
Minimal Disturbance Placement and Promotion

Elvira Teran† Yingying Tian‡
∗ Zhe Wang§* Daniel A. Jiménez†

†Texas A&M University ‡Advanced Micro Devices, Inc. §Intel Labs

†{eteran,djimenez}@tamu.edu ‡Yingying.Tian@amd.com §zhe2.wang@intel.com

ABSTRACT

Cache replacement policies often order blocks into distinct posi-
tions. A block is placed into a set in some initial position. A
re-referenced block is promoted into a higher position while other
blocks may move into lower positions. A block in the lowest po-

sition is a candidate for replacement. Tree-based PseudoLRU is a
well-known space-efficient replacement policy based on represent-
ing block positions as distinct paths in a binary tree. We find that
a placement or promotion for one block often needlessly disturbs
the non-promoted blocks. Guided by the principle of minimal dis-

turbance, i.e. that a policy should seek to disturb the order of non-
promoted blocks to the smallest extent possible, we develop a sim-
ple modification to PseudoLRU resulting in a policy that improves
performance over previous techniques while retaining the low cost
of PseudoLRU. The result is a minimal disturbance placement and
promotion (MDPP) policy.

We first give a static formulation of MDPP and show that it pro-
vides superior performance to LRU, PseudoLRU and matches per-
formance for SRRIP for both single-threaded and multi-core work-
loads. We then give a dynamic formulation that uses dead block
prediction for placement and bypass and show that it meets or ex-
ceeds state-of-the-art performance with lower overhead. For single-

threaded workloads, dynamic MDPP matches the 5.9% speedup
over LRU of the state-of-the-art policy SHiP. For multi-core work-
loads, dynamic MDPP gives a normalized weighted speedup of
14.3% over LRU, compared with SHiP that yields a speedup of
12.3% over LRU and requires double the storage overhead per set.
We show that minimal disturbance policies can reduce the frequency

of a costly read-modify-write cycle for replacement state, making
them potentially suitable for future work in DRAM caches.

1. INTRODUCTION
With the disparity between cache latency and memory latency, a

replacement policy that reduces misses can significantly improve
performance. Many replacement policies order blocks into dis-
tinct positions, choosing to replace the block in a least favorable

*Yingying Tian and Zhe Wang contributed to this work while they
were students at Texas A&M University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPCA 2016 March 12–16, 2016, Barcelona, Spain.
978-1-4673-9211-2/16/$31.00 ©2016 IEEE.

position when there is a miss to a set. Positions are manipulated
by the placement and promotion policies. The placement policy
decides what the initial position of a block should be, while the
promotion policy decides what the new position of a re-referenced
block should be. To accommodate a block in a new position, of-
ten other blocks must change their positions. These changes can

disturb non-referenced blocks, causing them to move closer to the
least favorable position by an amount that may be out of propor-
tion to their merit. Previous work focuses on what happens to the
just-referenced block without regard to the effect on the other, non-
referenced blocks.

Figure 1 shows the average change in position of non-referenced

blocks for two common replacement policies: least-recently-used
(LRU) replacement policy as well as tree-based PseudoLRU over a
set of 100 multi-core workloads described in Section 5. An evicted
block travels one position beyond the maximum value, i.e. it moves
out of the set. The LRU policy is relatively well-behaved, moving

non-referenced blocks no more than one position and often less
than one position when a block is promoted or placed. Tree-based
PseudoLRU, a widely-used space efficient policy, moves blocks’
positions much further than LRU, and the movement varies wildly
with the non-referenced block’s original position.

0 5 10 15
Position of Non-Referenced Block

0.0

0.5

1.0

1.5

2.0

A
ve

ra
ge

M
ag

ni
tu

de
of

M
ov

em
en

t

LRU
Standard PseudoLRU

Figure 1: Average change in position caused by a promotion for

the non-promoted blocks

In this paper, we develop a replacement policy that balances the
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risk of a promoted block being evicted with the harm caused to the

other blocks by the disturbance caused by the promotion.
Widrow and Lehr introduced the minimal disturbance principle

applied to neural network learning. The principle states that “dur-
ing training it is advisable to inject new information into a network
in a manner that disturbs stored information to the smallest extent
possible” [25]. The internal node values of a PseudoLRU tree are

roughly analogous to the weights of a neural network in that they
learn over time information about block locality. On a block place-
ment or promotion, the values are updated in a way that records
new information about one block while risking disturbance to the
information of the other blocks. Guided by the minimal distur-
bance principle, we propose a technique that promotes referenced

blocks in a way that affords them the protection they need from
being evicted while minimizing disturbance to the other blocks.

The result is the Minimal Disturbance Placement and Promotion
(MDPP) policy. We give a simple static MDPP policy that signif-
icantly outperforms true LRU and matches the SRRIP policy with
less complexity, and a dynamic MDPP policy that outperforms the

state-of-the-art on multi-core workloads. Dynamic MDPP achieves
a normalized weighted speedup of 14.3% on multi-core workloads
over LRU while SHiP [26] achieves an 12.3% speedup.

2. BACKGROUND AND RELATED WORK
To put this work in the proper context and give background on

the technique we build upon, we review related work.

2.1 Placement Policy
The LRU policy places blocks into the MRU position. Qureshi

et al. observe that changing the placement position to LRU some-
times results in an improvement as blocks that receive no new hits

are quickly eliminated from the cache [21]. They propose dynamic
insertion policy (DIP) that determines at run-time whether LRU or
MRU placement works best for a particular workload. Jaleel et al.

propose a thread-aware version of DIP, TADIP [8] that improves
over DIP as well as previous thread-aware cache management poli-
cies. Khan and Jiménez propose decision tree analysis for choosing

from a wider range of placement positions [12]. Xie and Loh pro-
pose PIPP, a dynamic promotion and placement policy for pseudo-
partitioning multi-core caches [27]. The dynamic MDPP policy
adaptively changes placement position based on dead block pre-
diction, while both static and dynamic MDPP policies also use an
optimized promotion policy.

2.2 Re-Reference Prediction
Much recent work on last-level cache replacement has focused

on predicting whether and when a block will be re-referenced. We
describe three relevant techniques.

RRIP.
Re-reference Interval Prediction (RRIP) [9] is an efficient im-

plementation of reuse-distance prediction [11]. RRIP categorizes
blocks as near-immediate re-reference interval, intermediate re-reference

intervals, and distant re-reference interval [9], associating these po-
sitions with cache blocks in a way roughly analogous to the posi-
tions in other replacement policies. Static RRIP (SRRIP) always
places into the same position (e.g. distant re-reference interval)
while Dynamic RRIP (DRRIP) uses set-dueling [23] to adapt the
placement position to the particular workload. RRIP is a simple

policy, requiring little overhead and no complex prediction struc-
tures, while resulting in significant improvement in performance.

Dead Block Prediction.

Dead block predictors predict whether a block will be used again

before it is evicted. There are numerous dead block predictors ap-
plied to a variety of applications in the literature [1, 6, 13–17, 24].
We make use of Sampling Dead Block Prediction (SDBP) of Khan
et al. [13]. In this work, a sampler keeps partial tags of sampled
sets. Three tables of two-bit saturating counters are accessed using
a technique similar to a skewed branch predictor [19]. For each hit

in the sampled set, the program counter (PC) of the relevant mem-
ory instruction is hashed into the three tables and the corresponding
counters are decremented. For each eviction from a sampled set,
the counters corresponding to the PC of the last instruction to ac-
cess the victim block are incremented. For any access to the LLC,
the predictor may be consulted by hashing the PC of the memory

access instruction into the three tables and taking the sum of the
indexed counters. When the sum exceeds some threshold, the ac-
cessed block is predicted to be dead. Tags in sampled sets are man-
aged with true LRU and a reduced associativity, but the LLC may
be managed by any policy. The paper applies dead block prediction
to replacement and bypass, but in this work we use the predictor for

determining placement position and bypass.

Signature-Based Hit Prediction.
Wu et al. [26] propose a dead block predictor with a structure

similar to SDBP. SHiP uses a table of 3-bit saturating counters in-
dexed by a signature of the block, e.g. the memory instruction PC
that caused the initial fill of the block. SHiP is called a “hit predic-
tor” as the counters count up instead of down on a hit, and down in-
stead of up on an eviction. Thus, above some threshold, the block is

predicted to be hit soon and thus not dead. The predictor is used to
determine placement position for RRIP. When a block is predicted
not to be dead, its placement position is “intermediate re-reference
interval,” otherwise is it “distant re-reference interval.”

2.3 Tree-based PseudoLRU Placement and Pro-
motion

Genetic Insertion and Promotion for PseudoLRU Replacement
(GIPPR) uses genetic algorithms to find insertion and promotion

vectors (IPVs) for tree-based PseudoLRU [10]. The vectors give
the placement position for new blocks as well as the position to
which a block in a given original position should be promoted. A
single vector does not generalize well to different workloads, so the
paper proposes to supply the policy with four vectors from which

one is chosen at run-time using set-dueling. The approach of that
work is antithetical to our work: it begins with a blank slate on
which the trace-driven genetic algorithm writes a novel placement
and promotion drawn from an enormous search space. The work of
this paper is the opposite: beginning with the minimal disturbance
principle, MDPP prioritizes the promotion of reused blocks with

lower levels of protection while minimizing the disturbance caused
to the rest of the blocks in the set. The GIPPR paper only gives re-
sults for single-threaded workloads, showing that the technique is
competitive with state-of-the-art techniques. As we will see in Sec-
tions 6 and 7, the technique performs somewhat poorly for multi-
core workloads compared to the other techniques, while MDPP

does well on both single-threaded and multi-core workloads. We
conjecture that the machine learning approach of GIPPR overfits
the policy it discovers to single-threaded workloads.

3. TREE-BASED PSEUDOLRU
PseudoLRU policies are based on providing an effect similar

to the least-recently-used (LRU) policy, but with a more efficient
representation. LRU orders blocks in a recency stack from most-

recently-used (MRU) to least-recently-used, placing new blocks
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(a) (b)

Figure 2: The nodes in an example PseudoLRU tree arranged (a) in ascending order of node number showing the labels guiding

replacement policy, and (b) in order of positions.

into the MRU position and evicting blocks from the LRU posi-
tion. As blocks are reused, they are moved to the MRU position
with all blocks previously ahead of the reused block shifted down
the recency stack. At any point in the algorithm, each block has a
distinct position in the recency stack. For an n-way set-associative
cache, the positions are numbered 0 (MRU) through n− 1 (LRU).

3.1 A Policy Based on Binary Trees
The tree-based PseudoLRU replacement policy uses a binary tree

to prioritize cache blocks [4]. The leaves of the tree are the indices
of blocks (i.e. ways) in a set. The internal nodes are labeled with

bits: 0 or 1. The internal nodes are represented as an array of bits
with an implicit tree structure. There are n − 1 internal nodes in
a binary tree with n leaves. Thus, tree-based PseudoLRU is space
efficient since it requires only n − 1 bits per set compared with
n log

2
n bits per set for LRU.

PseudoLRU Replacement.
On replacement, the victim block is chosen by tracing a path

from the root of the tree to a leaf block. At each internal node, if
the label is one, then the next node on the path is the right child of
the current node; otherwise, it is the left child.

PseudoLRU Placement and Promotion.
When a block is placed or re-referenced, it is promoted. The bits

along the path from the root to the associated leaf are modified such
that the replacement algorithm would choose to go in the opposite
direction from the leaf. That is, for all the nodes along a path from

root to leaf, if the leaf is in the left subtree of the current node, then
the bit in that node is changed to 1, otherwise the bit is changed to
0. Thus, among all blocks in the set, the promoted block receives
the most protection from being evicted.

Protection.
We can formalize the notion of protection in a PseudoLRU tree:

a leaf is protected at tree level l if the lth node on a path from root to
leaf is labeled 0 when the leaf is in the right subtree of that node, or
labeled 1 when the leaf is in the left subtree of that node; otherwise,
the leaf is unprotected. A promoted block is protected at all levels,

while the block chosen as the victim is unprotected at all levels. We

also define the protected subtree of a node to be the right subtree if
the node is labeled 0, or the left subtree if the node is labeled 1.

PseudoLRU Ordering.
The leaves of the PseudoLRU tree may be ordered from 0 to

n − 1 in much the same way as the positions in the LRU recency
stack [10]. The most protected leaf occupies position 0, i.e. the
“PseudoMRU” block. The most unprotected leaf occupies position
n − 1, i.e. it is the PseudoLRU block. The other blocks occupy

positions in between. For example, the sibling of the PseudoMRU
block occupies position 1, and the first cousins of the PseudoMRU
block are in positions 2 and 3. Let us think of the position of a leaf
as a binary integer whose least significant bit is associated with the
leaf. At each level of the tree, the relevant bit in the position is 1

if the leaf is unprotected at that level, or 0 if it is protected at that
level.

One way to see the ordering is by considering a simple trans-
formation on the binary tree: for each internal node labeled with
0, swap the left and right subtrees and change the label to 1. This
procedure produces a canonical form in which the leaf nodes are or-

dered from left to right in ascending recency position: the rightmost
leaf is the PseudoLRU way and the leftmost leaf is the PseudoMRU
way. For example, Figure 2 shows an example 8-way associative
PseudoLRU tree representing internal nodes numbers 0 through 6
labeled with randomly chosen binary values. Figure 2(b) shows the
tree after the transformation. Nodes 0, 2, 3, and 5 have had their

left and right subtrees swapped, placing the leaves into ascending
order of position.

Promoting a block has the effect of moving other blocks into
less fortunate positions, sometimes dramatically so. For instance,
promoting a block such that the bit in the root node is toggled may
move the previous PseudoLRU block down by n/2 positions. Only

one block at a time is in the PseudoLRU position, but the position
of each block is roughly proportional to its vulnerability to being
moved to the PseudoLRU position in the near future.

3.2 PseudoLRU Disturbs Non-Promoted Blocks
Let us consider the placement/promotion algorithm for tree-based

PseudoLRU. At each level in the tree, the algorithm alters a bit
to protect the referenced block without regard for the disturbance

caused to other blocks. We consider the disturbance to a block to

203



Old Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

New Position 0 1 2 3 4 5 6 7 0 1 2 3 0 1 0 0

Table 1: Minimal disturbance promotion for 16-way associativity.

be the number of positions it is moved as a result of an placement
or promotion to another block.

PseudoLRU changes the positions of non-referenced blocks out
of proportion to the analogous changes in standard LRU. Figure 1

shows the average magnitude of the change in position (the y-axis)
for non-referenced blocks when a block at a given position (the
x-axis) is placed or promoted for LRU and PseudoLRU. The av-
erage is for a 16-way set-associative 16MB cache taken over the
100 8-core workloads described in Section 5. For LRU, the max-
imum change in the position of a non-referenced block is 1 when

the formerly MRU block is not referenced, and goes down to 0.6
for the LRU block. For tree-based PseudoLRU, the non-referenced
blocks’ positions are changed much more. The formerly Pseu-
doMRU block travels on average two positions away, the block in
position 12 moves 1.39 positions away, and at most block positions

the distance traveled is significantly higher than the corresponding
position in true LRU.

Thus, the blocks’ PseudoLRU recency positions are inaccurate
reflections of their true recency positions in true LRU. That is,
blocks that might have locality may needlessly be moved too close
to LRU, exposing them to the risk of eviction. Thus, PseudoLRU

somewhat fails at imitating LRU. This is not really surprising as we
expect to give up some performance when gaining a more space-
efficient policy. However, what is surprising is that this level of

disturbance is totally unnecessary, and removing it results in a re-
placement policy far superior to LRU.

4. A MINIMAL DISTURBANCE POLICY
We propose a different placement and promotion policy for tree-

based PseudoLRU: place and promote blocks to positions that cause
the minimal amount of disturbance among all blocks while giving

the promoted block the protection it needs. The positions of blocks
in the tree can be directly manipulated with simple algorithms [10],
but we must still choose what the new positions should be to mini-
mize disturbance.

4.1 Minimal Disturbance Placement
When an incoming block is placed, we must balance the poten-

tial disturbance caused to existing blocks with the potential risk of
eviction to the placed block if it is left completely unprotected from
eviction. What is the choice of placement position to achieve min-
imal disturbance? We propose that the best choice of placement is
the one that affords the most protection to the incoming block while

still allowing for a majority of the existing blocks to remain in the
same position, while disturbing a minority of blocks.

Thus, for an n-way set-associative cache, a minimal disturbance
policy should place incoming blocks in position 3n/4. Since the
previous position of a newly evicted block was n − 1, placing the
block into position 3n/4 insures that the labels of the root node

and the second-level nodes remain the same so there are no wide
swings in the positions of the 3/4 of blocks closest to PseudoMRU.
Changing bits any closer to the root risks affecting the positions
of a majority of other blocks. The newly placed block remains
unprotected at the root level and second level, but fully protected
beyond that so it has a good opportunity to be referenced and thus

promoted.

4.2 Minimal Disturbance Promotion
Table 1 gives the old and new positions for promotions for 16-

way associativity. Let us recursively subdivide the PseudoLRU tree
into 1+log

2
n regions of greater and lesser protection, starting with

the protected subtree of the root, then the protected subtree of the

unprotected subtree of the root, and so on, ending with singleton
subtrees at positions n − 2 and n − 1. Figure 3 illustrates these
regions of protection, with more vulnerable regions shaded darker.
When a block B is promoted, a minimal number of bits in the tree
are changed such that the first block in the smallest unprotected re-
gion that contains B is moved to the MRU position. As a result, B

is moved along with the first block to a position relatively close to
MRU. This strategy gives needed protection to the promoted block
while minimizing movements among the other blocks. Thus, for
n = 16, i.e. 16-way associativity, the blocks in positions 0 through
7 remain in the same positions because they are already in the pro-
tected subtree. Position 8 moves to position 0, position 9 moves to

position 1, and so forth as in Table 1.

4.3 Three Examples
The key insight into why this policy works is that it provides

the protection a block needs given its position, balanced with the

desire to minimally disturb the other blocks. Let us consider three
examples. Refer to Figure 3.

1. Suppose the block in position 15 is hit. This block is in the

most vulnerable region of the tree. According to Table 1, this
block will move all the way to position 0, causing significant
disturbance. Why is that the right move? That block some-
how moved to the PseudoLRU position, but just experienced
a hit which is a strong hint that it has locality with a long
reuse distance. We should move that block as far away from

the PseudoLRU position as possible in case it experiences
that long-term reuse again.

2. On the other hand, suppose the block in position 3 is hit.

Figure 3: Regions of Protection in the PseudoLRU Tree. Leaf

nodes are cache blocks in order of their PseudoLRU positions.

Darker shaded regions are more vulnerable to eviction so the

blocks in those regions are afforded more protection when they

are hit.
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According to Table 1, it should remain in position 3. It is in

little danger of being evicted soon, and its more short-term
locality hints that it will be reused soon.

3. Now suppose the block in position 7 is hit. It should re-
main in position 7. It is possible that a subsequent hit to
the other half of the PseudoLRU tree will move that block to

the PseudoLRU position, but 1) those blocks are statistically
less likely to be hit, and 2) those blocks are at higher risk of
eviction, so the block in position 7 accepts its temporary dis-
turbance to pay for the protection of a more vulnerable block
that has demonstrated locality. If the disturbed block has high

locality, it will be hit again before becoming a victim.

Note that implementing our modified promotion and placement

policies incurs virtually no extra energy or area penalty; the re-
placement status vector is updated using the same sort of logic as
tree-based PseudoLRU, but with a different set of state transitions.
Indeed, dynamic energy is reduced because for a great many ac-
cesses no update needs to be made to the status vector.

4.4 Effect of Minimal Disturbance on Block
Positions

Figure 4 shows the effect of minimal disturbance placement and
promotion on the average change of non-referenced blocks. The

magnitude of changes in position is far less than the average for
PseudoLRU or even true LRU. The block in position 0 moves the
most, an average of 0.79 positions. Movements of subsequent blocks
steadily decrease until block 8, which moves an average of 0.40 po-
sitions. The block in the PseudoLRU position moves an average of
0.27 positions. We can quantify the “total disturbance” of a place-

ment and promotion policy as the area under the curve in Figure 4.
Integrating the curves for the three replacement policies, we see
that the total disturbance caused by LRU is 12.1, by PseudoLRU is
13.8, and by minimal disturbance PseudoLRU is 5.2.

Quantifying disturbance for RRIP is problematic for two rea-
sons: 1) block positions are not distinct, as in LRU and PLRU;

and 2) promotion of a block in RRIP is decoupled from changes in
other block positions; blocks are only moved away from MRU on
evictions so RRIP is not directly comparable with policies where
promotions necessarily disturb some non-promoted blocks.

4.5 Disturbance to the Evicted Block
Figure 4 assumes that the disturbance of moving from one posi-

tion to the next is constant. However, evicting a block, i.e. mov-
ing it from LRU to a position out of the cache, incurs far more
disturbance to a block than simply moving it to another position.

Thus, for example, an absurd policy of inserting only into the LRU
position and never promoting any blocks would have a very high
miss rate but relatively cause minimal disturbance. A more nu-
anced measurement of disturbance would assign a larger distance
to evicting a block than to simply changing its position. This dis-
tance would take into account latency to satisfy a cache miss as well

as the probability that the block will be referenced again. There is
no general way to know that probability a priori but, as we will
see in Section 4.6 we can estimate it dynamically with dead block
prediction.

4.6 Dynamic MDPP
The MDPP policy as presented so far is a static policy. That is,

the policy remains the same regardless of the run-time features of
the workload. However, a great deal of recent work has focused on
dynamic policies that change in response to workload characteris-

tics. Thus, we extend the minimal disturbance idea to a dynamic
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Figure 4: Average change in recency stack position for LRU,

PseudoLRU, and Static MDPP

policy. In particular, we allow the placement position to be adapted
through dead block prediction.

Some recent dynamic policies adapt the placement position us-
ing techniques such as prediction [26] and set-dueling [9,21]. Other
policies implement selective bypass, i.e. when an incoming block
is predicted to not be used before it is evicted, it is not placed in
the cache but rather bypassed to the core [3, 13]. Both of these
ideas are compatible with the minimal disturbance idea of causing

as little disturbance as possible. Clearly, selective bypass works
along provoking minimal disturbance: a block that will not be re-
referenced will only pollute the cache and confuse the replacement
policy. Such a block cannot be disturbed by bypass because it is
already a dead block. Adapting the placement position can also
achieve the minimal disturbance for PseudoLRU caches as long as

the placement position is beyond the halfway point in the Pseu-
doLRU recency stack so as not to make wide swings in block posi-
tions.

We use the sampling-based dead block prediction algorithm (SDBP)
[13] to drive block placement and bypass. A dead block predic-
tor predicts whether a block will be referenced again before it is

evicted. The SDBP paper uses the program counter (PC) of a mem-
ory instruction to index a skewed predictor that provides a number
between 0 and 9. If that number exceeds a threshold, the referenced
block is predicted to be dead. If the block is reused, the correspond-
ing counters in the prediction tables are decremented. If the block

is evicted before being reused, the counters are incremented. The
predictor learns from a sampler, a small set of partial tags held sep-
arately from the cache and managed with the LRU policy. In the
original paper, each cache block has a prediction bit associated with
it to drive the replacement policy. Our technique does not need this
extra bit since the PseudoLRU block is always evicted. The tech-

nique only consults the predictor when a block is placed.
We modify the MDPP policy to incorporate dynamism for a 16-

way set-associative cache as follows: on a cache miss, the PC of
the offending memory instruction is used to consult the dead block
predictor. The predictor returns a confidence value c between 0
and 9. If c = 0, the block is placed in position 8, which is the

closest placement to PseudoMRU that does not disturb the 8 blocks
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in the protected subtree of the root. If 0 < c < 6 then the block

is placed in position 14. This choice of placement position swaps
the previous PseudoLRU block with the next-to-PseudoLRU block,
having no effect on the positions of any other block in the set. If
c ≥ 6 then the block is bypassed, and the replacement state for the
set remains unchanged. The cutoff for bypass of 6 or greater was
determined empirically.

5. METHODOLOGY

5.1 Performance Models
We model performance with two simulators: one for single-

threaded workloads and one for 8-core multi-programmed work-
loads. Both simulators use the following memory hierarchy param-
eters: L1 data cache: 32KB 8-way associative, L2 unified cache:

256KB 8-way, DRAM latency: 200 cycles. The single-thread sim-
ulator uses a 4MB L3 cache while the multi-core simulator uses
a 16MB L3 cache. The single-thread simulator is a modified ver-
sion of CMP$im [7]. The version we used was provided with the
JILP Cache Replacement Championship [2]. It models an out-of-
order 4-wide 8-stage pipeline with a 128-entry instruction window.

This infrastructure enables collecting instructions-per-cycle (IPC)
figures as well as misses per kilo-instruction and dead block pre-
dictor accuracy. For multi-core workloads, we found that CMP$im
was quite slow and was unable to complete correctly beyond six
cores. Thus, we adapted an in-house simulator to interoperate with

CMP$im’s cache replacement code to model 8-core workloads.

5.2 Workloads
We use the 29 SPEC CPU2006 benchmarks. Each benchmark is

compiled for the 64-bit X86 instruction set. The programs are com-
piled with the GCC 4.1.0 compilers for C, C++, and FORTRAN.

Single-Threaded Workloads.
For single-threaded workloads, the results reported per bench-

mark are the weighted average of the results for the individual sim-
points. We use SimPoint [20] to identify up to 6 segments (i.e.
simpoints) of one billion instructions each characteristic of the dif-
ferent program phases for each workload. The weights are gener-

ated by the SimPoint tool and represent the portion of all executed
instructions for which a given simpoint is responsible. Each pro-
gram is run with the first ref input provided by the runspec

command. For each run, the simpoint is used to warm microarchi-
tectural structures for 500 million instructions, then measures and
reports results for the subsequent one billion instructions.

Multi-Core Workloads.
For 8-core multi-programmed workloads, we generated 100 work-

loads consisting of mixes from the SPEC CPU2006 simpoints de-
scribed above. We follow the sample-balanced methodology of
FIESTA [5]. We begin by selecting regions of equal standalone
running time for each simpoint. Each region begins at the start of
the simpoint and ends when the number of cycles in a standalone
simulation reaches one billion cycles. Each workload is a mix of 8

of these regions chosen uniformly randomly without replacement.
For each workload the simulator warms microarchitectural struc-
tures until 500 million total instructions have been executed, then
measures results until each benchmark has executed for at least one
billion additional cycles. When a thread reaches the end of its one
billion cycle region, it starts over at the beginning. Thus, all 8 cores

are active during the entire measurement period.

5.3 Replacement Policies

We compare our proposed technique against several related tech-
niques: static and dynamic versions of re-reference interval predic-
tion (SRRIP/DRRIP) [9], signature-based hit predictor for RRIP
(SHiP) [26], and static and dynamic versions of genetic placement
and promotion for tree-based PseudoLRU replacement (GIPPR/DGIPPR)
[10]. For both simulators, we directly use code provided by the

respective authors either through the World Wide Web or through
personal communication (we developed GIPPR in our lab so the ef-
fort to duplicate that work was minimal). Our dynamic policy uses
SDBP [13]. For that predictor, we used the code that is available
from the cache replacement championship website [2].

The SHiP authors graciously provided code for their predictor

in a form that was readily adaptable to the RRIP code. We mod-
ified this code to implement the sampling-based policy described
in their paper and use the program counter (PC) as the signature
for the predictor. Thus, what we hereafter refer to as SHiP in this
paper is called SHiP-PC-S in that paper’s nomenclature [26]. This
modification allows us to control the overhead consumed by SHiP’s

structures. Thus, we may allocate the same amount of storage to
both SHiP and SDBP for a fair comparison of the dynamic poli-
cies. To be clear, we implement sampling-based SHiP using the PC
as the signature and deciding the placement position for a baseline
RRIP policy with a maximum re-reference prediction value of three
and using thread-aware policy decisions (TA-DRRIP) [8, 26].

The results we present in this paper compare our technique against
SRRIP, DRRIP, SHiP, and GIPPR. In preparing this work, we also
compared our technique against SDBP-based replacement and by-
pass [13] and protecting distance based policy [3]. We find that
SHiP is superior in performance to these other policies, so we choose

not to present those results and are content to compare with SHiP.
We compare with SRRIP as an excellent static policy. We compare
with DRRIP as a relatively simple dynamic policy with good per-
formance. We compare with GIPPR/DGIPPR as the most closely
related previous work.

5.4 Overhead for Predictors
Both SHiP and SDBP require extra state for their prediction struc-

tures. SHiP uses a 14-bit signature derived as a hash of the PC in-
dexing a table of 16,384 three-bit saturating counters. It also keeps
14-bit signatures for each block in the sampled sets. SDBP keeps
three tables of 8,192 2-bit saturating counters each indexed by a
different 13-bit hash of the PC. It also keeps a sampler, an array of

cache metadata kept separately from the main cache. Each block in
the sampler includes a 15-bit partial tag, a valid bit, a prediction bit,
a 4-bit LRU stack position and a 15-bit signature. The associativity
of the sampler is 12. To keep the same amount of state for each
predictor, we use 192 sampled sets for SHiP and 96 sampled sets
for SDBP. Both predictors consume approximately 11KB.

5.5 Overhead for Techniques
Each replacement policy we study require some overhead. Ta-

ble 2 summarizes the overhead of the various polices. Note that
DRRIP and DGIPPR require a few extra bits for set dueling coun-
ters. We ignore this tiny extra storage overhead. The multi-core
MDPP policy saves area over SHiP due to the fact that it requires

only one bit of replacement state per block rather than two. This
savings translates to a fraction of a percent of the bits allocated to
the cache so we do not wish to overstate this advantage. Never-
theless, we note that the replacement state saved is typically im-
plemented using larger 8T register file cells rather than 6T SRAM
cells, and the savings in terms of cells per core of dynamic MDPP

over SHiP is approximately 8KB, which is roughly equivalent to
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Technique Overhead for 4MB cache Overhead for 16MB cache

LRU 4 bits × 2
16 blocks = 32KB 4 bits × 2

18 blocks = 128KB
PseudoLRU 15 bits × 2

12 sets = 7.5KB 15 bits × 2
14 sets = 30KB

Static MDPP same as PseudoLRU: 7.5KB same as PseudoLRU: 30KB
SRRIP/DRRIP 2 bits × 2

16 blocks = 16KB 2 bits × 2
18 blocks = 64KB

SHiP 16KB for RRIP + 11KB predictor = 27KB 64KB for RRIP + 11KB predictor = 75KB
Dynamic MDPP 7.5KB + 11KB predictor = 18.5KB 30KB + 11KB predictor = 41KB

Table 2: Overhead required by the various techniques

the size of a moderate dual-ported branch direction predictor or
branch target buffer.

5.6 Measuring Performance
In Sections 6 and 7 we report performance relative to LRU for

the various techniques tested. For single-threaded workloads, we

report the speedup over LRU, i.e. the instructions-per-cycle (IPC)
of a technique divided by the IPC given by LRU. For the multi-core
workloads, we report the weighted speedup normalized to LRU.
That is, for each thread i sharing the 16MB cache, we compute
IPCi. Then we find SingleIPCi as the IPC of the same program
running in isolation with a 16MB cache with LRU replacement.

Then we compute the weighted IPC as
∑

IPCi/SingleIPC
i
. We

then normalize this weighted IPC with the weighted IPC using the
LRU replacement policy.

6. RESULTS FOR STATIC POLICIES
This section gives results for static policies. These policies do

not adapt to changing workload characteristics, but are relatively
simple to implement and verify. For instance, the static MDPP pol-
icy could be plugged in easily to an existing PseudoLRU-replaced
cache by simply modifying the algorithm or lookup table that im-

plements placement and promotion.
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Figure 5: Normalized Weighted Speedup over LRU for Static

Policies on 8-core Workloads

6.1 Multi-Core Workloads

6.1.1 Performance

Figure 5 shows weighted speedup normalized to LRU for SR-
RIP, static MDPP, and standard PseudoLRU with a 16MB last-level

cache (see Section 5.6 for our definition of speedup). The figure
shows the speedups for each workload in ascending sorted order
to yield S-curves. Standard PseudoLRU performs somewhat worse
than LRU, giving a geometric mean speedup of 0.99. SRRIP gives a
5.0% improvement over LRU. Static MDPP gives a 5.3% improve-
ment over LRU. The best speedup of static MDPP over SRRIP is

18%, while the best speedup of SRRIP over static MDPP is 15%.
Thus, static MDPP exceeds the performance of SRRIP on multi-
core workloads.

GIPPR with a single vector performs poorly. Its average speedup
over LRU is 0.98, i.e. it delivers a 2% slowdown. We have probed

deeply into the GIPPR algorithm with the author of the original
work to try to determine why it performs poorly on multi-core
workloads. GIPPR was designed by a genetic algorithm using
single-threaded workloads. We conclude that its parameters work
well in that context, but are not suitable for multi-core workloads.
Single-core workloads are characterized by a few distinct patterns

of behavior that can be captured by a handful of GIPPR vectors, but
multi-core workloads combine characteristics resulting in a wide
range of behaviors that cannot be distilled down to a small number
of vectors.

6.2 Single-Threaded Workloads

6.2.1 Performance

Figure 6 gives the speedup over LRU for several static techniques
on single-threaded workloads with a 4MB last-level cache. The
benchmarks on the y-axis are sorted based on their performance on
the DRRIP policy. We use the same ordering in Section 7 for the bar
chart there. Most of the benchmarks are not helped or significantly
hurt by most of the policies. The aggregate speedup attributable

to the polices are mostly due to the memory intensive benchmarks
listed to the right of 401.bzip2. However, some benchmarks
such as 459.GemsFDTD and 471.omnetpp experience some
slowdown from non-LRU policies.

Standard PseudoLRU gives no speedup or slowdown over LRU

on average. SRRIP gives a geometric mean 2.6% speedup over
LRU. GIPPR with a single vector optimized for the SPEC CPU2006
benchmarks gives a speedup of 3.5%. Static MDPP gives a speedup
of 2.5%. Thus, static MDPP gives comparable performance to SR-
RIP. While GIPPR is slightly better than the static MDPP Cache on
single-threaded workloads, static GIPPR performs poorly on multi-

core workloads.

6.2.2 Misses

Figure 7 illustrates misses per 1000 instructions for the single-
threaded workloads. The benchmarks on the y-axis are sorted in
descending order of misses for DRRIP. GIPPR yields the fewest
misses at an average 6.2 MPKI. The arithmetic mean MPKI for

standard PseudoLRU is approximately the same as LRU. SRRIP
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yields 6.6 MPKI on average while static MDPP gives 6.4 MPKI on

average.

7. RESULTS FOR DYNAMIC POLICIES
This section gives results for dynamic policies. These policies

adapt to different workload characteristics using set-dueling and/or
prediction. Dynamic policies deliver the best performance in the
literature. In particular, SHiP represents the current state-of-the-art
cache management policy.

7.1 Multi-Core Workloads
Figure 8(a) shows the normalized weighted speedup for the var-

ious dynamic techniques. The speedups for the 100 workloads are
shown as S-curves, sorted in ascending order. DRRIP yields a ge-

ometric mean 10.5% speedup. The 4DGIPPR technique gives a
geometric mean 4.3% improvement over LRU. The state-of-the-art
SHiP policy gives a 12.3% speedup. Dynamic MDPP achieves a
14.3% speedup. The best speedup of dynamic MDPP over SHiP
is 24%, while the best speedup of SHiP over dynamic MDPP is
19%. The figure shows a clear separation between each technique,

with dynamic MDPP outperforming all of the other techniques for
almost all of the workloads. Thus, MDPP improves performance
over previous techniques without increasing complexity.

7.2 Single-Threaded Workloads

7.2.1 Performance

Figure 9 illustrates the speedup over LRU of the various dynamic
techniques. The benchmarks on the y-axis are sorted based on
their speedup over LRU for the DRRIP policy. DRRIP achieves a
speedup of 5.4% over LRU. Dynamic MDPP yields a 5.9% speedup.

4DGIPPR, the 4-vector dynamic version of GIPPR, gives a 5.6%
speedup. SHiP gives a 5.9% speedup. Thus, dynamic MDPP matches
the performance of the state-of-the-art policy SHiP and exceeds the
performance of 4DGIPPR whose 4 vectors are specially designed
to work well with these specific single-threaded workloads.

7.2.2 Misses

Figure 10 gives the misses per 1000 instructions for the dynamic
policies. The benchmarks on the y-axis are sorted in descending
order of their misses on DRRIP. DRRIP and 4DGIPPR both give an
arithmetic mean misses of 91% of LRU. SHiP delivers a arithmetic
mean normalized misses of 89% of LRU. Dynamic MDPP yields

88% of the misses of LRU.

7.3 Impact of Storage Overhead
In the main results, we model SHiP and dynamic MDPP with the

same storage overhead for the predictors, including tables of coun-

ters and set sampling overhead. However, SHiP consumes 32 extra
bits per set for storing the 16 2-bit re-reference interval prediction
values, while MDPP requires only an additional 15 bits per set to
store the PseudoLRU tree internal node values.

In another area study (not illustrated for space reasons), we per-
formed three iso-area comparisons of SHiP with dynamic MDPP to

study the impact of this additional storage overhead. In the first ex-
periment, we modeled SHiP with a smaller 2.5KB predictor, thus
reducing the total overhead of SHiP to roughly the same as the
dynamic MDPP Cache for the single-core 4MB cache configura-
tion. This change had negligible impact on SHiP’s performance. In

the second experiment, we modified SHiP to use one bit for RRIP
states rather than two bits, so that SHiP and dynamic MDPP would
have equivalent storage requirements for the larger 16MB cache.
This change resulted in a reduction of SHiP’s speedup from 12.3%
to 9.3%. In the third experiment, we allowed the 16MB dynamic
MDPP to expand the number of sampled sets such that SHiP and

MDPP consume the same number of bits overall, including the per-
set bits in the hardware budget. This allows MDPP to use 966
sampled sets instead of 96, resulting in an increase in the speedup
from 14.3% to 15.0%. Thus, while the size of the SHiP predictor
does not seem to have a large impact on performance, the size of
the per-block state, which is the majority of the cache management

metadata storage in the multi-core cache, has a significant impact
on performance. Moreover, replacing SHiP with dynamic MDPP
and keeping total area constant results in an 15.0% speedup.

8. ANALYSIS
Figure 11 quantifies the contributions of the individual place-

ment and promotion policies to improving tree-based PseudoLRU.
All combinations of standard PseudoLRU placement and promo-
tion, minimal disturbance promotion, and static and dynamic min-
imal disturbance placement are considered. The effect of the tech-
nique with and without bypass is also illustrated, alongside SHiP

with and without bypass. The normalized weighted speedups are
aggregated over the 100 multi-core workloads. The bar chart is
ordered in ascending geometric mean speedup over true LRU.

8.1 Effects of Minimal Disturbance
Minimal disturbance promotion with standard placement at posi-
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namic Policies on 8-core Workloads

tion 0 gives a geometric mean of 98.8% of the performance of LRU,
very slightly worse than normal PseudoLRU at a 99.2%. Stan-
dard promotion with minimal disturbance placement yields a 4.3%
speedup over LRU. Minimal disturbance promotion and static min-

imal disturbance placement together (i.e. static MDPP) give a 5.3%
improvement over LRU. At this point, it is clear that the placement
position is more important for performance than the promotion pol-
icy, but both are needed for the best static policy.

The contribution of minimal disturbance promotion is more ap-

parent for the dynamic policies. Dynamic minimal disturbance
placement with standard PseudoLRU promotion yields a geometric
mean speedup of 12.3%, which is matches the performance of SHiP
(not illustrated). With both minimal disturbance promotion and dy-
namic minimal disturbance placement (i.e. dynamic MDPP), the
geometric mean speedup is boosted to 14.3%.

8.2 Effect of Bypass
Dynamic MDPP bypasses blocks that are predicted dead, in keep-

ing with the minimal disturbance principle i.e. blocks that do not
enter the cache cannot disturb the cache. SHiP was described as a

placement policy for RRIP without considering bypass. It uses a
threshold on the 3-bit confidence counter read from the prediction
table to decide whether to place a block in the distant re-reference
interval or the immediate re-reference interval. We modify SHiP
to use two thresholds: one to indicate that the probability of a hit
is so low that the block should be bypassed rather than placed, and

a higher one to decide whether to place in the distant or immedi-
ate re-reference interval. Sampled sets are not bypassed so that the
predictor can continue to learn from them. We exhaustively search
the design space of all pairs of feasible thresholds and report the
configuration with the best performance: a threshold of 0 for by-

pass and 1 for distant re-reference interval placement. Refer again
to Figure 11. We find that SHiP with bypass performs about as
well as SHiP without bypass: 12.2% speedup vs. 12.3% speedup
over LRU. We also model MDPP without bypass, which yields a
speedup of 11.1% over LRU, vs. 14.3% with bypass. Dead blocks
entering an MDPP-managed cache can cause disturbance harmful

to performance in the PseudoLRU tree in the rare case that a promo-
tion to another block may unintentionally move a dead block out of
the PseudoLRU position. Dead blocks entering a SHiP-managed
cache do not affect the re-reference interval predictions of other
blocks since they enter with a distant re-reference interval and are
quickly evicted. Thus, bypass significantly helps MDPP while not

helping SHiP.

9. FUTURE WORK
In this section, we motivate future work in minimal disturbance

policies. In particular, we would like to apply minimal disturbance
policies to die-stacked DRAM caches. In a set associative DRAM
cache design, placing tags and replacement state in the on-chip
SRAM causes a large capacity overhead. The minimal disturbance
policy uses less than half of the per-set state of DRRIP, SRRIP, and
SHiP, so for smaller DRAM caches it may be possible to keep the

replacement state on-chip. Still, for larger caches, it may be neces-
sary to keep it in DRAM.

Recent work proposes storing tags and replacement state in the
DRAM rather than SRAM [18], or even doing away with associa-
tivity altogether [22]. Changing replacement state in the DRAM
cache involves a costly read-modify-write cycle separate from data

access. For a miss, this cycle may be unavoidable as tags need to

209



459.Gem
sFDTD

447.dealII
471.om

netpp

437.leslie3d

434.zeusm
p

464.h264ref

454.calculix

403.gcc
416.gam

ess
453.povray
458.sjeng
410.bwaves

465.tonto
470.lbm
445.gobm

k
444.nam

d
401.bzip2
456.hm

m
er

433.m
ilc

450.soplex
435.grom

acs

481.wrf
462.libquantum

483.xalancbm
k

473.astar
400.perlbench

482.sphinx3

436.cactusADM

429.m
cf

Geom
etric M

ean

Benchmark

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

ov
er

B
as

el
in

e
L

R
U

1.0

1.2

1.4

1.6

1.8

DRRIP
4DGIPPR
SHiP
Dynamic MDPP

Figure 9: Speedup over LRU for Dynamic Policies on Single-Threaded Workloads

429.m
cf

470.lbm
462.libquantum

433.m
ilc

450.soplex
471.om

netpp

459.Gem
sFDTD

410.bwaves

437.leslie3d

481.wrf
473.astar
483.xalancbm

k

436.cactusADM

482.sphinx3

434.zeusm
p

445.gobm
k

458.sjeng
444.nam

d
465.tonto
400.perlbench

435.grom
acs

401.bzip2
454.calculix

447.dealII
464.h264ref

403.gcc
456.hm

m
er

453.povray
416.gam

ess
Arithm

etic M
ean

Benchmark

10

20

30

40

M
is

se
s

P
er

10
00

In
st

ru
ct

io
ns

10

20

30

40

LRU
DRRIP
4DGIPPR
SHiP
Dynamic MDPP

Figure 10: Misses per 1000 Instructions for Dynamic Policies
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Figure 11: Contributions of aspects of MDPP to performance

be modified as well, but for a hit, if the promotion does not change

replacement state, then there is no need to modify it in DRAM. The

MDPP policy could avoid this costly operation for the promotions
that leave the referenced block in the same position.

We measured the percentage of accesses that are hits whose pro-

motions modify replacement state for the various policies average
over the 100 multi-core workloads. LRU, PseudoLRU, GIPPR,
DGIPPR, and SRRIP promotions all modify replacement state for
more than 20% of all cache accesses. DRRIP promotions modify
replacement state on 18% of accesses. SHiP promotions modify
state on 17% of accesses. Promotions from dynamic MDPP modify

state for 14% of access, and promotions from static MDPP modify
state for only 9% of accesses. Thus, a DRAM cache management
strategy that optimizes for the case when replacement state need
not be changed in DRAM can potentially find significant benefit
from using MDPP.

10. CONCLUSIONS
In this paper, we have considered the principle of minimal dis-

turbance as applied to the changes in positions of cache blocks.
We have shown that tree-based PseudoLRU is disturbing, and that
mending it significantly improves the policy. We have shown that
the static minimal disturbance policy as well as a dynamic version
using dead block prediction provide performance competitive with
state-of-the-art policies at a significantly lower cost in terms of stor-

age overhead. In future work, we will investigate applying favor-
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able features of these policies, namely, low overhead, avoidance of

many read-write-modify promotions, and low miss rate, to associa-
tive DRAM caches.
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