
Adaptive GPU Cache Bypassing

Yingying Tian‡
∗

Sooraj Puthoor† Joseph L. Greathouse†

Bradford M. Beckmann† Daniel A. Jiménez‡

‡Texas A&M University †AMD Research
‡{tian, djimenez}@cse.tamu.edu †{Sooraj.Puthoor, Joseph.Greathouse, Brad.Beckmann}@amd.com

ABSTRACT
Modern graphics processing units (GPUs) include hardware-
controlled caches to reduce bandwidth requirements and en-
ergy consumption. However, current GPU cache hierarchies
are inefficient for general purpose GPU (GPGPU) comput-
ing. GPGPU workloads tend to include data structures
that would not fit in any reasonably sized caches, leading
to very low cache hit rates. This problem is exacerbated by
the design of current GPUs, which share small caches be-
tween many threads. Caching these streaming data struc-
tures needlessly burns power while evicting data that may
otherwise fit into the cache.

We propose a GPU cache management technique to im-
prove the efficiency of small GPU caches while further re-
ducing their power consumption. It adaptively bypasses the
GPU cache for blocks that are unlikely to be referenced again
before being evicted. This technique saves energy by avoid-
ing needless insertions and evictions while avoiding cache
pollution, resulting in better performance. We show that,
with a 16KB L1 data cache, dynamic bypassing achieves
similar performance as a double-sized L1 cache while reduc-
ing energy consumption by 25%, and power by 18% of the
baseline.

The technique is especially interesting for programs that
do not use programmer-managed scratchpad memories. We
give a case study to demonstrate the inefficiency of current
GPU caches compared to programmer-managed scratchpad
memories and show the extent to which cache bypassing can
make up for the potential performance loss where the effort
to program scratchpad memories is impractical.

Categories and Subject Descriptors
B.3.2 [Design Styles]: Cache memories

∗Work performed while interning at AMD Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

GPGPU’15 , February 2, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3407-5/15/02

General Terms
Microarchitecture, GPU, cache management

Keywords
GPU cache, bypassing, prediction

1. INTRODUCTION
By densely packing many parallel arithmetic logic units

together and clocking them at a moderate rate, graphics pro-
cessing units (GPUs) have a much higher throughput than
traditional CPUs of similar size and power envelope [39, 44].
The last decade has seen growth in GPGPU programming,
where these graphics processors are used to perform highly
parallel computations on traditional computational prob-
lems. Because of the large performance increases attainable
with these processors, GPGPU programming has evolved
into a popular way to accelerate highly parallel and com-
putationally intensive algorithms [48]. As part of this move
towards more general-purpose architectures, recent GPU de-
signs have included deep hardware-controlled cache hierar-
chies to ease the burden of writing efficient GPGPU algo-
rithms [1, 41, 42, 3].

Replicating CPU cache management policies in GPU cach-
es leads to performance and power inefficiencies. Unlike
CPUs, GPUs run thousands of concurrent threads, greatly
reducing the per-thread cache capacity. Moreover, many
GPGPU workloads include large data structures that do
not fit into any reasonably sized caches. These streaming
accesses replace many other useful values, such that even
frequently accessed data may be evicted before being refer-
enced again. Placing this streaming data into a traditional
cache hierarchy needlessly costs energy and yields no per-
formance benefit.

A naive solution is to add more storage to the cache hi-
erarchy, which is inefficient for GPUs, as the die area spent
on these caches could instead be dedicated to more paral-
lel computation resources increasing overall throughput. A
good GPU cache management technique should thus strive
to make small caches highly efficient for GPGPU workloads.
They should yield a high hit rate for reused values while
avoiding the energy used to store values that will not be
reused.

This paper presents dynamic hardware mechanisms that
reduce the need for explicitly caching all data in GPU caches.
We propose a GPU cache management technique that en-
hances the L1 data caches in a modern GPU by improv-
ing cache efficiency and reducing energy consumption. Our



technique uses low-overhead dynamic bypass prediction to
prevent streaming one-time-use values from being needlessly
cached. If it predicts that a block will be reused, the data
is placed into the cache hierarchy as normal. If a block is
unlikely to be reused, it is sent directly to the compute units
without being placed into the cache. Bypassing saves energy
by avoiding storing values into the cache only to later evict
them after never accessing them again. Moreover, by insert-
ing fewer useless blocks, the bypass mechanism allows useful
data to reside in the cache longer, increasing the cache hit
rate and improving performance.

We show that, over 13 GPGPU benchmarks, a 16KB L1
cache that uses our bypass predictor increases performance
by up to 13% and slightly outperforms a 32KB L1 cache
without bypass. Futhermore, our bypass predictor reduces
L1 cache energy consumption by 25% while requiring less
than 256 bytes of extra storage in each private L1 cache
and 0.5KB of extra storage in the 256KB shared L2 cache.
Rather than doubling the size of the caches to improve hit
rate, our technique keeps the caches small, allowing the
saved area to be used for additional compute units.

This paper makes the following contributions:

• We propose a simple but effective GPU cache manage-
ment technique. It prevents streaming one-time-use
values from being needlessly inserted into the cache
with high accuracy and minimal area overhead.

• We demonstrate performance gains and energy savings
when using our bypass predictor for a GPU L1 data
cache.

• We study limitations of current GPU cache design and
the effects of a bypass predictor as they relate to using
scratchpad memories. In particular, we compare an
application that uses scratchpad memories to a rewrit-
ten version of the same application that does not re-
quire the complexity of manual memory layout in the
context of our optimization.

The organization of this paper is as follows: Section 2
introduces the background of GPU computing and motives
the proposed technique. Section 3 describes the bypass pre-
dictor in detail, and Section 4 discusses the experimental
methodology we use to evaluate our design. We explore our
experimental results in Section 5, and discuss related work in
Section 6. Finally, Section 7 concludes and discusses future
work.

2. BACKGROUND AND MOTIVATION
A GPU is a highly parallel processor consisting of hun-

dreds to thousands of concurrently operating ALUs. Though
they were originally hard-coded circuits meant only to accel-
erate 3D graphics computations, modern GPUs are now fully
programmable general-purpose processors. General purpose
GPU computing uses GPUs to accelerate applications in
domains such as science, engineering, physics, media, and
statistics [48].

2.1 GPUs and GPGPU Computing
Because GPUs were originally fixed-function circuits, pro-

gramming them to yield useful general-purpose results was a
laborious process that involved mapping the computational
kernel onto the graphical equations that the GPU could per-
form [16, 15, 8]. As GPUs became more programmable,

languages such as OpenCLTM [21] and CUDA [40] have
emerged to allow C-like programming of these accelerators [38,
21]. Among many microarchitectural details that program-
mers must contend with to attain high GPU performance,
this paper focuses on the GPU memory system.

GPUs hide long memory access latencies through a high
degree of thread-level parallelism. If one group of threads
is stalled on a long latency memory request, many others
can take that opportunity to execute. This is acceptable
for most graphics workloads, but some GPGPU workloads
can cause the whole pipeline to stall by causing all avail-
able thread groups to wait on memory. In addition, both
graphics and general-purpose applications can heavily tax
the memory bandwidth of a GPU. As such, GPUs tradi-
tionally used small read-only texture caches and scratch-
pad memories in order to increase available bandwidth to
their computational pipelines. However, these resources are
difficult to use for GPGPU workloads because they require
either the programmer or compiler to decide whether partic-
ular memory accesses should go through these subsystems.

Modern GPU architectures have adopted hardware-contro-
lled cache hierarchies between globally accessible DRAM
and the compute units to aid programs that are unable to
use the GPU’s shared memory [41]. For example, AMD’s
Graphics Core Next (GCN) architecture [3] has a 16KB
private L1 cache for each compute unit and 64-128KB of
shared L2 cache per memory channel. Nvidia’s Fermi archi-
tecture [41] has a 16KB/48KB configurable private L1 cache
for each streaming multiprocessor and 768KB of shared L2
cache. The Heterogeneous System Architecture (HSA) Foun-
dation has announced a roadmap that includes fully coher-
ent cache memories across CPUs and GPUs [5].

Hardware-managed GPU caches are used for two main
purposes: 1) to cache data with immediate spatial and tem-
poral locality, and 2) as write-combining buffers to reduce
the memory bandwidth and energy requirements of the sys-
tem. Although caches are effective write-combining buffers
for GPGPU workloads, they are less useful at exploiting lo-
cality [26]. The underlying reason for this is the streaming
nature of GPGPU memory accesses resulting in good spatial
locality but very low temporal locality.

2.2 Memory Characteristics of GPGPU Pro-
grams

Traditional graphics workloads traverse large scenes of 3D
vertices while calculating shading values, performing math-
ematical transformations, and laying textures on surfaces.
These algorithms stream large amounts of data from mem-
ory, consuming hundreds of megabytes to render a single
frame. Because such large working sets are completely im-
practical to hold in on-chip caches, GPUs have traditionally
had copious memory bandwidth and enough parallelism to
keep these long latency accesses from stalling.

This bandwidth and latency hiding has subsequently af-
fected the kinds of general-purpose applications that are
commonly ported to run on GPUs. GPGPU applications
often look like graphics workloads: highly parallel, regu-
lar, and with large storage and bandwidth needs. Although
these workloads may exhibit good data reuse, the distance
between repeated accesses to the same value is such that
most of the reusable data is evicted from the cache before it
can be touched again.

Figure 1 demonstrates this idea across a series of bench-



0%	
  
10%	
  
20%	
  
30%	
  
40%	
  
50%	
  
60%	
  
70%	
  
80%	
  
90%	
  
100%	
  

sp
mv
	
  
sra
d	
   bfs

	
  
lud
	
  

ma
tri
xm
ul	
  

km
ea
ns
	
  

his
tog
ram

	
  

ba
ckp
rop
	
  

nn
	
  

bit
on
ic	
   dc

t	
  
so
rt	
   nw

	
  

ari
th.
	
  m
ea
n	
  

Pe
rc
en

ta
ge
	
  o
f	
  z
er
o-­‐
re
su
se
	
  b
lo
ck
s	
  	
  

Figure 1: Zero-reuse blocks in the L1 data cache

marks from the Rodinia suite [9] and a selection of AMD
APP SDK [4] programs. The zero-reuse bars represent the
percent of cache blocks that are evicted from a 16KB L1
cache before they are touched again. This data shows that
an average of 46% (and a maximum of 84%) of cache blocks
are evicted by the pseudo-LRU replacement algorithm with-
out being touched again. Inserting this data into the cache
costs energy, but only results in pollution and the potential
eviction of other useful blocks.

Streaming data accesses in these programs, coupled with
large data sets, are the primary reasons for these long reuse
distances. For graphics applications, GPUs traditionally
used different memory subsystems for data that would cache
well (such as textures), allowing other data to bypass these
specialized caches. Similarly, scratchpad memories (called
Local Data Stores on AMD GPUs [1, 3] and Shared Mem-
ory on Nvidia GPUs [41, 42]) can be used to manually store
reusable data while skipping streaming values. Some GPUs
now include compiler hints to say that particular static loads
are streaming and so should not be cached [30, 27, 6].

As GPGPUs extend further into non-traditional domains,
more programmers whose expertise lies outside GPU archi-
tectures are using these devices. Such explicitly managed
memory systems are known to be more difficult to use than
hardware-controlled caches [34], requiring such structures
limits the market for GPUs to only expert programmers.
Moreover, scratchpad memories are not portable across de-
vices or generations of designs. Scratchpad sizes and layouts
change over time, further increasing the programmer’s bur-
den. With these issues in mind, this paper focuses on hard-
ware mechanisms that can improve existing GPU caches and
be transparent to software and programmers.

2.3 Improving GPU Caches
We previously identified two major problems with GPU

caches: 1) They are not effective at exploiting temporal lo-
cality due to noise from streaming data; and 2) insertions
and evictions of useless data consumes energy without per-
formance gain.

Figure 2 shows the average performance improvement of
different L1 data cache sizes normalized to a 16KB base-
line over a series of GPGPU benchmarks described in Sec-
tion 4.2. This demonstrates that more powerful caching sys-
tems have the capability to increase the GPU’s performance.
However, L1 caches larger than 16-64KB are impractical for
current GPU designs.

As described in Section 2.1, current AMD GPUs have

1	
  
1.05	
  
1.1	
  

1.15	
  
1.2	
  

1.25	
  
1.3	
  

1.35	
  
1.4	
  
1.45	
  
1.5	
  

32KB	
   64KB	
   128KB	
   256KB	
   512KB	
   1024KB	
  

Pe
rf
or
m
an

ce
	
  Im

pr
ov
em

en
t	
  

N
or
m
al
iz
ed

	
  to
	
  1
6K

B	
  
L1
	
  C
ac
he

	
  

sizes	
  of	
  L1	
  cache	
  

Figure 2: Performance improvement normalized to a 16KB
L1 cache with different cache sizes

16KB of L1 data cache per compute unit. The previous gen-
eration of Nvidia chips had a dynamically configurable 16KB
or 48KB L1D. The current generation of Nvidia GPUs, Ke-
pler, can configure its L1 data cache to be 16, 32, or 48KB
[42]. However, this L1 cache is only used to store local data,
such as register spills, and is always bypassed when accessing
global data, i.e. there is essentially no hardware-controlled
R/W L1 data cache [43].

These cache sizes are unlikely to increase significantly as
the general performance benefit from adding extra cache
space does not outweight the extra area taken up by these
caches. That area could instead be dedicated to more com-
putational resources, which would directly increase perfor-
mance in traditional graphics and many GPGPU applica-
tions. Unfortunately, at these sizes, the large GPGPU data
structures and streaming data cause unnecessary cache evic-
tions, reducing reuse and wasting energy. They are not
cacheable because of the thrashing or streaming access pat-
terns [22].

If these zero-reuse blocks were not inserted into the cache
when accessed, only useful data would be installed. This
data would also be more likely to remain in the cache and
be reused before being evicted. Therefore, a bypass decision
mechanism could increase the efficiency of the cache without
requiring either effort on the programmer’s part or a large
amount of area.

The remainder of this paper investigates adaptive GPU
cache bypassing mechanisms that avoid inserting zero-reuse
blocks into the L1 data cache of the GPU.

3. ADAPTIVE GPU CACHE BYPASSING
We propose a dynamic GPU cache bypassing technique

that prevents zero-reuse blocks from being placed in the L1
data cache of the GPU compute units that access them. If a
block is unlikely to be accessed again before it is evicted from
the cache, the mechanism instead sends the data directly to
the compute unit, bypassing the cache. This technique saves
energy by avoiding needless insertions followed by later evic-
tions and improves performance by reducing cache pollution.

The most important question for such a technique is: how
can the hardware decide whether a block is zero-reuse when
it fetches data during a cache miss? Previous CPU cache by-
passing techniques proposed to make decisions using mech-
anisms such as frequency of accesses [25, 29], temporal lo-
cality information [20], or reuse distance [23]. Using infor-
mation related to memory addresses is impractical in GPU



caches due to the large number of data accesses. Single In-
struction Multiple Data (SIMD) units used in GPUs simul-
taneously perform the same task on different items of data,
resulting in a high degree of data parallelism and large num-
bers of memory addresses. Using memory address-related
information to make bypass decisions would require a large
amount of storage, which is not amenable to GPUs. Fig-
ure 3 shows a study of the number of 64B memory blocks
accessed in our set of benchmarks. Hundreds of thousands
of memory blocks are accessed during the execution of these
small kernels.

0	
  

100000	
  

200000	
  

300000	
  

400000	
  

500000	
  

600000	
  

700000	
  

800000	
  

900000	
  

ba
ckp
rop
	
  

bfs
	
  

bit
on
ic	
   dc

t	
  

his
tog
ram

	
  

km
ea
ns
	
  

lud
	
  

ma
tri
xm
ul	
   nn

	
  
nw
	
  

so
rt	
  

sp
mv
	
  

sra
d	
  

ari
th.
	
  M
ea
n	
  

Di
s$
nc
t	
  C

ac
he

	
  B
lo
ck
s	
  A

cc
es
se
d	
  

Figure 3: Number of distinct blocks accessed in execution
of each benchmark

0	
  
10	
  
20	
  
30	
  
40	
  
50	
  
60	
  
70	
  
80	
  
90	
  
100	
  
110	
  
120	
  

ba
ckp
rop
	
  

bfs
	
  

bit
on
ic	
   dc

t	
  

his
tog
ram

	
  

km
ea
ns
	
  

lud
	
  

ma
tri
xm
ul	
   nn

	
  
nw
	
  

so
rt	
  

sp
mv
	
  

sra
d	
  

ari
th.
	
  M
ea
n	
  

Di
s$
nc
t	
  P

Cs
	
  w
ith

	
  L
oa

d	
  
In
st
ru
c$
on

s	
  

Figure 4: Number of distinct Load Instruction PCs executed
in each benchmark

Compared to the large amount of data accessed in GPGPU
workloads, the number of memory instructions is much smaller
because program behavior is dominated by a few small ker-
nels and a high degree of thread-level parallelism.

Figure 4 shows that there are far fewer distinct load in-
structions executed in each benchmark. Rather than hun-
dreds of thousands of data addresses, there are instead only
tens to hundreds of distinct program counters (PCs) of mem-
ory instructions. Thus, a predictor indexed using PCs of
memory instructions is more practical than one indexed with
accessed addresses. There are fewer distinct entries, requir-
ing far less on-chip storage, and there are fewer distinct val-
ues concurrently generated, reducing the port count of the
predictor. Beyond the capacity concern, a PC-based predic-
tor can be more accurate because it learns to generalize the
behavior of a single instruction to multiple data blocks.

Previous CPU dead block prediction techniques leverage
the fact that sequences of memory instruction PCs tend to
lead to the same behavior for different memory blocks [31,

35]. Khan et al. showed that in last level caches (LLCs),
the PC of the last memory instruction to touch a particular
block is highly correlated with whether or not the block will
be used again, leading to a compact and highly accurate
predictor [28]. Wu et al. used this observation to classify
LLC blocks in terms of their likely reuse distances [49].

We extend this intuition to predict zero-reuse blocks in
GPGPU workloads. Although both our technique and the
sampling dead block prediction (SDBP) [28] use PCs to
make a prediction, the intuition behind them is different.
SDBP is designed for LLCs, where much of the temporal
locality has been filtered by higher level caches. Thus, using
the PC of the last memory instruction rather than a trace
of PCs as in previous work [31, 35] achieves higher accuracy
in LLCs. By contrast, our technique is designed for GPU L1
caches, where temporal information is complete. However,
we propose to use the PC of the last memory instruction,
rather than sequences of memory instructions, because of the
observation of characteristics of GPGPU memory accesses
as shown in Figure 4. Since GPU kernels are small and fre-
quently launched, the interleaving changes frequently. This
interleaving has a negative impact on warm-up time for the
predictor when using PC traces rather than the last PC.

3.1 Structure of PC-based Bypass Predictor
This section describes the design of a PC-based bypass

predictor.

0111

128−entry prediction table

4−bit saturating counter

L2 Shared Cache

1−bit bypassBit

extra structure

set i
cache block

extra metadata stored in tag entry

L1 Data Cache

7−bit hashedPC
index

Figure 5: Structure of PC-based Bypass Predictor in GPU
L1 cache

Figure 5 shows the structure of the PC-based bypass pre-
dictor in a GPU L1 cache. The predictor keeps a 128-entry
prediction table aside the L1 cache, where each entry con-
tains a 4-bit saturating counter. This table is indexed by
a hashed PC and consumes 64 bytes of storage of each L1
cache. The number of entries of the prediction table is very
small taking advantage of the characteristics of GPU pro-
grams that there are only few distinct PCs. Each access
to the prediction table yields a confidence compared with
a threshold; if the threshold is met, then the corresponding
block accessed by that PC is predicted as zero-reuse. Beyond
the prediction table, each tag entry stores one more item of
metadata: a hashed PC value (7 bits) that records the last
memory instruction that referenced the current block.

No matter how high the prediction accuracy is, a bypass
misprediction in this design is irreversible. That is, when a
bypass decision related to a PC is made, no blocks accessed
by that PC will be placed into the L1 cache. If the predic-
tion is wrong, all subsequent blocks accessed by this PC will
miss in the L1 cache, causing additional penalties for access-
ing lower cache levels. To correct potential mispredictions,
each L2 cache block keeps an extra bit, called the bypassBit,



to help verify predictions. When a block is selected to be
bypassed on a L1 cache miss, the prediction is sent to the
L2 cache with the memory request. The L2 cache stores this
information in the corresponding L2 entry (set bypassBit =
1). If the block is referenced again before being evicted from
the L2 cache, this information is sent back to the L1 cache
with the requested data, indicating that the previous bypass
prediction might be incorrect. The requested block will not
be bypassed this time. Instead, it is placed into the L1 cache
for potential verification.

3.2 Prediction Algorithm Details
In this section we describe the prediction algorithm in

detail.

On each L1 access (address , PC):
If (the access is a hit) {

/* corresponding prediction entry
is updated to indicate a
reused block */

predictionTable[block[address ].
hashedPC)]--;

/* PC information is stored in the
cache entry for future

verification */
block[address ]. hashedPC = hash(PC)

;
/* update LRU replacement status

*/
block[address ]. LRU_stack = 0;

}
else {

/* get bypass prediction */
bool isBypassed = predictionTable[

hash(PC)] >= threshold ? true:
false;

/* send memory request to L2 ,
along with the prediction */

SendMemReq (address , isBypassed);

if (! isBypassed) {
/* if the prediction is to not

bypass
* a victim block(VictimAddr)

has to be replaced
* corresponding prediction

entry is updated to
indicate a zero -reuse block

*/
predictionTable[block[

VictimAddr ]. hashedPC ]++;

/* bypassBit stored in L2 cache
is sent back with

requested data */
bypassBit = L2Block[address ].

bypassBit;
L2Block[address ]. bypassBit =

false;
Data = RecvMemPkt(address ,

L2Block[address ].data ,
bypassBit);

/* cache installation */
block[address ].data = data;
block[address ]. hashedPC = hash(

PC);
block[address ]. LRU_stack = 0;

}
else {

/* if the prediction is to
bypass , use the bypassBit
to confirm */

bypassBit = L2Block[address ].
bypassBit;

L2Block[address ]. bypassBit =
false;

Data = RecvMemPkt(address ,
L2Block[address ].data ,
bypassBit);

if(bypassBit) {
/* if the bypssBit

indicates a previous
misprediction , do not
bypass */

isBypassed = false;
block[address ].data = data

;
block[address ]. hashedPC =

hash(PC);
block[address ]. LRU_stack =

0;
}
else {

/* bypass L1 cache */
} } }

Listing 1: Pseudocode of PC-based Bypassing Prediction

Listing 1 gives the pseudocode of our PC-based bypass pre-
dictor. We use the least-recently-used (LRU) replacement policy
in this example. On each L1 access, the L1 cache is searched
for the tag of the requested block. If there is a tag match, then
the last PC that accessed this block led to a reused block. A
prediction table entry indexed by the hashed PC stored in the
cache entry is decremented to indicate a potentially reused block.
The current PC is hashed and stored in the cache entry, with the
corresponding replacement status updated.

If it is a cache miss, the bypass prediction of the requested
block is made and sent to lower level caches with the memory
request. If the predictor decides not to bypass this block, the
LRU block is replaced with the incoming block. The prediction
entry indexed by the hashed PC stored in the LRU block entry
is updated, indicating this PC likely leads to zero-reuse blocks.
On receiving the requested block, the corresponding metadata is
updated.

If the prediction is to bypass, the requested block will not be
placed into the cache. However, there is a chance that the pre-
diction is incorrect. If the bypassBit sent from the L2 cache is
set, it is possible that this block would be reused (since it is hit in
the L2 cache). In this case, instead of being bypassed again, this
block is placed into the L1 cache for potential re-references and
misprediction correction. The misprediction correction does not
distinguish if the bypassBit set by a previous bypass prediction
is from a different compute unit. The intuition is that different
compute units behave similarly in GPUs. Thus, using predic-
tion information from other compute units will not interfere with
one another; by contrast, it helps correct potential mispredictions
with limited information.

Note that previous warp scheduling proposals such as Cache-
Conscious Wavefront Scheduling (CCWS) [46] were also designed
for increasing GPU cache efficiency. Our work is orthogonal to
warp scheduling techniques and can be used along with them for
better performance. To fairly evaluate our technique as a GPU
cache management technique, we conservatively use ”Oldest-First”
scheduling technique which minimizes cache thrashing caused by
warp interference.

3.3 Comparison to Counter-based Bypass Pre-
diction

Counter-based bypass prediction [29] is a CPU last-level cache
bypassing technique. That work proposed to use an event counter
in each cache block to record an event of interest such as cache ac-
cesses. When the counter reaches a threshold, the block observes
no more reuse. This information is stored in a prediction table
indexed by hashed block addresses and PCs. To bypass zero-reuse
blocks, the block addresses and PCs of bypass candidates are used



Table 1: System Configuration

GPU Clock 1GHz
Compute Units 8
Compute Unit SIMD Width 64 scalar units by 4 SIMDs
GPU L1-I/D Cache 8-way 16KB, 64B, 1 cycle of

tag access, 4 cycles of data ac-
cess

GPU Shared L2 Cache 16-way 256KB, 64B, 4 cycles of
tag access, 16 cycles of data ac-
cess

L3 Memory-side Cache 16-way 4MB, 15 cycles of tag
access, 30 cycles of data access

to index to the prediction table for bypass prediction. Compared
to PC-based bypass prediction which tracks repetitive program
patterns, counter-based prediction tracks block access patterns.
GPU programming features a small number of distinct PCs ad-
dressing a large amount of distinct data. To record block-level
reuse patterns, counter-based prediction keeps extra information
per block and a large prediction table. Due to the limited capac-
ity of the GPU L1 caches, counter-based prediction consumes too
much on-chip area to be practical in GPU cache designs.

Counter-based bypass prediction achieves worse performance
on average and much higher storage overhead compared to PC-
based bypass technique. Based on our experiments, on average,
in each 16KB L1 cache, counter-based prediction takes more than
10.5KB of storage overhead, while PC-based prediction takes less
than 256 bytes of overhead in each L1 cache, and a total 0.5KB of
storage overhead in a shared 256KB L2 cache. In addition, PC-
based bypass prediction outperforms counter-based prediction by
2.3%. We give a detailed evaluation in Section 5.

4. EXPERIMENTAL METHODOLOGY
This section outlines the experimental methodology used in

this study.

4.1 Simulation Environment
We use an in-house APU simulator that extends gem5 [7].

The simulator runs with a microarchitectural timing model of
a GPU that directly executes the HSA Intermediate Language
(HSAIL) [14] and produces detailed statistics including execution
cycles, cache miss rate and traffic. Table 1 shows the configu-
ration of the GPU side of the evaluated system, which is simi-
lar to the AMD Graphics Core Next architecture [3]. The warp
scheduling policy is oldest-first, which attempts to minimize cache
thrashing caused by wavefront interference. All caches use a de-
fault Pseudo-LRU replacement policy. Compared to the baseline
system, each L1 bypass predictor requires a 128-entry prediction
table of 4 bit counters and additional metadata of 7-bit in each
tag entry, costing 224 bytes in total of storage overhead in each
L1 cache. To help verify prediction accuracy, each L2 tag entry
contains one extra bit of bypassBit, taking 0.5KB in total. We
also evaluate counter-based bypass prediction. For a 16KB L1
cache, counter-based bypass predictor contains a prediction table
of 128*128 two dimensional matrix structure, containing 5-bit
of prediction information. Each tag entry contains 20-bit extra
information for hashed PC, counters, and the prediction. The
storage overhead of counter-based bypass predictor is 10.626KB.

4.2 Benchmarks
We evaluate 13 benchmarks from Rodinia [9], AMD APP SDK [4],

OpenDwarfs [13] and one custom microbenchmark implementing
a 4-byte radix sort with high data reuse. These workloads repre-
sents all OpenCLTM benchmarks we have that can be compiled
and run in our simulator. Table 2 lists the characteristics of the
evaluated benchmarks. The benchmarks are sorted by memory
intensity (MI, calculated as the global memory accesses per 1000
instructions) [51]. Among all the benchmarks, benchmark matrix-
mul, spmv, bfs are memory-intensive workloads and benchmark

Table 2: Workloads and Inputs

Program Input MI Description
matrixmul 512× 512 395.6 matrix multiplication
spmv 256× 256 215.8 sparse matrix-vector

multiplication
bfs 1M 202.7 breath-first search
nn 342080 130.4 k-nearest neighbor
kmeans 16384 121.8 kmeans clustering
bitonic 131072 114.3 bitonic sort
srad 512× 512 102.2 speckle reducing

anisotropic diffusion
backprop 8192× 16 89.7 back propagation
dct 2048× 2048 76.2 discrete cosine trans-

form
sort 65536 76.2 radix sort
histogram 1024 43.1 histogram
nw 512× 512 30.4 needleman-wunsch
lud 1024× 1024 14.2 LU decomposition

dct, sort, histogram, nw and lud are compute-intensive workloads.
We use medium to large inputs for each benchmark.

5. EVALUATION
In this section we give detailed analysis of the bypass predictor,

regarding energy, performance, and prediction accuracy.

5.1 Energy Saving
In this section we evaluate the energy savings of the bypass

predictor. Insertion of zero-reuse blocks wastes energy without
performance improvement and may even cause cache pollution.
Cache bypassing significantly reduces the energy consumption by
preventing unnecessary filling of data into caches. A large amount
of streaming data is bypassed from caches, reducing the energy
cost and potential cache pollution.

In a conventional L1 cache, on each L1 cache access, both the
tag and data arrays are accessed in parallel for fast response.
On a cache miss, both the tag and data arrays will be accessed
again to fill the selected cache block with data from lower level of
the memory hierarchy. With cache bypassing, on each L1 cache
access, the tag and data arrays are accessed in parallel together
with a direct access to a very small prediction table. On a cache
miss predicted to bypass, the data is sent directly to the compute
unit without accessing the cache structure again. As shown in
Figure 6, on average 58% of cache fills are prevented with cache
bypassing.

0%	
  
10%	
  
20%	
  
30%	
  
40%	
  
50%	
  
60%	
  
70%	
  
80%	
  
90%	
  
100%	
  

ba
ckp
rop
	
  

bfs
	
  

bit
on
ic	
   dc

t	
  

his
tog
ram

	
  

km
ea
ns
	
  

lud
	
  

ma
tri
xm
ul	
   nn

	
  
nw
	
  

so
rt	
  

sp
mv
	
  

sra
d	
  

ari
th.
	
  M
ea
n	
  

ge
o.	
  
me
an
	
  

Pe
rc
en

ta
ge
	
  o
f	
  C

ac
he

	
  M
is
se
s	
  B

yp
as
se
d	
  

Figure 6: Ratio of bypasses to cache misses

The reduction of unnecessary cache fills significantly reduces
the energy consumption compared to the baseline. Table 3 shows
the results of CACTI 6.5 simulations [37] to determine the energy
reduction by adding a PC-based bypass predictor compared to
the 16KB baseline. The extra structure of the prediction table is
modeled as a tag array (with 4-bit tags) of a direct-mapped cache



0%	
  
10%	
  
20%	
  
30%	
  
40%	
  
50%	
  
60%	
  
70%	
  
80%	
  
90%	
  
100%	
  

ba
ckp
rop
	
  

bfs
	
  

bit
on
ic	
   dc

t	
  

his
tog
ram

	
  

km
ea
ns
	
  

lud
	
  

ma
tri
xm
ul	
   nn

	
  
nw
	
  

so
rt	
  

sp
mv
	
  

sra
d	
  

ari
th.
	
  M
ea
n	
  

ge
o.	
  
me
an
	
  

L1
D	
  
En

er
gy
	
  U
sa
ge
	
  v
s.
	
  1
6K

B	
  
Ca

ch
e	
  

Figure 7: Energy Usage of 16KB Cache with Bypassing (rel-
ative to baseline)

Table 3: Power Cost

Energy (nJ) 16KB baseline bypassing
per tag access 0.00134096 0.0017867
per data access 0.106434 0.106434
per prediction table access N/A 0.000126232
Dynamic Power (mW) 44.2935 36.1491
Static Power (mW) 7.538627 7.72904

with 128 sets. Each tag entry in the L1 cache with bypassing has
8 more bits1 and the data array remains unchanged. Figure 7
gives the reduction in energy with PC-based bypassing compared
to the 16KB baseline. The energy cost of the 16KB baseline is
reduced by up to 49%, and on average by 25% with bypassing.
Table 3 also shows the quantified power cost. On average, PC-
based bypassing reduces dynamic power by 18% over the 16KB
baseline and increases the leakage power by only 2.5%.

5.2 Performance

75%	
  

80%	
  

85%	
  

90%	
  

95%	
  

100%	
  

105%	
  

ba
ckp
rop
	
  

bfs
	
  

bit
on
ic	
   dc

t	
  

his
tog
ram

	
  

km
ea
ns
	
  

lud
	
  

ma
tri
xm
ul	
   nn

	
  
nw
	
  

so
rt	
  

sp
mv
	
  
sra
d	
  

ari
th.
	
  m
ea
n	
  

ge
o.	
  
me
an
	
  M

PK
I	
  N

or
m
al
iz
ed

	
  to
	
  1
6K

B	
  
L1
D	
  

32KB	
  Cache	
   PC-­‐based	
   Counter-­‐based	
  

Figure 8: Reduction in L1 misses for different techniques

Bypassing improves the cache efficiency by preventing unneces-
sary filling of data into caches to cause cache pollution. Therefore
data stored in caches are likely to be useful. In another word, by-
passing improves cache efficiency and overall performance.

In this section we evaluate cache miss reduction and perfor-
mance improvement over a 16KB L1 cache baseline for PC-based
bypass prediction, counter-based bypass prediction, and compare
them to a large 32KB L1 cache baseline. For brevity, we use
Baseline, PC-based predictor, counter-based predictor and 32KB
Cache as abbreviations, respectively.

Figure 8 shows L1 misses normalized to the baseline system for
each benchmark with different techniques and Figure 9 shows the

1We add 7 bits in each tag entry for prediction. To use
CACTI correctly, we evaluated it as 8 bits.

0.96	
  
0.97	
  
0.98	
  
0.99	
  

1	
  
1.01	
  
1.02	
  
1.03	
  
1.04	
  
1.05	
  
1.06	
  
1.07	
  
1.08	
  
1.09	
  
1.1	
  

1.11	
  
1.12	
  
1.13	
  
1.14	
  

ba
ckp
rop
	
  

bfs
	
  

bit
on
ic	
   dc

t	
  

his
tog
ram

	
  

km
ea
ns
	
  

lud
	
  

ma
tri
xm
ul	
   nn

	
  
nw
	
  

so
rt	
  

sp
mv
	
  

sra
d	
  

ge
om
ea
n	
  Pe

rf
or
m
an

ce
	
  N
or
m
al
iz
ed

	
  to
	
  	
  1
6K

B	
  
L1
D	
  

32KB	
  Cache	
   PC-­‐based	
   Counter-­‐based	
  

Figure 9: Speedup over the baseline for different techniques

0%	
  
10%	
  
20%	
  
30%	
  
40%	
  
50%	
  
60%	
  
70%	
  
80%	
  
90%	
  

100%	
  

ba
ckp
rop
	
  

bfs
	
  

bit
on
ic	
   dc

t	
  

his
tog
ram

	
  

km
ea
ns
	
  

lud
	
  

ma
tri
xm
ul	
   nn

	
  
nw
	
  

so
rt	
  

sp
mv
	
  

sra
d	
  

ari
th.
	
  m
ea
n	
  

ge
o.	
  
me
an
	
  

L1
D	
  
Hi
t	
  R

at
e	
  

Figure 10: L1 cache hit rate of each benchmark in the base-
line

speedup, i.e. the execution time of benchmarks on the baseline
system divided by the execution time on the evaluated system.
To help analyze the results, Figure 10 shows the hit rate in the
L1 cache of each benchmark in the baseline system.

PC-based bypass prediction offers a significant performance
improvement in benchmarks matrixmul, bfs, and spmv. These
benchmarks observe intermediate or low L1 hit rate in the base-
line (as shown in Figure 10) because most of the data that should
be reused are replaced due to cache pollution. As shown in Fig-
ure 1, these benchmarks have a high percentage of zero-reuse
blocks while very low or none ratio of blocks that are only ac-
cessed once during execution. With PC-based bypass prediction,
streaming data is bypassed and previously doomed useful blocks
are kept in the L1 cache. Cache efficiency is significantly improved
for these benchmarks. Among these three benchmarks, bfs pro-
duces a speedup of 13% over the baseline, spmv yields a speedup
of 9% and matrixmul generates a speedup of 6%. Compared to
PC-based bypassing, the counter-based bypass predictor provides
much less speedup for benchmarks bfs and spmv but yields a bet-
ter performance for benchmark matrixmul. In comparison, the
32KB Cache provides less performance improvement for all three
benchmarks.

Benchmarks backprop and srad have intermediate to low L1
hit rate as well as a low reuse rate 10. As shown in Figure 1, for
these two benchmarks, most zero-reuse blocks are accessed only
once during execution. The performance of benchmark backprop
with a PC-based predictor is improved by 4.3% and srad reaches
a speedup of 4% over the baseline.

Benchmarks sort, dct, and lud are compute-bound benchmarks [10].
Increasing cache size does not significantly improve performance
for these benchmarks. Their overall performance mainly depends
on the compute ability of SIMD processors. All three evaluated
techniques yield an average speedup of about 3%.

Some benchmarks observe little performance improvement with
all evaluated techniques. Benchmarks kmeans and histogram in-
voke many kernel launches and frequently shared data between
the CPU and the GPU. The performance is thus dominated by
pulling data from CPU side, resulting in no significant perfor-
mance improvement with any of the techniques. Benchmark bitonic



contains frequent barrier synchronizations [17], causing the pro-
gram to execute in lock-step with no observed performance im-
provement with any techniques while larger cache sizes degrade
the performance due to the cache walk required when kernels
complete. Benchmark nw puts all reused data into the scratch-
pad memory for computation and write through data to global
memory when the computation is finished. As shown in Figure 6,
with PC-based bypassing, benchmark nw has more than 95% of
cache insertions prevented. Therefore, for benchmark nw, there
is little performance improvement while around 50% of energy
reduction with PC-based cache bypassing.

Storage is a key issue in GPU cache design. On average, the
PC-based bypassing prediction in a 16KB cache outperforms both
the counter-based prediction and the 32KB cache system while
using far less overhead, which means almost half of the chip area
dedicated for private caches is saved without performance degra-
dation. The tension between number of compute units and the
size of caches makes it infeasible to increase the cache size naively.
For example, to double the cache size of 16KB L1 caches in a
’Tahiti’ graphics card with 32 parallel compute units [2] without
increasing the chip area, we estimate that up to 4 CUs would
need to be removed, leading to a theoretical maximum through-
put degradation of 12.5% [11, 33, 12] 2.

5.3 Prediction Accuracy and Coverage
In this section we evaluate prediction accuracy and coverage of

PC-based bypassing.
There are two groups of mispredictions: false positives and

false negatives. False positives are more harmful because they
wrongly bypass reused blocks. Further re-references cause extra
misses. The coverage of the bypass predictor is the ratio of by-
pass prediction to all prediction made on cache misses. Higher
coverage means more opportunity for the optimization. Figure 11
shows the coverage and false positive rates of the PC-based by-
pass predictor. On average, the coverage rate is 58.6%, and the
false positive is 12%.

Note that the reason why the false positive rate is higher than
previous work [28] is because we include incorrectly bypassed or
replaced blocks as false positives. Sampling-based dead block
prediction [28] calculated false positive as (number of accesses
to predicted dead blocks / number of dead predictions), so only
re-referenced blocks predicted dead are categorized as false posi-
tives. Using the same computation as sampling-based dead block
prediction gives a false positive rate of 1% for the GPU cache
bypassing.

0%	
  
10%	
  
20%	
  
30%	
  
40%	
  
50%	
  
60%	
  
70%	
  
80%	
  
90%	
  
100%	
  

ba
ckp
rop
	
  

bfs
	
  

bit
on
ic	
   dc

t	
  

his
tog
ram

	
  

km
ea
ns
	
  

lud
	
  

ma
tri
xm
ul	
   nn

	
  
nw
	
  

so
rt	
  

sp
mv
	
  

sra
d	
  

ari
th.
	
  m
ea
n	
  

ge
o.	
  
me
an
	
  

Pe
rc
en

t	
  o
f	
  L
1D

	
  A
cc
es
se
s	
  

false	
  posiDves	
   coverage	
  

Figure 11: False Positive and Coverage of Bypassing Predic-
tor

2Based on estimates derived from die images and expert
teardowns [11, 12], the total chip area is 352mm2 and 32
CUs take up approximately 176mm2. The computational
logic in each CU is estimated to be approximate 3.7mm2

and a 16KB cache structure takes 1.8mm2. Doubling the
cache size to 32KB leads to an increase of 0.8mm2 in area.
A chip of roughly the same area of 176mm2 would therefore
require removing 4 CUs to fit the extra cache storage.

5.3.1 A Case Study of benchmark Needleman-Wunsch

GPU L1 caches can be treated as hardware-controlled scratch-
pad memories. Both of them store reused data shared within
a compute unit. Programmers use scratchpad memories to by-
pass streaming-like data by explicitly storing only reused data
into the scratchpad memories. A GPU L1 cache with bypassing
stores reused data by adaptively bypassing streaming-like data
without programmer intervention. We quantify the extent to
which dynamic L1 cache bypassing can make up for the potential
performance lost in production environments where the effort to
program scratchpad memories is impractical.

To explore the effectiveness and limitation of adaptive L1 cache
bypassing, we take a Rodinia benchmark Needleman-Wunsch for
a case study. Needleman-Wunsch (nw) uses a global optimiza-
tion algorithm for DNA sequence alignment in bioinformatics [9].
It dynamically loads the northern and western edges of a 2-D
matrix into the scratchpad memory and processes the data in
the scratchpad memory. After computation, results are written
through to the main memory. Most of the kernel is spent doing
partial computation in the scratchpad memory. There is very
little reuse observed in L1 caches because the scratchpad filters
reused data. We re-wrote the source code of nw to remove the use
of the scratchpad memory (benchmark nw-noSPM ). Note that
we did not simply replace the local functions into global func-
tions (which will cause significant degradation of performance);
rather, we re-wrote the source code by understanding the origi-
nal algorithm resulting in a best-effort program without the use
of scratchpad memories.

0	
  
20	
  
40	
  
60	
  
80	
  

100	
  
120	
  
140	
  
160	
  
180	
  
200	
  

nw
-­‐16
KB
	
  

nw
-­‐32
KB
	
  

nw
-­‐64
KB
	
  

nw
-­‐16
KB
-­‐By
pa
ss	
  

nw
-­‐12
8K
B	
  

nw
-­‐25
6K
B	
  

nw
_n
oS
PM
-­‐16
KB
	
  

nw
_n
oS
PM
-­‐32
KB
	
  

nw
_n
oS
PM
-­‐64
KB
	
  

nw
_n
oS
PM
-­‐16
KB
-­‐By
pa
ss	
  

nw
_n
oS
PM
-­‐12
8K
B	
  

nw
_n
oS
PM
-­‐25
6K
B	
  

Ke
rn
el
	
  E
xe
cu
+o

n	
  
Ti
m
e	
  
(m

ill
is
ec
on

ds
)	
  

Figure 12: Execution time of nw with different configura-
tions

Figure 12 shows the execution time of nw and nw-noSPM with
different configurations. As shown in the left of Figure 12, per-
formance is slightly changed with different cache configurations
due to the highly reuse in the scratchpad memory. Without using
scratchpad memories, nw-noSPM takes 7 times longer than the
original program. With the help of cache bypassing, the gap is
reduced by 30%, which outperforms a 64KB L1 cache. Note that
cache bypassing is running with 16KB L1 caches.

This limited study shows that, while the technique currently
cannot replace scratchpad memories programmed by expert pro-
grammers, it can improve performance in production environ-
ments where such programming effort is impractical, as well as
programmability. We believe improvements such as our predictor
bring GPU programming closer to general purpose programming
in terms of programmability while retaining the performance ad-
vantage of highly parallel GPUs.

6. RELATED WORK
6.1 Scratchpad management techniques

Compiler-controlled scratchpad memories [30, 27, 6] were pro-
posed to improve the efficiency of scratchpad memories. Knight
et al. proposed an optimizing compiler for architectures with
software-managed memory hierarchies [30] to explicitly manage
scratchpad memories. Kandemir et al. proposed a compiler-
controlled dynamic on-chip scratchpad memory management tech-
nique for real-time embedded systems.



6.2 GPU Cache Related Work
Jia et al. proposed a memory request prioritization buffer

(MRPB) to improve GPU performance [24]. MRPB also em-
ploys cache bypassing to mitigate intra-warp contention. Instead
of distinguishing reused blocks from significant amount of zero-
reuse blocks, MRPB blindly and aggressively bypasses memory
requests when there are resource limits, which can cause perfor-
mance degradation, as stated in [24]. Compared to MRPB, our
adaptive cache byassing does not cause any performance degra-
dation. To evaluate MRPB in terms of programmability, Jia et
al. created an ”unshared” version of some Rodinia benchmarks
that used scratchpad memory by simply using global memory in-
stead. Simply replacing local functions with global ones will
cause significant degradation of performance and lead to biased
comparison. In our case study, we re-wrote the source code by
understanding the original algorithm resulting in a best-effort pro-
gram.

Rogers et al. proposed cache-conscious wavefront scheduling
to improve GPU cache efficiency by avoiding data thrashing that
causes cache pollution [46]. CCWS restricts the number of wave-
fronts that are able to access the caches by changing the scheduler
to schedule a limited number of wavefronts, which adversely af-
fects the ability of hiding high memory access latency of GPUs.
Our technique bypasses the unused blocks without starving the
SIMD pipeline by artificially limiting the wavefront availability
to reduce cache thrashing.

Lee and Kim proposed a thread-level-parallelism-aware cache
management policy to improve performance of the shared last
level cache (LLC) in heterogeneous multi-core architecture [32].
They focus on shared LLCs that are dynamically partitioned be-
tween CPUs and GPUs. Mekkat et al. proposed a similar idea
for heterogeneous LLC management [36], to better partition LLC
for GPUs and CPUs in a heterogeneous system.

6.3 CPU Cache Bypassing
Much previous research focuses on CPU cache management

techniques [23, 20, 25, 45, 47, 22, 50, 18]. We only show bypassing
related techniques here. Among these, a selection of papers have
explored bypassing in CPU caches.

Tyson et al. proposed bypassing based on the hit rate of the
memory access instructions [47], while Johnson et al. propose to
use the access frequency of the cache blocks to predict bypass-
ing [45]. Kharbutli and Solihin propose using counters of events
such as number of references and access intervals to make by-
pass predictions in the CPU last-level cache [29]. All of these
techniques use memory address-related information to make the
prediction, costing significant storage overhead that would be im-
practical for GPU caches.

Program counter trace-based dead block prediction [31] lever-
aged the fact that sequences of memory instruction PCs tend
to lead to the same behavior for different memory blocks. This
dead block prediction scheme is useful for making bypass predic-
tions in CPUs. We show that GPU kernels are small with few
distinct memory instructions. Using only the PC of the last mem-
ory instruction to access a block is sufficient for a compact GPU
bypassing predictor.

Khan et al. proposed a sampling-based predictor to make CPU
LLC dead block predictions with less hardware overhead [28] than
previous work. That technique is significantly more complex than
our bypassing predictor. The sampling-based predictor uses set-
sampling to reduce the storage and power overhead of the pre-
dictor. For dead block prediction, a large amount of metadata
needs to be kept in the cache that is unnecessary in our bypass
predictor. That is, each block in the cache must be associated
with a prediction bit to drive the replacement policy, where our
technique simply discards blocks predicted as bypass candidates
so no such prediction bit is needed. The sampling-based predic-
tor used an extra data structure called the sampler to keep less
state and fewer prediction table updates compared to previous
dead block prediction techniques. To increase the prediction ac-
curacy, it used a complex and large prediction table to reduce
hash collision. Compared to this work, our bypass predictor has
far less storage and energy overhead and similar accuracy using

a much smaller and simpler prediction table, based on the ob-
servation that GPUs have many accesses from a small number
of instructions. We also provide a simple and efficient mispre-
diction correction mechanism to bypass misprediction, which is
irreversible in previous CPU cache bypassing work.

Li et al. proposed using a global tracking of incoming vic-
tim block pairs to make bypass prediction designed for CPU last
level caches. Cache Bursts [35] is another dead block prediction
technique that exploits bursts of accesses hitting the MRU posi-
tion to improve predictor efficiency. For GPU workloads that use
scratchpad memories, the majority of re-references have been fil-
tered. Gaur et al. [19] proposed bypass and insertion algorithms
for exclusive LLCs to adaptively avoid unmodified dead blocks
from being written into the exclusive LLC.

7. CONCLUSION AND FUTURE WORK
Current GPU cache hierarchies are inefficient in the face of

streaming data. This paper proposes a simple but effective cache
bypassing technique to improve GPU L1 cache efficiency and re-
duce energy overhead without requiring additional effort on the
programmer’s part. Based on our evaluation, this technique yields
significant cache energy reduction while outperforming a cache of
twice the baseline size.

Our initial study into scratchpad replacement was limited to
a single program, as appropriately removing scratchpad memory
usage from an application is a time-consuming process. We plan
on studying more of these applications in the future. Nonetheless,
from our initial results, we show that, while our technique gives
positive and promising results, we cannot currently reach the
performance attained by an expert programming using scratch-
pad memory. We believe that there are further hardware-assisted
mechanisms that can help bridge this gap, and plan to explore
such techniques in future work.

8. ACKNOWLEDGEMENTS
Daniel A. Jiménez and Yingying Tian are supported by Na-

tional Science Foundation grants CCF-1216604 and CCF-1012127.
AMD, the AMD Arrow logo and combinations thereof are trade-

marks of Advanced Micro Devices, Inc. Other product names
used in this publication are for identification purposes only and
may be trademarks of their respective companies. OpenCL is a
trademark of Apple, Inc. used by permission by Khronos.

9. REFERENCES
[1] AMD. AMD Fusion Family of APUs: Enabling a Superior,

Immersive PC Experience. 2010.
[2] AMD. AMD Radeon HD 7970 Graphics . 2011.

[3] AMD. AMD Graphics Cores Next (GCN) Architecture.
2012.

[4] AMD. Accelerated Parallel Processing (APP) SDK. 2013.
[5] AMD. AMD Reveals Plans and Products to Shake Up the

Enterprise Market in 2014. Jun 2013.
[6] Federico Angiolini, Francesco Menichelli, Alberto Ferrero,

Luca Benini, and Mauro Olivieri. A post-compiler approach
to scratchpad mapping of code. In Proceedings of the 2004
international conference on Compilers, architecture, and
synthesis for embedded systems, pages 259–267. ACM, 2004.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib,
Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5
simulator. SIGARCH Comput. Archit. News, 39(2):1–7,
August 2011.

[8] Christian-A Bohn. Kohonen feature mapping through
graphics hardware. In Proceedings of the Joint Conference
on Information Sciences, volume 2, pages 64–67, 1998.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron.
Rodinia: A benchmark suite for heterogeneous computing.



In Workload Characterization, 2009. IISWC 2009. IEEE
International Symposium on, pages 44–54. IEEE, 2009.

[10] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W Sheaffer, and Kevin Skadron. A performance
study of general-purpose applications on graphics
processors using CUDA. Journal of parallel and distributed
computing, 68(10):1370–1380, 2008.

[11] Chipworks. Inside the ASUS AMD 7970 graphics card -
TSMC 28nm! 2012.

[12] Chipworks. A Look at Sony’s Playstation 4 Core Processor.
2013.

[13] Wu-chun Feng, Heshan Lin, Thomas Scogland, and Jing
Zhang. OpenCL and the 13 dwarfs: a work in progress. In
Proceedings of the 3rd ACM/SPEC International
Conference on Performance Engineering, ICPE ’12, pages
291–294, New York, NY, USA, 2012. ACM.

[14] HSA Foundation. Deeper Look Into HSAIL And It’s
Runtime. 2012.

[15] James Fung and Steve Mann. OpenVIDIA: parallel GPU
computer vision. In Proceedings of the 13th annual ACM
international conference on Multimedia, pages 849–852.
ACM, 2005.

[16] James Fung, Felix Tang, and Steve Mann. Mediated reality
using computer graphics hardware for computer vision. In
Wearable Computers, 2002.(ISWC 2002). Proceedings.
Sixth International Symposium on, pages 83–89. IEEE,
2002.

[17] Wilson WL Fung, Ivan Sham, George Yuan, and Tor M
Aamodt. Dynamic warp formation and scheduling for
efficient gpu control flow. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on
Microarchitecture, pages 407–420. IEEE Computer Society,
2007.

[18] Rahul V Garde, Samantika Subramaniam, and Gabriel H
Loh. Deconstructing the inefficacy of global cache
replacement policies. 2008.

[19] J. Gaur, M. Chaudhuri, and S. Subramoney. Bypass and
insertion algorithms for exclusive last-level caches. In
Proceeding of the 38th annual international symposium on
Computer architecture, pages 81–92. ACM, 2011.

[20] Antonio González, Carlos Aliagas, and Mateo Valero. A
data cache with multiple caching strategies tuned to
different types of locality. In Proceedings of the 9th
international conference on Supercomputing, pages
338–347. ACM, 1995.

[21] OpenCL Working Group. The OpenCL specification,
version 1.2, revision 16, 2011.

[22] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and
Joel Emer. High performance cache replacement using
re-reference interval prediction (RRIP). In ACM SIGARCH
Computer Architecture News, volume 38, pages 60–71.
ACM, 2010.

[23] Jonas Jalminger and P Stenstrom. A novel approach to
cache block reuse predictions. In Parallel Processing, 2003.
Proceedings. 2003 International Conference on, pages
294–302. IEEE, 2003.

[24] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi.
Mrpb: Memory request prioritization for massively parallel
processors. In 20th International Symposium on High
Performance Computer Architecture (HPCA-20), 2014.

[25] Teresa L Johnson, Daniel A Connors, Matthew C Merten,
and W-MW Hwu. Run-time cache bypassing. Computers,
IEEE Transactions on, 48(12):1338–1354, 1999.

[26] Hadi Jooybar, Wilson WL Fung, Mike O’Connor, Joseph
Devietti, and Tor M Aamodt. GPUDet: a deterministic
GPU architecture. In Proceedings of the eighteenth
international conference on Architectural support for
programming languages and operating systems, pages 1–12.
ACM, 2013.

[27] Mahmut Kandemir, J Ramanujam, Mary Jane Irwin,
Narayanan Vijaykrishnan, Ismail Kadayif, and Amisha

Parikh. A compiler-based approach for dynamically
managing scratch-pad memories in embedded systems.
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 23(2):243–260, 2004.

[28] Samira Manabi Khan, Yingying Tian, and Daniel A.
Jimenez. Sampling Dead Block Prediction for Last-Level
Caches. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pages 175–186, Washington,
DC, USA, 2010. IEEE Computer Society.

[29] Mazen Kharbutli and Yan Solihin. Counter-Based Cache
Replacement and Bypassing Algorithms. IEEE Trans.
Comput., 57:433–447, April 2008.

[30] Timothy J. Knight, Ji Young Park, Manman Ren, Mike
Houston, Mattan Erez, Kayvon Fatahalian, Alex Aiken,
William J. Dally, and Pat Hanrahan. Compilation for
explicitly managed memory hierarchies. In Proceedings of
the 12th ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPoPP ’07, pages
226–236, New York, NY, USA, 2007. ACM.

[31] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block
prediction & dead-block correlating prefetchers. In
Proceedings of the 28th annual international symposium on
Computer architecture, ISCA ’01, pages 144–154, New
York, NY, USA, 2001. ACM.

[32] Jaekyu Lee and Hyesoon Kim. TAP: A TLP-aware cache
management policy for a CPU-GPU heterogeneous
architecture. In High Performance Computer Architecture
(HPCA), 2012 IEEE 18th International Symposium on,
pages 1–12. IEEE, 2012.

[33] Leonidas. AMD R1000/Tahiti Die-Shot. 2012.

[34] Jacob Leverich, Hideho Arakida, Alex Solomatnikov, Amin
Firoozshahian, Mark Horowitz, and Christos Kozyrakis.
Comparing memory systems for chip multiprocessors. In
ACM SIGARCH Computer Architecture News, volume 35,
pages 358–368. ACM, 2007.

[35] Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug
Burger. Cache bursts: A new approach for eliminating dead
blocks and increasing cache efficiency. In Proceedings of the
41st annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 41, pages 222–233, Washington,
DC, USA, 2008. IEEE Computer Society.

[36] Vineeth Mekkat, Anup Holey, Pen-Chung Yew, and
Antonia Zhai. Managing shared last-level cache in a
heterogeneous multicore processor. In Proceedings of the
22nd international conference on Parallel architectures and
compilation techniques, pages 225–234. IEEE Press, 2013.

[37] N. Muralimanohar, R. Balasubramonian, and N.P. Jouppi.
CACTI 6.0: A tool to model large caches. Research report
hpl-2009-85, HP Laboratories, 2009.

[38] John Nickolls, Ian Buck, Michael Garland, and Kevin
Skadron. Scalable parallel programming with CUDA.
Queue, 6(2):40–53, 2008.

[39] John Nickolls and William J Dally. The GPU computing
era. Micro, IEEE, 30(2):56–69, 2010.

[40] NVIDIA. CUDA Programming guide, 2008.
[41] NVIDIA. NVIDIA’s Next Generation CUDA Compute

Architecture: Fermi. 2009.
[42] NVIDIA. NVIDIA’s Next Generation CUDA Compute

Architecture: Kepler GK110. 2012.
[43] NVIDIA. Tuning CUDA Applications for Kepler. 2013.
[44] John D Owens, Mike Houston, David Luebke, Simon

Green, John E Stone, and James C Phillips. GPU
computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[45] Jude A Rivers, Edward S Tam, Gary S Tyson, Edward S
Davidson, and Matt Farrens. Utilizing reuse information in
data cache management. In Proceedings of the 12th
international conference on Supercomputing, pages
449–456. ACM, 1998.

[46] Timothy G Rogers, Mike O’Connor, and Tor M Aamodt.
Cache-conscious wavefront scheduling. In Proceedings of the



2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 72–83. IEEE Computer
Society, 2012.

[47] Gary Tyson, Matthew Farrens, John Matthews, and
Andrew R Pleszkun. A modified approach to data cache
management. In Proceedings of the 28th annual
international symposium on Microarchitecture, pages
93–103. IEEE Computer Society Press, 1995.

[48] Wen-mei W. Hwu. GPU Computing Gems Emerald
Edition. Access Online via Elsevier, 2011.

[49] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh,
Margaret Martonosi, Simon C Steely Jr, and Joel Emer.
SHiP: Signature-based hit predictor for high performance

caching. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
430–441. ACM, 2011.

[50] Mohamed Zahran. Cache replacement policy revisited. In
Proceedings of the 6th Workshop on Duplicating,
Deconstructing, and Debunking. Citeseer, 2007.

[51] Jishen Zhao, Guangyu Sun, Gabriel H. Loh, and Yuan Xie.
Energy-efficient GPU design with reconfigurable in-package
graphics memory. In Proceedings of the 2012 ACM/IEEE
international symposium on Low power electronics and
design, ISLPED ’12, pages 403–408, New York, NY, USA,
2012. ACM.


