

them directly into an index, the predictor must learn all the

likely patterns that lead to different behavior before it can

predict well. Using the perceptron update rule allows the

predictor to adapt to changes in program behavior. In previous

work, both summing and perceptron update have contributed

to significant gains in branch prediction accuracy, motivating

this work [5], [7].

Figure 2(a) shows the organization of recent reuse predictors

SDBP and SHiP. A single feature is used to index a table

of weights to make a prediction. SHiP and SDBP use as the

feature a hash of the PC of the memory instruction that causes

the reference. Other dead block predictors use a signature

formed by truncated addition of all the PCs from the placement

of the block to the current reference [13], [17], as well as some

bits from the address of the references block [13], but these

features are all combined into a single index into the table. It

has been shown that the truncated addition idea works poorly

for a LLC [1] due to the fact that first- and middle-level caches

filter out many of the useful PCs, leaving a noisy signal.

Figure 2(b) shows the organization of the perceptron-based

reuse predictor. Each feature is hashed, then XORed with the

PC to index a separate table. The corresponding weights are

summed and thresholded to get an aggregate prediction. This

scheme works well because, at any given time, one or another

feature may carry correlation with reuse behavior, while others

do not. The perceptron algorithm discovers correlation and

ignores the lack of correlation, to give a more accurate

prediction.

C. Example

To illustrate why perceptron learning yields superior ac-

curacy to previous reuse predictors, let us consider a simple

example. Suppose we must design a reuse predictor indexed

by either the PC of the memory instruction, the page number

of the memory access, or a combination of both. Figure 4

illustrates two instructions: load A and load B. Load A

randomly accesses cache blocks across thousands of pages, but

these blocks experience little to no reuse after being accessed

by load A. (Perhaps load A is in a destructor in a pointer-

chasing object-oriented program.) Load B accesses blocks with

good spatial locality over a small number of pages. Cache

blocks accessed by load B on a certain set of pages experience

reuse, but on another set of pages blocks experience little

reuse. (Perhaps load B is a factory method handing out objects

to various callers with different access patterns.) Load A would

be predicted well by a PC-based predictor, but load B would be

predicted poorly because of the variable nature of subsequent

accesses. Load A would be predicted poorly by a page-based

predictor because thousands of page references would cause

aliasing (i.e., collisions) in the prediction table, while load

B might be better predicted by a page-based predictor since

its behavior is page-based. Neither one would be predicted by

indexing a table by a combination (e.g., XOR) of PC and page

number: load A continues to have the problem with aliasing,

and the prediction table for load B now has more aliasing

pressure because we are multiplying the number of indices

into the table by the number of other PCs in the working set

of load and store instructions.

By contrast, perceptron learning separates the two features

into two different tables. Where there is correlation in one

table, the magnitude of the weight selected for prediction

is high. Where there is no correlation, or poor detection of

correlation due to aliasing, the magnitude of the weight is

low. The prediction is based on a sum of the weights. The

signal of reuse or no reuse comes clearly through the noise

of low correlation or aliasing because the noisy weights have

low magnitude.

Note that SDBP uses three separate tables indexed by

different hashes of the same PC [1]. This slightly reduces the

impact of aliasing, but does not help in situations like load

B where there is page-based correlation that is not discovered

by a PC-based predictor.

D. Training with a Sampler

The sampler is a separate array for a small number of

sampled sets. Some sets in the last-level cache are chosen

to be represented by a set in the sampler. Each sampler set

consists of entries with the following fields:

1) A partial tag used to identify the block. We need only

store enough tag bits to guarantee a high probability that

a tag match is correct, since the predictions are by their

nature imprecise. We find that 15 bits is sufficient.



Fig. 4. Two different kinds of correlation. The PC of one load (left) always correlates with no reuse on thousands of pages, while another load (right) has
no correlation through the PC but does have correlation through page number.

2) A small integer sum (yout) representing the most re-

cent prediction computation. yout is used to drive the

threshold rule of the perceptron learning algorithm: if

the magnitude of yout exceeds some threshold and the

prediction is correct, the predictor does not need to be

updated. As this strategy prevents the weights from all

saturating at their extreme values, it improves prediction

accuracy by ensuring that the predictor can respond

quickly to changes in program behavior.

3) A sequence of hashes of the input features used to index

the prediction tables. In this sequence, each feature is

hashed, then XORed with the lower-order bits of the PC

of the memory instruction that last accessed this entry.

These hashes will be used to index the predictor’s tables.

4) LRU bits for replacement within the sampler.

These sets are kept outside the main cache in a small

and fast SRAM array. When a sampled set is accessed, the

corresponding set and block in the sampler are accessed. A

partial tag from the block is used to match a tag in the sampler

set. If there is no match, the tag is placed in the sampler set,

replacing the LRU entry in that sampler set. Otherwise, the

access is treated as a hit in the cache and perceptron learning

is used to train the predictor that this sequence of input features

leads to a hit. Then, the current values of the input features

(e.g., a hash of the PC or the page number) are placed in the

sampled entry. When an entry is evicted from a sampler set, the

previous access to that entry is treated as the last access to the

corresponding block. Before the entry’s values are overwritten,

they are used with perceptron learning to train the predictor

that the previous access is the last access.

E. Predictor Organization

The predictor is organized as a set of tables, one per input

feature. Each table has a small number of weights. In our

experiments, we find that providing each table with 256 entries

of 6-bit signed weights (ranging in value from -32 to +31)

is sufficient. A sequence of hashed features are kept in per-

core vectors that are updated on every memory access. We

have listed several possible features in Section III-A. We

find that using the last few PCs to access the cache as well

as bits extracted from the address of the currently accessed

block yield the best accuracy. Figure 3 shows the datapath

from extracting features from memory accesses to making a

prediction.

F. Making a Prediction

The predictor is consulted when a block is hit as well as

when a block may be placed in the cache. When there is an

access to the LLC, the predictor is consulted to determine

whether there is likely reuse for that block. When an incoming

block is considered for placement in the LLC, the predictor is

used to decide whether to bypass the block if it is predicted

to have no reuse. In both situations, the predictor is accessed

by indexing the prediction table entries corresponding to the

hash of each feature XORed with the PC of the instruction

making the access. The signed weights read from each table

are summed to find a value yout. If yout is less than some

threshold τ , then the block is predicted to be reused; otherwise,

it is predicted to have no reuse, i.e., it is predicted dead. An

incoming block predicted as dead bypasses the cache. Each

cache block is associated with an extra bit of data that records

its most recent reuse prediction that will be used to drive the

replacement policy.

G. Training the Predictor

When the sampler is accessed, there are two possibilities

resulting in two different training outcomes:
e) When there is a replacement in the sampler: A miss

in the sampler requires eviction of the LRU entry. The fact

that this block is evicted shows it is unlikely to be reused,

so the predictor learns from this evidence. If the value of

yout for the victim entry is less than a threshold θ, or if

the prediction was incorrect, then the predictor table entries

indexed by the corresponding hashes in the victim entry are

incremented with saturating arithmetic. Thus, future similar

sequences of features for this instruction are more likely to be

predicted as not reused. (Note that the threshold θ for invoking

training may be different from the threshold τ for predicting

reuse; see Section III-F).



f) When a sampled entry is accessed: A hit in the

sampler is evidence that the current set of features is correlated

with reuse. If the value of yout for the entry exceeds a

threshold −θ, then the predictor table entries indexed by the

hashes in the accessed sampler entry are decremented with

saturating arithmetic. Subsequent accesses in the context of

similar features are more likely to be predicted as reused (i.e.,

live).

H. A Replacement and Bypass Optimization

The predictor is applied to the optimization of dead block

replacement and bypass. As in previous work [1], the LLC is

replaced with a default replacement policy such as LRU, but

a block predicted with no reuse (i.e., a dead block) will be

replaced before the candidate given by the default policy. In

this work, the LLC uses tree-based PseudoLRU as the default

replacement policy [21]. Each cache block is associated with

a prediction bit that holds the most recent reuse prediction for

that block.

When a block is hit in the LLC, the predictor is consulted

using the current vector of features to compute the prediction

bit for that block. When there is a miss in the LLC, the

predictor is consulted to predict whether the incoming block

will have reuse. If not, the block is bypassed. Otherwise,

a replacement candidate is chosen. The set is searched for

a block predicted not to have reuse. If one is found, it is

evicted. Otherwise, the block chosen by the PseudoLRU policy

is evicted. We call this bypass and replacement optimization

Perceptron with a capital P to distinguish it from the predictor

itself.

Tree-based PseudoLRU requires n − 1 bits per set for an

n-way set associative cache. Thus, including the prediction

bit, each block requires about two bits of replacement state,

which is equivalent to the per-block overheads for DRRIP [9]

and SHiP [2].

I. Prefetches

When the hardware prefetcher attempts to bring a block

from the memory into the LLC, the predictor makes a reuse

prediction for that block. Since hardware prefetches are not

associated with instruction addresses, a single fake address is

used for all prefetches for the purpose of hashing into the

predictor. Other features, such as bits from the block address,

continue to be used in the predictor.

IV. METHODOLOGY

A. Performance Models

We model performance with an in-house simulator using

the following memory hierarchy parameters: L1 data cache:

32KB 8-way associative, L2 unified cache: 256KB 8-way,

DRAM latency: 200 cycles. It models an out-of-order 4-wide

8-stage pipeline with a 128-entry instruction window. The

single-thread simulations use a 4MB L3 cache while the multi-

core simulations use a 16MB L3 cache. The simulator models

a stream prefetcher. It starts a stream on a L1 cache miss and

waits for at most two misses to decide on the direction of

the stream. After that it starts to generate and send prefetch

requests. It can track 16 separate streams. The replacement

policy for the streams is LRU. This infrastructure enables

collecting instructions-per-cycle figures as well as misses per

kilo-instruction and dead block predictor accuracy.

B. Workloads

We use the 29 SPEC CPU 2006 benchmarks. Each bench-

mark is compiled using a configuration file for the X86 instruc-

tion set distributed with the SPEC CPU 2006 benchmarks. We

use SimPoint [22] to identify up to 6 segments (i.e., simpoints)

of one billion instructions each characteristic of the different

program phases for each workload.

g) Single-Threaded Workloads: For single-threaded

workloads, the results reported per benchmark are the

weighted average of the results for the individual simpoints.

The weights are generated by the SimPoint tool and represent

the portion of all executed instructions for which a given

simpoint is responsible. Each program is run with the first ref

input provided by the runspec command. For each run, the

500 million instructions previous to the simpoint are used to

warm microarchitectural structures, then the subsequent one

billion instructions are used to measure and report results.

h) Multi-Core Workloads: For 8-core multi-programmed

workloads, we generated 1000 workloads consisting of mixes

from the SPEC CPU 2006 simpoints described above. We

follow the sample-balanced methodology of FIESTA [23].

We begin by selecting regions of equal standalone running

time for each simpoint. Each region begins at the start of the

simpoint and ends when the number of cycles in a standalone

simulation reaches one billion cycles. Each workload is a

mix of 8 of these regions chosen uniformly randomly without

replacement. For each workload the simulator warms microar-

chitectural structures until 500 million total instructions have

been executed, then measures results until each benchmark

has executed for at least one billion additional cycles. When a

thread reaches the end of its one billion cycle region, it starts

over at the beginning. Thus, all 8 cores are active during the

entire measurement period.

i) Avoiding Overfitting the of Parameters: Our proposed

technique has several parameters whose values affect accuracy

and performance. We took steps to avoid overfitting the

parameters to the workloads.

For single-threaded workloads, we use a leave-out-one

cross-validation methodology. That is, for each of the 29 SPEC

CPU 2006 benchmarks, we explore the space of parameters

that give the best aggregate performance for the other 28

benchmarks, then use those parameters for the benchmark in

question. The parameters varied were the values of θ, τbypass,

τreplace, the bit width of the weights, and parameters related

to selecting the features listed in Section IV-E. Thus, for each

of the benchmarks, we report results based on parameters

that were not tuned for that benchmark. We find remarkable

consistency in the parameters chosen for each benchmark. For

instance, when |yout| < θ, training is invoked. We find that for

every combination of 28 benchmarks but one, the best value



is θ = 74. When the benchmark sphinx3 is held out the best

value is θ = 71.

For multi-programmed workloads, we use a smaller set of

100 mixes to explore the parameter space to find the set of

parameters that give the best aggregate performance. These

100 workloads are separate from the 1000 workloads used for

the performance results. Thus, for the 1000 workload mixes,

we report results based on parameters that were not tuned for

those mixes.

C. Replacement Policies

We compare our proposed technique against two closely

related techniques: sampling based dead block prediction

driving replacement and bypass (SDBP) [1] and signature-

based hit prediction (SHiP) [2]. We use SDBP code provided

by the original authors. The SHiP authors provided code for

their hit predictor in a form that was readily adaptable to RRIP

code they also provided. We modified this code to implement

the sampling-based policy described in their paper and use the

program counter (PC) as the signature for the hit predictor.

Thus, what we hereafter refer to as SHiP in this paper

is called SHiP-PC-S in that paper’s nomenclature [2]. This

modification allows us to control the overhead consumed by

SHiP’s structures. Thus, we may allocate the same amount of

storage to SHiP, SDBP, and perceptron-based reuse prediction

for comparison. To be clear, we implement sampling-based

SHiP using the PC as the signature and deciding the insertion

position for a baseline RRIP policy with a maximum re-

reference prediction value of three. In the following text and

figures, Perceptron with a capital P refers to the replacement

and bypass optimization that uses perceptron learning for reuse

prediction.

We evaluate SDBP because its structure is similar to that

of our predictor and it also uses summation and thresholding

to make a prediction. We evaluate SHiP because it provides

the best speedup in the literature for cache management based

on reuse prediction. There is significant other work in reuse

prediction [13], [15], [16], [17], [18], [9], [24], [21] but

because of SHiP’s superior performance and for space reasons

we do not report results for those techniques.

1) SHiP and Bypass: SHiP was described as a placement

policy for RRIP without considering bypass. It uses a threshold

on the 3-bit confidence counter read from the prediction table

to decide whether to place a block in the distant re-reference

interval or the immediate re-reference interval. Our proposed

technique and SDBP both implement bypass, so we attempt

to use bypass in SHiP also. We modify SHiP to use two

thresholds: one to indicate that the probability of a hit is

so low that the block should be bypassed rather than placed,

and a higher one to decide whether to place in the distant or

immediate re-reference interval. Sampled sets are not bypassed

so that the hit predictor can continue to learn from them.

We exhaustively search all pairs of feasible thresholds. The

configuration with the best performance is a threshold of 0

for bypass and 1 for distant re-reference interval placement.

We find that SHiP with bypass yields no better speedup than

SHiP without bypass on average. Thus, we report results for

SHiP without bypass.

2) SDBP and SHiP with Prefetching: In the original papers,

SDBP and SHiP were evaluated without modeling prefetching.

To provide a realistic evaluation, we model a stream prefetcher.

We found that the unmodified SDBP and SHiP algorithms

perform poorly in the presence of prefetching because the

prefetcher sometimes issues prefetches that hit in the cache.

These hits artificially boost the apparent locality of the blocks,

causing SDBP and SHiP to promote blocks that should remain

near LRU. We modify the code for both SDBP and SHiP to

ignore hitting prefetches and observe that the change restores

the good performance of these algorithms. In Section V-B we

describe results without prefetching to evaluate our work in

the same methodological context as the previous work.

D. Overhead for Predictors

SHiP, SDBP, and perceptron-based reuse prediction require

extra state for their prediction structures. Table I summarizes

the overheads for the various techniques. SHiP uses a 14-

bit signature derived as a hash of the PC indexing a table

of 16,384 three-bit saturating counters. It also keeps 14-bit

signatures and one reuse bit for each block in the sampled sets.

SDBP keeps three tables of 8,192 2-bit saturating counters

each indexed by a different 13-bit hash of the PC. It also

keeps a sampler, an array of cache metadata kept separately

from the main cache. Each block in the sampler includes a

15-bit partial tag, a prediction bit, a valid bit, a 4-bit LRU

stack position and a 15-bit signature. The associativity of the

sampler is 12. To keep the same amount of state for each

predictor, we use 192 sampled sets for SHiP and 96 sampled

sets for SDBP. Both predictors consume approximately 11KB.

The state required for perceptron-based reuse prediction

is proportional to the number of features used. We empir-

ically determined that six features provided the best trade-

off between storage and accuracy (see Section IV-F). We find

that using an associativity of 16 for the sampler provides the

best accuracy, as opposed to the associativity of 12 that was

used in the SDBP work [1]. The prediction tables for the

perceptron sampler have 6-bit signed weights, and there are

six such tables. We find that using 256-entry tables provides

a good trade-off between accuracy and storage budget. Thus,

the prediction tables consume 1.125KB.

Each perceptron sampler entry contains six 8-bit hashes of

the features, a valid bit, a 9-bit sum resulting from the most

recent prediction computation, a 4-bit LRU stack position,

and a 15-bit partial tag. Each sampler set contains 16 such

entry. To stay within the 11KB hardware budget of the other

two techniques, and accounting for the prediction tables, we

choose 64 sampler sets, resulting in 10.75KB of storage for the

perceptron reuse predictor. The sampler structure is larger than

in SDBP, but the storage for the prediction tables is smaller. In

addition to the tables, the predictor keeps per-core histories of

the three most recent PCs accessing the LLC. The additional

storage for all of these histories is less than 100 bytes.



Technique Overhead

SDBP 3 tables of 8,192 2-bit counters + 96-set, 12-way sampler = 11.06KB
SHiP 1 table of 16,384 3-bit counters + 192-set, 16-way sampled PCs = 11.25KB
Perceptron 6 tables of 256 6-bit signed weights + 64-set, 16-way sampler = 10.75KB

TABLE I
OVERHEAD REQUIRED BY THE VARIOUS TECHNIQUES IS APPROXIMATELY THE SAME IN OUR EXPERIMENTS. SEE TEXT FOR DETAILS OF SAMPLER

ENTRY OVERHEADS.

Each of the three policies also keeps storage associated with

each cache block. SHiP is built on RRIP [9] requiring two bits

per cache block. The perceptron-based reuse predictor uses

tree-based PseudoLRU as its default replacement policy using

one bit per cache block. It adds another bit for each block

to store the most recent reuse prediction for that block. Thus,

SHiP and perceptron-based reuse prediction keep the same

number of bits associated with each block. SDBP uses true

LRU instead of PseudoLRU, so it requires 4 LRU bits plus

one prediction bit for each block in the cache. We use the

unmodified SDBP code rather than hack PseudoLRU into it.

We stipulate that PseudoLRU and true LRU ought to behave

similarly so the 5-bit overhead of SDBP should not be counted

against SDBP.

The implementation complexity of the perceptron-based

reuse predictor is slightly higher than that of SHiP or SDBP,

but it is still reasonable. Conditional branch predictors based

on perceptron learning have been implemented in Oracle and

AMD processors [25], [26]. Branch predictors must operate

under very tight timing constraints. Predictors in the last-level

cache have a higher tolerance for latency, so we are confident

perceptron learning can be easily adapted to reuse predictors.

E. Measuring Performance

In Section V we report performance relative to LRU for

the various techniques tested. For single-threaded workloads,

we report the speedup over LRU, i.e., the instructions-per-

cycle (IPC) of a technique divided by the IPC given by LRU.

For the multi-core workloads, we report the weighted speedup

normalized to LRU. That is, for each thread i sharing the

16MB cache, we compute IPCi. Then we find SingleIPCi as

the IPC of the same program running in isolation with a 16MB

cache with LRU replacement. Then we compute the weighted

IPC as
∑

IPCi/SingleIPC
i
. We then normalize this weighted

IPC with the weighted IPC using the LRU replacement policy.

F. Features for the Predictor

We determined that the following six features provide a

good trade-off between hardware overhead and prediction

accuracy. Suppose PCi is the address of the ith most recent

instruction accessing the LLC from the current thread, where

PC0 is the PC of the current memory access instruction. Then

the features are:

1) PCi shifted right by 2, for i = 0.

2) The three values of PCi shifted right by i, for 1 ≤ i ≤ 3.

3) The tag of the current block shifted right by 4,

4) The tag of the current block shifted right by 7.

We choose not to use features such as the number of

accesses to a block [18] or other history of the block itself

because of the overhead required in storing such information

per block.

1) Discussion of Features: The first feature, the PC of the

current memory access instruction, must be shifted because all

of the features will be XORed with the PC before indexing the

tables. Without shifting, the value would simply be 0. Shifting

and XORing gives a hash of the PC, which is similar to the

hashed PC used by SDBP.

The next three features are the most recent PCs of memory

access instructions that accessed the LLC, each shifted right

by an increasing number. These features give the predictor

an idea of the “neighborhood” the instruction was in when

it made the access. Shifting by increasing amounts allows a

wider perspective for events further in the past, i.e., rather than

specifying the instruction at PC3, the predictor learns from the

8-byte region around that instruction.

The last two features are two shifts of the tag of the

currently accessed block. These features trade off resolution

for predictor table capacity: shifting the tag right by 4 allows

the predictor to distinguish between more memory regions at

the cost of a higher chance of aliasing, while shifting right

by 7 allows grouping many pages that could have the same

behavior into the same predictor entry, at the cost of coarser

granularity. If one of the features has higher correlation with

reuse, its weight will have high magnitude and contribute more

to the prediction.

It is important to note that not all features are expected

to correlate with reuse behavior for all blocks. Some

features will have no correlation. Only the features with high

correlation will contribute significantly to the prediction.

G. Other Parameters

The parameter τ is the threshold below which a block is

predicted to be reused. We chose two different values for τ
based on the purpose of the prediction: τbypass for predicting

whether a block should be bypassed, and τreplace for predicting

whether a block may be replaced after a hit. On 100 multi-

programmed workloads (as described in Section IV-B), we

empirically found the best values were τbypass = 3 and

τreplace = 124. The best value for θ, for which training is

triggered when the magnitude of a correct prediction is below

θ, was 68. Recall that, even though θ = 68, training will still be

invoked if the prediction is incorrect. These parameters were

used to provide the results for the 1000 multi-programmed

workloads (that exclude the 100 used for training). For single-



thread workloads, the parameters were chosen according to

the cross-validation methodology described in Section IV-B

to avoid overfitting.

V. RESULTS

This section gives results for the various policies tested. It

presents accuracy, cache misses, and speedup results. First,

results are given for multi-core workloads. Then, results are

given for single-core workloads.

A. Multi-Core Results

This section gives results for the 1000 8-core multi-

programmed workloads.

1) Performance: Figure 5 shows weighted speedup nor-

malized to LRU for SDBP, SHiP, and Perceptron with a

16MB last-level cache. See IV-E for the definition of weighted

speedup. The figure shows the speedups for each workload

in ascending sorted order to yield S-curves. SDBP yields

a geometric mean 4.3% speedup and SHiP yields a 4.4%

speedup. Perceptron gives a geometric mean speedup of 7.4%.

The superior accuracy of Perceptron gives a significant boost

in performance over the other two reuse predictors.

2) Misses: Figure 6 shows misses per 1000 instructions

(MPKI) various techniques sorted in descending order, i.e.,

worst-to-best from left-to-right, to yield S-curves with a log

scale y-axis. Perceptron, at an arithmetic mean 7.2 MPKI, de-

livers fewer misses than the other techniques. LRU, SDBP, and

SHiP yield 9.4 MPKI, 7.8 MPKI, and 7.6 MPKI, respectively.

B. Without Prefetching

The original SDBP and SHiP studies were presented in

simulation infrastructures that did not include prefetching.

1.0

1.1

1.2

1.3

200 400 600 800 1000

Workloads Sorted by Speedup

S
p
ee

d
u
p
 o

v
er

 L
R

U

Perceptron

SHIP

SDBP

LRU

S
p
ee

d
u
p
 o

v
er

 L
R

U

1.0

1.1

1.2

1.3

Fig. 5. Normalized Weighted Speedup over LRU for 8-Core Multi-
Programmed Workloads

0.125

0.25

0.5

1

2

4

8

16

32

64

128

200 400 600 800 1000

Workloads Sorted by MPKI

M
is

se
s 

P
er

 1
0
0
0
 I

n
st

ru
ct

io
n
s

LRU

SDBP

SHiP

Perceptron

M
is

se
s 

P
er

 1
0
0
0
 I

n
st

ru
ct

io
n
s

0.125

0.25

0.5

1

2

4

8

16

32

64

128

Fig. 6. Misses per 1000 Instructions for 8-Core Multi-Programmed Work-
loads

Prefetching has a significant effect on cache management

studies because many more references to memory are made.

We believe cache management is best studied alongside

prefetching since modern high performance processors include

hardware prefetchers. As stated in Section IV-C2, we modify

SDBP and SHiP to remove the confusing influence of prefetch-

ing, boosting their performance. Nevertheless, to put our work

in the proper context of previous work, we run experiments

with prefetching disabled for all techniques including the

baseline LRU policy, SDBP, SHiP, and Perceptron. We do

not illustrate the results with graphs for space reasons. The

geometric mean normalized weighted speedups for SDBP,

SHiP, and Perceptron are 7.5%, 8.3%, and 11.2%, respectively.

The first two numbers are consistent with the conclusions

of the previous work: SHiP has an advantage over SDBP.

The third number shows that Perceptron continues to yield

significant speedup over SHiP and SDBP. Note that all of

the speedups are higher than the speedups obtained with

prefetching. Prefetching eliminates some of the opportunity

for optimization by replacement policy since it turns many

potential misses into hits. Our LRU baseline with prefetching

achieves a geometric mean 37% speedup over no prefetching,

so obviously we are satisfied to accept a slight decrease in the

advantage provided by an improved replacement policy.

1) Accuracy: Figure 1 (from Section I, the introduction)

illustrates the accuracy of the three predictors, giving violin

plots for the false positive and coverage rates of each predictor.

Violin plots show the mean as a bar in the center of the plot

along with the probability density of the data. The coverage

rate is the percentage of all predictions for which a block

is predicted not to be reused. The false positive rate is the

percentage of all predictions for which reuse was incorrectly



predicted.

To summarize the figure, the plots show that SDBP and

SHiP have higher mean false positive rates and lower coverage

rates than Perceptron, but also higher variance among work-

loads for the false positive and coverage rates. The Perceptron

probability density graphs are shorter, showing that, in addition

to superior accuracy and coverage, Perceptron delivers a more

dependable and consistent range of accuracy and coverage

rates.

The coverage for perceptron-based prediction is higher

than that for SDBP and SHiP (52.4% versus 47.2% and

43.2%, respectively) while the false positive rate is lower

(3.2% versus 7.4% and 7.7%, respectively). Note that, while

SHiP has a slightly higher false positive rate than SDBP, it

delivers superior performance to SDBP. SHiP only predicts

at placement, while SDBP predicts on every access, so the

denominators in the false positive and coverage rates are

different. Coverage represents the opportunity for optimization

given by the predictor, while false positives represent the

potential cache misses caused when an incorrect prediction

leads to a live block being replaced. Thus, the perceptron

scheme leads to increased opportunity for optimization while

reducing false positives by a factor of 2. The plots also

show that the coverage and false positive rates have far less

variance for perceptron versus the other schemes. The standard

deviation false positive rates for SDBP, SHiP, and perceptron

learning are 3.3%, 3.6%, and 1.7%, respectively. Thus, we

may more reliably depend on the perceptron scheme to deliver

consistent accuracy.
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C. Single-Core Results

This section discusses the single-thread performance and

misses for the 29 SPEC CPU benchmarks with a 4MB LLC.

Prefetching is enabled.

1) Performance: Figure 7 shows single-thread speedup of

the techniques over LRU. The benchmarks are sorted by
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speedup with Perceptron. SDBP and SHiP achieve a geomet-

ric mean 3.5% and 3.8% speedup over LRU, respectively.

Perceptron yields a 6.1% geometric mean speedup. For 25

out of the 29 benchmarks, Perceptron matches or exceeds

the performance of LRU, and for most workloads it exceeds

the performance of the other two techniques. Many of the

benchmarks experience few misses on a 4MB cache. We define

a memory-intensive subset of SPEC as benchmarks with an

MPKI of at least 1.0 under the LRU replacement policy. These

benchmarks are GemsFDTD, sphinx3, xalancbmk,

cactusADM, lbm, astar, soplex, omnetpp, milc and mcf. On

this subset (not separately illustrated), perceptron learning

yields a geometric mean 18.3% speedup, versus 10.5% for

SHiP and 7.7% for SDBP.

2) Misses: Figure 8 gives the MPKI for the 29 benchmarks

Note the y-axis is a log scale. SDBP and SHiP have 2.3

and 2.2 MPKI, respectively. Perceptron gives 2.0 MPKI. The

average MPKI figures are low because most of the benchmarks

fit a large part of their working sets into a 4MB cache. For

omnetpp, a benchmark with considerable misses, SDBP gives

8.3 MPKI, SHiP yields 9.2 MPKI, and Perceptron gives 7.7

MPKI.

D. Cache Efficiency

Cache management with reuse prediction improves cache

efficiency. Cache efficiency is defined as the fraction of time

that a given cache block is live, i.e.,, the number of cycles that

a block contains data that will be referenced again divided by

the total number of cycles the block contains valid data [27].

A more efficient cache makes better use of the available space

and wastes less energy storing dead blocks. Figure 9 illustrates

cache efficiency for the various techniques on a typical multi-

programmed workload. In the four 128×128 heat maps, each

pixel represents the average efficiency of one set in the 16MB

cache, with higher efficiency represented by lighter values.

The LRU cache is quite dark. SDBP and SHiP are clearly

more efficient, but Perceptron is the lightest, thus it is the
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Fig. 9. Heat map of cache efficiency in cache sets for the various techniques
on a typical multi-programmed workload. Darker signifies poor efficiency
while lighter means better efficiency.

most efficient. On average over all blocks and 1000 multi-

programmed workloads, LRU yields an efficiency of 21%,

i.e., at any given time 21% of blocks are live and 79% are

dead. SDBP gives an average efficiency of 47% and SHiP

gives an efficiency of 43%. Although SHiP outperforms SDBP,

its efficiency is somewhat lower because it does not bypass,

so some dead blocks inevitably enter the cache and depress

efficiency. Perceptron has 54% efficiency. Thus, Perceptron

more than doubles the efficiency of the cache over LRU.
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E. Analysis

Perceptron learning improves accuracy over previous tech-

niques by being able to incorporate more input features such

that highly correlated features make a large contribution to the

prediction while uncorrelated features make little contribution.

Wider weights allow more discrimination between levels of

correlation. More features allow more correlations to be found.

Figure 10 shows the results of experiments using different

weight widths and numbers of features, as well as for SDBP

and SHiP for reference. The graph shows the geometric mean

normalized weighted speedup over the multi-programmed

workloads with a 16MB LLC. Features are added in the order

they appear in Section IV-F. Clearly, wider weights and more

features contribute to improved performance. Considering the

global history of PCs and memory addresses individually

allows finding correlations not apparent from any one feature

or from combining features into a single index as in previous

work.

VI. CONCLUSION

The conclusion goes here. This paper describes reuse predic-

tion based on perceptron learning. Rather than using a single

feature, or a hashed combination of features indexing a single

table, perceptron learning allows finding independent corre-

lations between multiple features related to block reuse. The

accuracy of perceptron-based reuse prediction is significantly

better than previous work, giving rise to an optimization that

outperforms state of the art cache replacement policies. The

complexity of perceptron-based reuse prediction is no worse

than that of branch predictors that have been implemented in

real processors. In this work, the features we focus on are the

addresses of previous memory instructions and various shifts

of the currently accessed block. In future work, we intend

to explore how other features may be incorporated without

increasing the overhead of the technique. We also plan to

explore how perceptron-based prediction might help with other

cache management tasks such as reuse distance prediction and

prefetching.
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