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Abstract—The Samsung Exynos family of cores are high-
performance “big” processors developed at the Samsung Austin
Research & Design Center (SARC) starting in late 2011. This
paper discusses selected aspects of the microarchitecture of these
cores - specifically perceptron-based branch prediction, Spectre
v2 security enhancements, micro-operation cache algorithms,
prefetcher advancements, and memory latency optimizations.
Each micro-architecture item evolved over time, both as part
of continuous yearly improvement, and in reaction to changing
mobile workloads.

Index Terms—microprocessor, superscalar, branch prediction,
prefetching

I. INTRODUCTION

Samsung started development of the Exynos family of cores
beginning in late 2011, with the first generation core (“M1”)
supporting the newly introduced ARM v8 64-bit architecture
[1]. Several generations of the Exynos M-series CPUs [2] [3],
here referred to as M1 through M6, are found most commonly
in the Samsung Exynos-based Galaxy S7 through S20 smart
phones, and are implemented in a variety of process nodes,
from 14nm to 7nm. The cores support the ARMv8 Instruction
Set Architecture [4], both AArch32 and AArch64 variants.
The cores are superscalar out-of-order designs capable of up
to 2.9GHz, and employ up to three levels of cache hierarchy
in a multi-node cluster. Each Exynos M-series CPU cluster
is complemented by an ARM Cortex-A series cluster in a
big/little configuration in generations one through three, and
in a big/medium/little configuration in subsequent generations.

Among the numerous details from this effort, this paper
selectively covers:

• Yearly evolution of a productized core microarchitecture
(M1 through M5) and future work (M6);

• Adaptations of the microarchitecture due to changes in
mobile workloads;
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• Deep technical details within the microarchitecture.
The remainder of this paper discusses several aspects of

front-end microarchitecture (including branch prediction mi-
croarchitecture, security mitigations, and instruction supply)
as well as details on the memory subsystem, in particular
with regards to prefetching and DRAM latency optimization.
The overall generational impact of these and other changes is
presented in a cross-workload view of IPC.

II. METHODOLOGY

Simulation results shown here as well as the internal micro-
architectural tuning work are based on a trace-driven cycle-
accurate performance model that reflects all six of the im-
plementations in this paper, rather than a silicon comparison,
because M5 and M6 silicon were not available during the
creation of this paper.

The workload is comprised of 4,026 traces, gathered from
multiple CPU-based suites such as SPEC CPU2000 and
SPEC CPU2006; web suites including Speedometer, Octane,
BBench, and SunSpider; mobile suites such as AnTuTu and
Geekbench; and popular mobile games and applications. Sim-
Point [5] and related techniques are used to reduce the sim-
ulation run time for most workloads, with a warmup of 10M
instructions and a detailed simulation of the subsequent 100M
instructions. Note that the same set of workloads is utilized
here across all of the generations; some of the more recent
workloads did not exist during the development of M1, and
some earlier workloads may have become somewhat obsolete
by M6, but keeping the workload suite constant allows a fair
cross-generational comparison.

III. MICROARCHITECTURAL OVERVIEW

Several of the key microarchitectural features of the M1
through M6 cores are shown in Table I. Although the cores
were productized at different frequencies, performance results
in this paper come from simulations where all cores were run
at 2.6GHz, so that per-cycle comparisons (IPC, load latencies)



are valid to compare. Selected portions of the microarchitec-
ture that are not covered elsewhere will be briefly discussed
in this section.

For data translation operations, M3 and later cores contain
a fast “level 1.5 Data TLB” to provide additional capacity at
much lower latency than the much-larger L2 TLB.

Note that, according to the table, there were no significant
resource changes from M1 to M2. However, there were several
efficiency improvements, including a number of deeper queues
not shown in Table I, that resulted in the M2 speedups shown
later in this paper.

Both the integer and floating-point register files utilize the
physical-register-file (PRF) approach for register renaming,
and M3 and newer cores implement zero-cycle integer register-
register moves via rename remapping and reference-counting.

The M4 core and beyond have a “load-load cascading”
feature, where a load can forward its result to a subsequent
load a cycle earlier than usual, giving the first load an effective
latency of 3 cycles.

In general, most resources are increased in size in succeed-
ing generations, but there are also several points where sizes
were reduced, due to evolving tradeoffs. Two examples are
M3’s reduction in L2 size due to the change from shared to
private L2 as well as the addition of an L3, and M4’s reduction
in L3 size due to changing from a 4-core cluster to a 2-core
cluster.

IV. BRANCH PREDICTION

The Samsung dynamic branch prediction research is rooted
in the Scaled Hashed Perceptron (SHP) approach [6] [7] [8]
[9] [10], advancing the state-of-the-art perceptron predictor
over multiple generations. The prediction hardware uses a
Branch Target Buffer (BTB) approach across both a smaller,
0-bubble TAKEN micro-BTB (µBTB) with a local-history
hashed perceptron (LHP) and a larger 1-2 bubble TAKEN
main-BTB (mBTB) with a full SHP. The hardware retains
learned information in a Level-2 BTB (L2BTB) and has a
virtual address-based BTB (vBTB) in cases of dense branch
lines that spill the normal BTB capacity. Function returns are
predicted with a Return-Address Stack (RAS) with standard
mechanisms to repair multiple speculative pushes and pops.

A. Initial direction

The initial branch predictor design had two performance
goals: use a state-of the-art conditional predictor to reduce
MPKI, and support up to two predictions per clock for the
common case of a leading NOT-TAKEN branch. The latter
avoids incurring an extra cycle (or more) for many of the
NOT-TAKEN branches. For the workloads discussed here, the
lead branch is TAKEN in 60% of all cases, the second paired
branch TAKEN 24% of all cases, and two sequential NOT-
TAKEN 16% of all cases.

The first generation SHP consists of eight tables of 1,024
weights each, in sign/magnitude representation, along with a
“local BIAS” weight kept in the BTB entry for each branch.

Each of the SHP weight tables is indexed using an XOR hash
[11] composed of three items:

1) A hash of the global history (GHIST) [12] pattern in
a given interval for that table. The GHIST records the
outcome of a conditional branch as one bit.

2) A hash of the path history (PHIST) [13] in a given
interval for that table. The PHIST records three bits, bits
two through four, of each branch address encountered.

3) A hash of the program counter (PC) for the branch being
predicted.

The GHIST and PHIST intervals were determined empiri-
cally using a stochastic search algorithm, taking into consider-
ation both the diminishing returns of longer GHIST (shown in
Figure 1 using the publicly-available CBP5 [14] workloads),
and the cost of maintaining GHIST state. M1 utilized a 165-bit
GHIST length, and an 80-bit PHIST length.

Fig. 1. Average MPKI over all CBP5 traces of an eight-table, 1K weight
SHP vs adding GHIST range bits to the hash

To compute an SHP prediction, the signed BIAS weight
in the BTB entry is doubled [8], and added to the sum of the
signed weights read out from each of the 8 tables according to
the hashed history intervals. If the resulting sum is at least 0,
then the branch is predicted TAKEN; otherwise, it is predicted
not taken.

The predictor is updated on a misprediction, or on a correct
prediction where the absolute value of the sum fails to exceed
a threshold trained using the threshold training algorithm from
the O-GEHL predictor [15]. To update the SHP predictor,
the counters used during prediction are incremented if the
branch was taken, or decremented otherwise, saturating at
the maximum or minimum counter values. Always-TAKEN
branches — both unconditional branches, and conditional
branches that have always been taken so far — do not update
the SHP weight tables, to reduce the impact of aliasing [16].

The main BTBs are organized into 8 sequential discovered
branches per 128B cacheline as seen in Figure 2, based on
the gross average of 5 instructions per branch. As mentioned
above, additional dense branches exceeding the first 8 spill to
a virtual-indexed vBTB shown in the right of Figure 2 at an
additional access latency cost.

The indirect branch predictor is based on the virtual program
counter (VPC) predictor [17]. VPC breaks up an indirect pre-
diction into a sequence of conditional predictions of “virtual



TABLE I
MICROARCHITECTURAL FEATURE COMPARISON

Core name
Feature M1 M2 M3 M4 M5 M6

Process Node 14nm 10nm LPE 10nm LPP 8nm LPP 7nm 5nm
Product Frequency 2.6GHz 2.3GHz 2.7GHz 2.7GHz 2.8GHz 2.8GHz (target)

Caches
L1 Instruction Cache 64KB 4w 64KB 4w 64KB 4w 64KB 4w 64KB 4w 128KB 4w

L1 Data Cache 32KB 8w 32KB 8w 64KB 8w 64KB 4w 64KB 4w 128KB 8w
L2 Cache 2048KB 16w 2048KB 16w 512KB 8w 1024KB 8w 2048KB 8w 2048KB 8w

L2 Shared/Private shared by 4 cores shared by 4 cores private private shared by 2 cores shared by 2 cores
L2 BW 16B/cycle 16B/cycle 32B/cycle 32B/cycle 32B/cycle 64B/cycle

L3 Cache Size - - 4096KB 3072KB 3072KB 4096KB
L3 Ways & Banks - - 16w 4 bank 16w 3 bank 12w 2 bank 16w 2 bank

Translationa

L1 Instruction TLB 256 pgs (64/64/4) 256 pgs (64/64/4) 512 pgs (64/64/8) 512 pgs (64/64/8) 512 pgs (64/64/8) 512 pgs (64/64/8)
L1 Data TLB 32 pgs (32/32/1) 32 pgs (32/32/1) 32 pgs (32/32/1) 48 pgs (48/48/1) 48 pgs (48/48/1) 128 pgs (128/128/1)

L1.5 Data TLB - - 512 pgs (128/4/4) 512 pgs (128/4/4) 512 pgs (128/4/4) 512 pgs (128/4/4)
Shared L2 TLB 1K pgs (1K/4/1) 1K pgs (1K/4/1) 4K pgs (1K/4/4) 4K pgs (1K/4/4) 4K pgs (1K/4/4) 8K pgs (2K/4/4)

Execution Unit Details
Dec/Ren/Ret width 4 4 6 6 6 8

Integer unitsb 2S+1CD+BR 2S+1CD+BR 2S+1CD+1C+BR 2S+1CD+1C+BR 4S+1CD+1C+BR 4S+2CD+2BR
Ld/St/Genericc pipes 1L, 1S 1L, 1S 2L, 1S 1L, 1S, 1G 1L, 1S, 1G 1L, 1S, 1G

FP pipes 1FMAC, 1FADD 1FMAC, 1FADD 3FMAC 3FMAC 3FMAC 4FMAC
Integer PRFs 96 96 192 192 192 224

FP PRFs 96 96 192 176 176 224
ROB size 96 100 228 228 228 256

Latencies
Mispredict penalty 14 14 16 16 16 16

L1 hit latency 4 4 4 3d or 4 3d or 4 3d or 4
L2 avg. latency 22 22 12 12 13.5 13.5
L3 avg. latency - - 37 37 30 30
FP latenciese 5/4/3 5/4/3 4/3/2 4/3/2 4/3/2 4/3/2

aTranslation parameters are shown as total pages (#entries / #ways / #sectors)
b“S ALUs handle add/shift/logical; C ALUs handle simple plus mul/indirect-branch; CD ALUs handle C plus div; BR handle only direct branches
c“Generic” units can perform either loads or stores
dLoad-to-load cascading has a latency of only 3 cycles
eFP latencies are shown in cycles for FMAC/FMUL/FADD respectively

Fig. 2. Main and Virtual BTB branch “chains”

PCs” that each consult SHP, with each unique target up to a
design-specified maximum “chain” stored in the BTB at the
program order of the indirect branch. Figure 3 shows the VPC
algorithm with a maximum of 16 targets per indirect branch,
several of which are stored in the shared vBTB.

B. First refinement during M1 design

During early discussions, the two-bubble penalty on
TAKEN branches was clearly identified as limiting in certain
scenarios, such as tight loops or code with small basic blocks

Fig. 3. Main and Virtual BTB indirect VPC chain

and predictable branches. The baseline predictor is therefore
augmented with a micro-BTB (µBTB) that has zero-bubble
throughput, but limited capacity. This predictor is graph-based
[18] specifically using an algorithm to first filter and identify
common branches with common roots or “seeds” and then
learn both TAKEN and NOT-TAKEN edges into a “graph”
across several iterations, as seen in the example in Figure 4.
Difficult-to-predict branch nodes are augmented with use of a



local-history hashed perceptron (LHP).

Fig. 4. Learned branch “graph” as used by the µBTB [18]

When a small kernel is confirmed as both fully fitting within
the µBTB and predictable by the µBTB, the µBTB will “lock”
and drive the pipe at 0 bubble throughput until a misprediction,
with predictions checked by the mBTB and SHP. Extremely
highly confident predictions will further clock gate the mBTB
for large power savings, disabling the SHP completely.

The above description completes an overview of the branch
prediction hardware in the M1 first-generation core. The M2
core made no significant changes to branch prediction.

C. M3 Branch Prediction: Throughput

For the M3 implementation, the rest of the core was
undergoing significant widening of the pipe (4-wide to 6-wide
throughout) as well as more than doubling of the out-of-order
window. To maintain the ability to feed a wider and more
capable microarchitecture, the branch predictor needed to be
improved.

To reduce average branch turnaround, the µBTB graph
size doubled, but reduced the area increase by only adding
entries that could be used exclusively to store unconditional
branches. For workloads that could not fit within the µBTB,
the concept of an early always-taken redirect was added for
the mBTB: Always-taken branches will redirect a cycle earlier.
Such branches are called 1AT branches, short for “1-bubble
always-TAKEN” branches.

M3 also made several changes to further reduce MPKI in
the predictor: doubling of SHP rows (reduces aliasing for
conditional branches); and doubling of L2BTB capacity.

D. M4 Branch Prediction Changes: Focus on larger work-
loads

The M4 generation predictor refinement focused on better
support for larger working set sizes. The L2BTB size was
doubled again, making this generation capable of holding four
times as many branches as the first generation. In addition,
L2BTB fills into the BTB had their latency slightly reduced,
and their bandwidth improved by 2x, emphasizing the impor-
tance of real-use-case code. This capacity and latency band-
width change significantly improved performance for mobile
workloads like BBench by 2.8% in isolation.

E. M5 Branch Prediction: Efficiency improvements

For the M5 generation, the branch predictor research focus
was on improving the predictor in terms of several different
efficiencies.

Some sections of code are very branch-sparse, some-
times with entire BTB lines devoid of any actual discovered
branches. Thus the design added state to track “Empty Line
Optimizations” (skip an entire line devoid of branches) to
reduce both the latency and power of looking up uninteresting
addresses.

The previous generation had already accelerated always-
TAKEN branches via a one-bubble redirect. In this generation,
this idea was extended in two different ways: reducing the
bubbles to zero via replication, and extending coverage to
often-TAKEN branches. The replication is done via copying
the targets of always -TAKEN and often-TAKEN branches into
their predecessor branches’ mBTB information, thus providing
zero-bubble always-TAKEN (ZAT) and zero-bubble often-
TAKEN (ZOT) prediction capability. Thus, on an mBTB
lookup for a branch, it provided both its own target, and if that
target location led next to a candidate always/often-TAKEN
branch, the target of that subsequent branch. This increased
storage cost, but greatly improved taken-branch throughput,
as shown in the example in Figure 5.

Fig. 5. Increase in branch throughput by reducing bubbles for Always Taken
(AT) and zero-often-taken (ZOT) predictions. The replication scheme allows
X to specify a redirect to both A, and to B, the target of the next branch after
address A.

With a new zero-bubble structure in the mBTB, the µBTB
and this ZAT/ZOT predictor can sometimes contend. The main
predictor has no startup penalty but uses full mBTB and SHP
resources, while the µBTB has a two-cycle startup penalty,
but can chain zero-bubble predictions without lead branches
and could also save mBTB and SHP power on tight kernels.
A heuristic arbiter is used to intelligently select which zero-
bubble predictor to use.

Given the growing capabilities of the one-bubble predictor,
the M5 design was able to decrease the area for the µBTB
by reducing the number of entries, and having the ZAT/ZOT
predictor participate more. This resulted in a better area
efficiency for a given amount of performance.

The SHP increased from 8 tables to 16 tables of 2,048 8-
bit weights in sign magnitude representation, reducing MPKI
from both alias reductions as well as increasing the number of



unique tables. The GHIST length was also increased by 25%,
and the table hash intervals rebalanced for this longer GHIST.

Finally, one performance problem was the effective refill
time after a mispredict. If the correct-path contained several
small basic blocks connected with taken branches, it could take
many cycles to refill the pipe, which was observed in some
of our key web workloads, among others. This is shown in
Figure 6, where we assume basic block A has 5 instructions,
basic block B has 6, and basic block C has 3, and all end
with a taken branch. Once a mispredict is signaled, the branch
prediction pipe starts fetching at the correct target, A, and in
subsequent cycles predicts sequential fall-through with a fetch
width of 6, at addresses A+6 and A+12. (After a mispredict,
the µBTB is disabled until the next “seed” branch.) However,
when the branch prediction pipe reaches the third stage, it sees
that A has a predicted-taken branch to B. The core squashes
the speculative prediction lookups for A+6 and A+12, and
restarts the branch prediction pipe for address B. In this
example, assume A’s basic block contained 5 instructions. If
B also has a small basic block and a taken branch, it again
requires three cycles to fetch an additional 6 instructions. All
told, in this example, it requires 9 cycles from the mispredict
redirect to fetch 14 instructions, and the downstream core will
likely become fetch-starved.

Fig. 6. An illustration of the slow effective refill time after a mispredict to a
series of small basic blocks

In order to help mitigate this long effective refill time
after a mispredict, the M5 core added a block called the
Mispredict Recovery Buffer (MRB). After identifying low-
confidence branches [19], it records the highest probability
sequence of the next three fetch addresses. On a matching
mispredict redirect, the predicted fetch addresses can be read
sequentially out of the MRB in consecutive cycles as shown in
Figure 7, eliminating the usual branch prediction delay, and in
this example allowing 14 instructions to be provided in only 5
cycles. Note that in the third stage, the MRB-predicted target
address is checked against the newly predicted target from the
branch predictor, and if they agree, no correction is needed.

F. M6 Branch Prediction: Indirect capacity improvements

For the sixth generation, the greatest adjustment was to
respond to changes in popular languages and programming
styles in the market. The first of these changes was to increase
the size of the mBTB by 50%, due to larger working set sizes.

Second, JavaScript’s increased use put more pressure on
indirect targets, allocating in some cases hundreds of unique
indirect targets for a given indirect branch via function calls.
Unfortunately, the VPC algorithm requires O(n) cycles to train

Fig. 7. Mispredict Recovery Buffer (MRB) providing the highest probability
basic block addresses after an identified low-confidence mispredicted branch
[20]

and predict all the virtual branches for an n-target indirect
branch. It also consumes much of the vBTB for such many-
target indirect branches.

A solution to the large target count problem is to dedicate
unique storage for branches with very large target possibilities.
As a trade-off, the VPC algorithm is retained since the ac-
curacy of SHP+VPC+hash-table lookups still proves superior
to a pure hash-table lookup for small numbers of targets.
Additionally, large dedicated storage takes a few cycles to
access, so doing a limited-length VPC in parallel with the
launch of the hash-table lookup proved to be superior in
throughput and performance. This hybrid approach is shown in
Figure 8, and reduced end-to-end prediction latency compared
to the full-VPC approach.

Fig. 8. VPC reduction to 5 targets followed by an Indirect Hash

Performance modeling showed that accessing the hash-
table lookup indirect target table with the standard SHP



GHIST/PHIST/PC hash did not perform well, as the precursor
conditional branches do not highly correlate with the indirect
targets. A different hash is used for this table, based on the
history of recent indirect branch targets.

G. Overall impact

From M1 through M6, the total bit budget for branch
prediction increased greatly, in part due to the challenges of
predicting web workloads with their much larger working set.
Table II shows the total bit budget for the SHP, L1, and L2
branch predictor structures. The L2BTB uses a slower denser
macro as part of a latency/area tradeoff.

TABLE II
BRANCH PREDICTOR STORAGE, IN KBYTES

Bit storage (KB) SHP L1BTBs L2BTB Total
M1/M2 8.0 32.5 58.4 98.9

M3 16.0 49.0 110.8 175.8
M4 16.0 50.5 221.5 288.0
M5 32.0 53.3 225.5 310.8
M6 32.0 78.5 451.0 561.5

With all of the above changes, the predictor was able to go
from an average mispredicts-per-thousand-instructions (MPKI)
of 3.62 for a set of several thousand workload slices on
the first implementation, to an MPKI of 2.54 for the latest
implementation. This is shown graphically in Figure 9, where
the breadth of the impact can be seen more clearly.

On the left side of the graph, many workloads are highly
predictable, and are unaffected by further improvements. In the
middle of the graph are the interesting workloads, like most
of SPECint and Geekbench, where better predictor schemes
and more resources have a noticeable impact on reducing
MPKI. On the right are the workloads with very hard to predict
branches The graph has the Y-axis clipped to highlight the bulk
of the workloads which have the characteristic of an MPKI
under 20, but even the clipped highly-unpredictable workloads
on M1 are improved by ~20% on subsequent generations.
Overall, these changes reduced SPECint2006 MPKI by 25.6%
from M1 to M6.

V. BRANCH PREDICTION SECURITY

During the evolution of the microarchitectures discussed
here, several security vulnerabilities, including Spectre [21],
became concerning. Several features were added to mitigate
security holes. In this paper’s discussion, the threat model is
based on a fully-trustworthy operating system (and hypervisor
if present), but untrusted userland programs, and that userland
programs can create arbitrary code, whether from having full
access, or from ROP/widget programming.

This paper only discusses features used to harden indirect
and return stack predictions. Simple options such as erasing all
branch prediction state on a context change may be necessary
in some context transitions, but come at the cost of having
to retrain when going back to the original context. Separating
storage per context or tagging entries by context come at a
significant area cost. The compromise solution discussed next

Fig. 9. MPKIs across 4,026 workload slices. Y-axis is clipped at 20 MPKI
for clarity. Note that M2, which had no substantial branch prediction change
over M1, is not shown in this graph.

provides improved security with minimal performance, timing,
and area impact.

The new front-end mechanism hashes per-context state and
scrambles the learned instruction address targets stored in
a branch predictor’s branch-target buffers (BTB) or return-
address-stack (RAS). A mixture of software- and hardware-
controlled entropy sources are used to generate the hash
key (CONTEXT HASH) for a process. The hashing of these
stored instruction address targets will require the same exact
numbers to perfectly un-hash and un-scramble the predicted
taken target before directing the program address of the CPU.
If a different context is used to read the structures, the
learned target may be predicted taken, but will jump to an
unknown/unpredictable address and a later mispredict recovery
will be required. The computation of CONTEXT HASH is
shown in Figure 10.

The CONTEXT HASH register is not software accessible,
and contains the hash used for target encryption/decryption.
Its value is calculated with several inputs, including:

• A software entropy source selected according to the user,
kernel, hypervisor, or firmware level implemented as
SCXTNUM ELx as part of the security feature CSV2
(Cache Speculation Variant 2) described in ARM v8.5
[4].

• A hardware entropy source, again selected according to
the user, kernel, hypervisor, or firmware level.

• Another hardware entropy source selected according to
the security state.

• An entropy source from the combination of ASID (pro-
cess ID), VMID (virtual machine ID), security state, and
privilege level.

Note that the CONTEXT HASH computation is performed
completely in hardware, with no software visibility to inter-
mediate values, even to the hypervisor.



Fig. 10. Computation of CONTEXT HASH encryption/decryption register
[22]. This computation is only performed during a context switch, and takes
only a few cycles.

The computation of the CONTEXT HASH register also
includes rounds of entropy diffusion [23] — specifically a
deterministic, reversible non-linear transformation to average
per-bit randomness. The small number of cycles required
for the hardware to perform multiple levels of hashing and
iterative entropy spreading have minimal performance impact,
given the latency of a context switch.

Within a particular processor context, CONTEXT HASH
is used as a very fast stream cipher to XOR with the indirect
branch or return targets being stored to the BTB or RAS, as in
Figure 11. Such a simple cipher can be inserted into the RAS
and BTB lookups without much impact to the timing paths, as
compared to a more rigorous encryption/decryption scheme.

Fig. 11. Indirect/RAS Target Encryption [22]

To protect against a basic plaintext attack, a simple substi-
tution cipher or bit reversal can further obfuscate the actual
stored address. When the branch predictor is trained and
ready to predict jump targets from these common structures,
the hardware will use the program’s CONTEXT HASH to
perfectly invert and translate out the correct prediction target.

This approach provides protection against both cross-
training and replay attacks. If one attacker process tries
to cross-train an indirect predictor with a target, it will
be encrypted with CONTEXT HASHattack into the predictor
structures, and then read out and decoded in the victim’s
execution with the differing CONTEXT HASHvictim, which
will result in the victim beginning execution at a different
address than the intended attack target. With regard to a replay
attack, if one process is able to infer mappings from a plaintext
target to a CONTEXT HASH-encrypted target, this mapping
will change on future executions, which will have a different
process context (process ID, etc.).

In addition, the operating system can intentionally periodi-
cally alter the CONTEXT HASH for a process or all processes
(by changing one of the SW ENTROPY * LVL inputs, for
example), and, at the expense of indirect mispredicts and re-
training, provide protection against undesired cross training
during the lifetime of a process, similar to the concept in
CEASER [24].

VI. MICRO-OPERATION CACHE (UOC)

M1 through M4 implementations fetched and decoded in-
structions as is common in a modern out-of-order pipeline:
fetch instructions from the instruction cache, buffer them in
the instruction queue, and generate micro-ops (µops) through
the decoder before feeding them to later pipe stages. As the
design moved from supplying 4 instructions/µops per cycle in
M1, to 6 per cycle in M3 (with future ambitions to grow to 8
per cycle), fetch and decode power was a significant concern.

The M5 implementation added a micro-operation cache [25]
[26] as an alternative µop supply path, primarily to save fetch
and decode power on repeatable kernels. The UOC can hold up
to 384 µops, and provides up to 6 µops per cycle to subsequent
stages. The view of instructions by both the front-end and by
the UOC is shown in Figure 12.

Fig. 12. Instruction-based and µop-based views

The front end operates in one of three different UOC modes:
FilterMode, where the µBTB predictor determines predictabil-
ity and size of a code segment; BuildMode, where the UOC is



allocating appropriate basic blocks; and FetchMode, where the
instruction cache and decode logic are disabled, and instruction
supply is solely handled by the UOC. Each mode is shown in
the flowchart of Figure 13, and will be described in more detail
in the next paragraphs.

Fig. 13. Modes of UOC operation

The FilterMode is designed to avoid using the UOC Build-
Mode when it would not be profitable in terms of both power
and performance. In FilterMode, the µBTB predictor checks
several conditions to ensure the current code segment is highly
predictable, and will also fit within both the µBTB and UOC
finite resources. Once these conditions are met, the mechanism
switches into BuildMode.

To support BuildMode, the µBTB predictor is augmented
with “built” bits in each branch’s prediction entry, tracking
whether or not the target’s basic block has already been seen
in the UOC and back-propagated to the predictor. Initially,
all of these “built” bits are clear. On a prediction lookup, the
#BuildTimer is incremented, and the “built” bit is checked:

• If the “built” bit is clear, #BuildEdge is incremented, and
the basic block is marked for allocation in the UOC.
Next, the UOC tags are also checked ; if the basic block
is present, information is propagated back to the µBTB
predictor to update the “built” bit. This back-propagation
avoids the latency of a tag check at prediction time, at
the expense of an additional “build” request that will be
squashed by the UOC.

• If the “built” bit is set, #FetchEdge is incremented.
When the ratio between #FetchEdge and #BuildEdge

reaches a threshold, and the #BuildTimer has not timed out,
it indicates that the code segment should now be mostly or
completely UOC hits, and the front end shifts into FetchMode.

In FetchMode, the instruction cache and decode logic are
disabled, and the µBTB predictions feed through the UAQ into
the UOC to supply instructions to the rest of the machine. As

long as the µBTB remains accurate, the mBTB is also disabled,
saving additional power. While in FetchMode, the front end
continues to examine the “built” bits, and updates #BuildEdge
if the bit is clear, and #FetchEdge if the bit is set. If the ratio
of #BuildEdge to #FetchEdge reaches a different threshold, it
indicates that the current code is not hitting sufficiently in the
UOC, and the front end shifts back into FilterMode.

VII. L1 DATA PREFETCHING

Hardware prefetching into the L1 Cache allows data to
be fetched from memory early enough to hide the memory
latency from the program. Prefetching is performed based on
information from demand loads, and can be limited by the size
of the cache and maximum outstanding misses. Capacity of
this cache grew from 32KB in M1, to 64KB in M3, to 128KB
in M6. Outstanding misses grew from 8 in M1, to 12 in M3,
to 32 in M4, and 40 in M6. The significant increase in misses
in M4 was due to transitioning from a fill buffer approach to
a data-less memory address buffer (MAB) approach that held
fill data only in the data cache.

A. Algorithm

The L1 prefetcher detects strided patterns with multiple
components (e.g. +1×3, +2×1, meaning a stride of 1 repeated
3 times, followed by a stride of two occuring only once).
It operates on the virtual address space and prefetches are
permitted to cross page boundaries. This approach allows
large prefetch degrees (how many outstanding prefetches are
allowed to be outstanding at a time) to help cover memory
latency and solve prefetcher timeliness issues. This design
also inherently acts as a simple TLB prefetcher to preload the
translation of next pages prior to demand accesses to those
pages.

The prefetcher trains on cache-misses to effectively use load
pipe bandwidth. To avoid noisy behavior and improve pattern
detection, out-of-order addresses generated from multiple load
pipes are reordered back into program order using a ROB-like
structure [27] [28]. To reduce the size of this re-order buffer,
an address filter is used to deallocate duplicate entries to the
same cache line. This further helps the training unit to see
unique addresses.

The prefetcher training unit can train on multiple streams
simultaneously and detect multi-strides, similar to [29]. If the
same multi-stride pattern is repeated, it can detect a pattern.
For example, consider this access pattern:

A; A+2; A+4; A+9; A+11; A+13; A+18 and so on
The above load stream has a stride of +2, +2, +5, +2, +2,

+5. The prefetch engine locks onto a pattern of +2×2, +5×1
and generates prefetches A+20, A+22, A+27 and so on. The
load stream from the re-order buffer is further used to confirm
prefetch generation using a confirmation queue. Generated
prefetch addresses get enqueued into the confirmation queue
and subsequent demand memory accesses will match against
the confirmation queue. A confidence scheme is used based
on prefetch confirmations and memory sub-system latency to
scale prefetcher degree (see next section for more details).



B. Dynamic Degree and One-pass/Two-pass

In order to cover the latency to main memory, the required
degree can be very large (over 50). This creates two problems:
lack of miss buffers, and excess prefetches for short-lived
patterns. These excess prefetches waste power, bandwidth and
cache capacity.

A new adaptive, dynamic degree [30] mechanism avoids
excessive prefetches. Prefetches are grouped into windows,
with the window size equal to the current degree. A newly
created stream starts with a low degree. After some number of
confirmations within the window, the degree will be increased.
If there are too few confirmations in the window, the degree
is decreased. In addition, if the demand stream overtakes the
prefetch stream, the prefetch issue logic will skip ahead of the
demand stream, avoiding redundant late prefetches.

To reduce pressure on L1 miss buffers, a “two pass mode”
scheme [31] is used, starting with M1, as shown in Figure 14.
Note that M3 and beyond added an L3 between the L2 and
interconnect. When a prefetch is issued the first time, it will not
allocate an L1 miss buffer, but instead be sent as a fill request
into the L2 (1). The prefetch address will also be inserted
(2) into a queue, which will be held until sufficient L1 miss
buffers are available. The L2 cache will issue the request to the
interconnect (3) and eventually receive a response (4). When a
free L1 miss buffer is available, an L1 miss buffer will allocate
(5) and an L1 fill request will occur (6 and 7).

This scheme is suboptimal for cases where the working
set fits in the L2 (since every first pass prefetch to the L2
would hit). To counteract this, the mechanism also tracks the
number of first pass prefetch hits in the L2, and if they reach a
certain watermark, it will switch into “one pass mode”. In this
mode, shown on the right in Figure 14, only step 2 is initially
performed. When there are available miss buffers (which may
be immediately), steps 5, 6, and 7 are performed, saving both
power and L2 bandwidth.

C. Spatial Memory Streaming Prefetcher

The multi-strided prefetcher is excellent at capturing regular
accesses to memory. However, programs which traverse a
linked-list or other certain types of data structures are not
covered at all. To attack these cases, in M3 an additional L1
prefetch engine is added — a spatial memory stream (SMS)
prefetcher [32] [33]. This engine tracks a primary load (the
first miss to a region), and attaches associated accesses to
it (any misses with a different PC). When the primary load
PC appears again, prefetches for the associated loads will be
generated based off the remembered offsets.

Also, this SMS algorithm tracks confidence for each associ-
ated demand load. Only associated loads with high confidence
are prefetched, to filter out the ones that will appear transiently
along with the primary load. In addition, when confidence
drops to a lower level, the mechanism will only issue the first
pass (L2) prefetch.

With two different prefetch engines, a scheme is required
to avoid duplicate prefetches. Given that a trained multi-stride
engine can prefetch further ahead of the demand stream than

Fig. 14. One-pass/two-pass prefetching scheme for M1/M2.

the SMS engine, confirmations from the multi-stride engine
suppress training in the SMS engine.

D. Integrated Confirmation Queues

To cover memory latency and allow multiple load streams
to operate simultaneously, the size of the confirmation queue
needs to be considerably large. Also, at the start of pattern
detection, the prefetch generation can lag behind the demand
stream. Since confirmations are based on issued prefetches,
this can result in few confirmations. As prefetch degree is a
function of confirmations, this mechanism can keep the degree
in a low state and prefetches may never get ahead of the
demand stream.

To combat the above issues, the M3 core introduced an in-
tegrated confirmation scheme [34] to replace the confirmation
queue. The new mechanism keeps the last confirmed address,
and uses the locked prefetch pattern to generate the next N
confirmation addresses into a queue, where N is much less
than the stream’s degree. This is the same logic as the prefetch
generation logic, but acts independently. This confirmation
scheme reduces the confirmation structure size considerably
and also allows confirmations even when the prefetch engine
has not yet generated prefetches.

VIII. LARGE CACHE MANAGEMENT AND PREFETCHERS

Over six generations, the large cache (L2/L3) hierarchy
evolved as shown in Table III below. M3 added a larger
but more complex three-level hierarchy, which helps balance
latency versus capacity objectives with the increasing working
set needs of modern workloads.



TABLE III
EVOLUTION OF CACHE HIERARCHY SIZES

L2 Cache L3 Cache
M1/M2 2MB –

M3 512KB 4MB
M4 1MB 3MB
M5 2MB 3MB
M6 2MB 4MB

A. Co-ordinated Cache Hierarchy Management

To avoid data duplication, the outer cache levels (L3) are
made exclusive to the inner caches (L1 and L2). Conventional
exclusive caches do not keep track of data reuse since cache
lines are swapped back to inner-level caches. The L2 cache
tracks both frequency of hits within the L2, as well as
subsequent re-allocation from the L3 cache. Upon L2 castout,
these details are used to intelligently choose to either allocate
the castouts into the L3 in an elevated replacement state, or
an ordinary replacement state, or avoid allocation altogether.

This bidirectional coordination allows the caches to preserve
useful data in the wake of transient streams, or when the appli-
cation working set exceeds the total cache capacity. Amongst
the hardware overhead, each cache tag stores some meta-
data to indicate the reuse or dead behavior of the associated
lines, and for different transaction types (prefetch vs. demand).
This meta-data is passed through request or response channels
between the cache levels. There are some cases that needed to
be filtered out from being marked as reuse, such as the second
pass prefetch of two-pass prefetching. More information can
be found in the related patent [35].

B. Buddy Cache Prefetcher

The L2 cache tags are sectored at a 128B granule for a
default data line size of 64B. This sectoring reduces the tag
area and allows a lower latency for tag lookups. Starting in M4,
a simple “Buddy” prefetcher is added that, for every demand
miss, generates a prefetch for its 64B neighbor (buddy) sector.
Due to the tag sectoring, this prefetching does not cause any
cache pollution, since the buddy sector will stay invalid in
absence of buddy prefetching. There can be an impact on
DRAM bandwidth though, if the buddy prefetches are never
accessed. To alleviate that issue, a filter is added to the Buddy
prefetcher to track the patterns of demand accesses. In the case
where access patterns are observed to almost always skip the
neighboring sector, the buddy prefetching is disabled.

C. Standalone Cache Prefetcher

Starting in M5, a standalone prefetcher is added to prefetch
into the lower level caches beyond the L1s. This prefetcher
observes a global view of both the instruction and data
accesses at the lower cache level, to detect stream patterns
[36]. Both demand accesses and core-initiated prefetches are
used for its training. Including the core prefetches improves
their timeliness when they are eventually filled into the L1.
Among the challenges of the standalone prefetcher is the out-
of-orderness of program accesses observed at the lower-level

cache that can pollute the patterns being trained. Another
challenge is the fact that it operates on physical addresses,
which limits its span to a single page. Similarly, hits in the L1
can filter the access stream seen by the lower levels of cache,
making it difficult to isolate the real program access stream.
For those reasons, the standalone prefetcher uses an algorithm
to handle long, complex streams with larger training structures,
and techniques to reuse learnings across 4KB physical page
crossings. The standalone prefetcher also employs a two-
level adaptive scheme to maintain high accuracy of issued
prefetches as explained below.

D. Adaptive Prefetching

The standalone prefetcher is built with an adaptive scheme
shown in Figure 15 with two modes of prefetching: low
confidence mode and high confidence mode. In low confidence
mode, “phantom” prefetches are generated for confidence
tracking purposes into a prefetch filter, but not issued to the
memory system or issued very conservatively. The confidence
is tracked through demand accesses matching entries in the
prefetch filter. When confidence increases beyond a threshold,
high confidence mode is entered.

In high confidence mode, prefetches are issued aggressively
out to the memory system. The high-confidence mode relies
on cache meta-data to track the prefetcher’s confidence. This
meta-data includes bits associated with the tags to mark
whether a line was prefetched, and if it was accessed by a de-
mand request. If the confidence reduces below a threshold, the
prefetcher transitions back to the low confidence mode. Hence,
the prefetcher accuracy is continuously monitored to detect
transitions between application phases that are prefetcher
friendly and phases that are difficult to prefetch or when the
out-of-orderness makes it hard to detect the correct patterns.

Fig. 15. Adaptive Prefetcher State Transitions

IX. MEMORY ACCESS LATENCY OPTIMIZATION

The Exynos mobile processor designs contain three dif-
ferent voltage/frequency domains along the core’s path to
main memory: the core domain, an interconnect domain, and
a memory controller domain. This provides flexibility with



regards to power usage in different mobile scenarios: GPU-
heavy, core-heavy, etc. However, this requires four on-die
asynchronous crossings (two outbound, two inbound), as well
as several blocks’ worth of buffering, along that path. Over
several generations, the Exynos designs add several features
to reduce the DRAM latency through multiple levels of the
cache hierarchy and interconnect. These features include data
fast path bypass, read speculation, and early page activate.

The CPU memory system on M4 supports an additional
dedicated data fast path bypass directly from DRAM to the
CPU cluster. The data bypasses multiple levels of cache return
path and interconnect queuing stages. Also a single direct
asynchronous crossing from the memory controller to the
CPU bypasses the interconnect domain’s two asynchronous
crossings.

To further optimize latency, the CPU memory system on M5
supports speculative cache lookup bypass for latency critical
reads. The read requests are classified as “latency critical”
based on various heuristics from the CPU (e.g. demand load
miss, instruction cache miss, table walk requests etc.) as well
as a history-based cache miss predictor. Such reads specula-
tively issue to the coherent interconnect in parallel to checking
the tags of the levels of cache. The coherent interconnect
contains a snoop filter directory that is normally looked up
in the path to memory access for coherency management. The
speculative read feature utilizes the directory lookup [37] to
further predict with high probability whether the requested
cache line may be present in the bypassed lower levels of
cache. If yes, then it cancels the speculative request by inform-
ing the requester. This cancel mechanism avoids penalizing
memory bandwidth and power on unnecessary accesses, acting
as a second-chance “corrector predictor” in case the cache miss
prediction from the first predictor is wrong.

The M5 CPU memory system contains another feature to
reduce memory latency. For latency critical reads, a dedicated
sideband interface sends an early page activate command to the
memory controller to speculatively open a new DRAM page.
This interface, like the fast data path mechanism described
above, also bypasses two asynchronous crossings with one.
The page activation command is a hint the memory controller
may ignore under heavy load.

X. OVERALL IMPACT ON AVERAGE LOAD LATENCY

The net impact of all of the generational changes on average
load latency is shown in Figure 16. These include the cache
size, prefetching, replacement algorithms, and DRAM latency
changes discussed in the above sections. Note that the 3-cycle
cascading load latency feature is clearly visible on the left
of the graph for workloads that hit in the DL1 cache. It also
partially contributes to lower DL1 cache hit latencies for many
other workloads that occasionally miss. There are many other
changes not discussed in this paper that also contributed to
lower average load latency.

Overall, these changes reduce average load latency from
14.9 cycles in M1 to 8.3 cycles in M6, as shown in Table IV.

Fig. 16. Evolution of Average Load Latency

TABLE IV
GENERATIONAL AVERAGE LOAD LATENCIES

M1 M2 M3 M4 M5 M6
Avg. load lat. 14.9 13.8 12.8 11.1 9.5 8.3

XI. CONCLUSION

This paper discusses the evolution of a branch predictor im-
plementation, security protections, prefetching improvements,
and main memory latency reductions. These changes, as well
as dozens of other features throughout the microarchitecture,
resulted in substantial year-on-year frequency-neutral perfor-
mance improvements.

Throughout the generations of the Exynos cores, the focus
was to improve performance across all types of workloads, as
shown in Figure 17:

• Low-IPC workloads were greatly improved by more
sophisticated, coordinated prefetching, as well as cache
replacement/victimization optimizations.

• Medium-IPC workloads benefited from MPKI reduction,
cache improvements, additional resources, and other per-
formance tweaks.

• High-IPC workloads were capped by M1’s 4-wide design.
M3 and beyond were augmented in terms of width
and associated resources needed to achieve 6 IPC for
workloads capable of that level of parallelism.

The average IPC across these workloads for M1 is 1.06,
while the average IPC for M6 is 2.71, which showcases
a compounded growth rate of 20.6% frequency-neutral IPC
improvement every year.
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[9] D. A. Jiménez, “Strided Sampling Hashed Perceptron Predictor,” in
Championship Branch Prediction (CBP-4), 2014.

[10] D. Tarjan and K. Skadron, “Merging Path and Gshare Indexing in
Perceptron Branch Prediction,” Transactions on Architecture and Code
Optimization, 2005.

[11] S. McFarling, “Combining Branch Predictors. TN-36,” Digital Equip-
ment Corporation, Western Research Laboratory, 1993.

[12] T.-Y. Yeh and Y. N. Patt, “Two-level Adaptive Branch Prediction,”
in 24th ACM/IEEE International Symposium on Microarchitecture
(MICRO-24), 1991.

[13] R. Nair, “Dynamic Path-based Branch Correlation,” in 28th Annual
International Symposium on Microarchitecture (MICRO-28), 1995.

[14] “CBP-5 Kit,” in 5th Championship Branch Prediction Workshop (CBP-
5), 2016.

[15] A. Seznec, “Analysis of the O-GEometric History Length Branch
Predictor,” in 32nd International Symposium on Computer Architecture
(ISCA-32), 2005.

[16] P.-Y. Chang, M. Evers and Y. N. Patt, “Improving Branch Prediction Ac-
curacy by Reducing Pattern History Table Interference,” in Conference
on Parallel Architectures and Compilation Technique (PACT), 1996.

[17] H. Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt and R. Cohn,
“Virtual Program Counter (VPC) Prediction: Very Low Cost Indirect
Branch Prediction Using Conditional Branch Prediction Hardware,”
IEEE Transactions on Computers, vol. 58, no. 9, 2009.

[18] J. Dundas and G. Zuraski, “High Performance Zero Bubble Conditional
Branch Prediction using Micro Branch Target Buffer,” United States
Patent 10,402,200, 2019.

[19] E. Jacobson, E. Rotenberg and J. E. Smith, “Assigning Confidence to
Conditional Branch Predictions,” in 29th International Symposium on
Microarchitecture (MICRO-29), 1996.

[20] R. Jumani, F. Zou, M. Tkaczyk and E. Quinnell, “Mispredict Recovery
Apparatus and Method for Branch and Fetch Pipelines,” Patent Pending.

[21] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S.
Mangard, T. Prescher, M. Schwarz and Y. Yarom, “Spectre Attacks:
Exploiting Speculative Execution,” in IEEE Symposium on Security and
Privacy, 2018.

[22] M. Tkaczyk, E. Quinnell, B. Grayson, B. Burgess and M. B. Barakat,
“Secure Branch Predictor with Context-Specific Learned Instruction
Target Address Encryption,” Patent Pending.

[23] C. E. Shannon, “A Mathematical Theory of Cryptography,” Bell System
Technical Memo MM 45-110-02, September 1, 1945.

[24] M. K. Qureshi, “CEASER: mitigating conflict-based cache attacks via
encrypted-address and remapping,” in Proceedings of the 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-
51), 2018.

[25] B. Solomon, A. Mendelson, D. Orenstien, Y. Almog and R. Ronen,
“Micro-Operation Cache: A Power Aware Frontend for Variable Instruc-
tion Length ISA,” in IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2003.

[26] E. Quinnell, R. Hensley, M. Tkaczyk, J. Dundas, M. S. S. Govindan
and F. Zou, “Micro-operation Cache Using Predictive Allocation,” Patent
Pending.

[27] J. Smith and A. Pleszkun, “Implementation of Precise Interrupts in
Pipelined Processors,” in 12th Annual International Symposium on
Computer Architecture (ISCA-12), 1985.

[28] A. Radhakrishnan and K. Sundaram, “Address Re-ordering Mechanism
for Efficient Pre-fetch Training in an Out-of order Processor,” United
States Patent 10,031,851, 2018.

[29] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou and S. G. Abraham,
“Effective stream-based and execution-based data prefetching,” in Pro-
ceedings of the 18th Annual International Conference on Supercomput-
ing (ICS-18), 2004.

[30] A. Radhakrishnan and K. Sundaram, “Adaptive Mechanism to tune the
Degree of Pre-fetches Streams,” United States Patent 9,665,491, 2017.

[31] A. Radhakrishnan, K. Lepak, R. Gopal, M. Chinnakonda, K. Sundaram
and B. Grayson, “Pre-fetch Chaining,” United States Patent 9,569,361,
2017.

[32] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi and A. Moshovos,
“Spatial Memory Streaming,” in 33rd International Symposium on
Computer Architecture (ISCA-33), 2006.

[33] E. A. Brekelbaum and A. Radhakrishnan, “System and Method for
Spatial Memory Streaming Training,” United States Patent 10,417,130,
2019.

[34] E. Brekelbaum and A. Ghiya, “Integrated Confirmation Queues,” United
States Patent 10,387,320, 2019.

[35] Y. Tian, T. Nakra, K. Nguyen, R. Reddy and E. Silvera, “Coordinated
Cache Management Policy for an Exclusive Cache Hierarchy.” Patent
patent pending, 2017.

[36] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson
and Z. Chishti, “Path confidence based lookahead prefetching,” in
Proceedings of the 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-49), 2016.

[37] V. Sinha, H. Le, T. Nakra, Y. Tian, A. Patel and O. Torres, “Specu-
lative DRAM Read, in Parallel with Cache Level Search, Leveraging
Interconnect Directory,” Patent Pending.


