
PerSpectron: Detecting Invariant Footprints of
Microarchitectural Attacks with Perceptron

Samira Mirbagher-Ajorpaz
Computer Science and Engineering

Texas A&M University
College Station, USA
samiramir@tamu.edu

Gilles Pokam
Intel Labs

Santa Clara, USA
gilles.a.pokam@intel.com

Esmaeil Mohammadian-Koruyeh
Computer Science and Engineering
University of California, Riverside

Riverside, USA
emoha004@ucr.edu

Elba Garza
Computer Science and Engineering

Texas A&M University
College Station, USA

elba@tamu.edu

Nael Abu-Ghazaleh
Computer Science and Engineering
University of California, Riverside

Riverside, USA
naelag@ucr.edu

Daniel A. Jiménez
Computer Science and Engineering

Texas A&M University
College Station, USA

djimenez@acm.org

Abstract—Detecting microarchitectural attacks is critical given

their proliferation in recent years. Many of these attacks ex-

hibit intrinsic behaviors essential to the nature of their opera-

tion, such as creating contention or misspeculation. This study

systematically investigates the microarchitectural footprints of

hardware-based attacks and shows how they can be detected

and classified using an efficient hardware predictor. We present

a methodology to use correlated microarchitectural statistics to

design a hardware-based neural predictor capable of detecting

and classifying microarchitectural attacks before data is leaked.

Once a potential attack is detected, it can be proactively mitigated

by triggering appropriate countermeasures.

Our hardware-based detector, PerSpectron, uses perceptron

learning to identify and classify attacks. Perceptron-based predic-

tion has been successfully used in branch prediction and other

hardware-based applications. PerSpectron has minimal perfor-

mance overhead. The statistics being monitored have similar

overhead to already existing performance monitoring counters.

Additionally, PerSpectron operates outside the processor’s critical

paths, offering security without added computation delay. Our

system achieves a usable detection rate for detecting attacks

such as SpectreV1, SpectreV2, SpectreRSB, Meltdown, break-

ingKSLR, Flush+Flush, Flush+Reload, Prime+Probe as well as

cache-attack calibration programs. We also believe that the large

number of diverse microarchitectural features offers both evasion

resilience and interpretability—features not present in previous

hardware security detectors. We detect these attacks early enough

to avoid any data leakage, unlike previous work that triggers

countermeasures only after data has been exposed.

Index Terms—microarchitectural attack defenses, secure archi-

tectures, anomaly detection

I. INTRODUCTION

The number of known microarchitectural security vulnera-
bilities caused by speculative execution has increased sharply
in recent years [1]. More recently, microarchitectural data
sampling (MDS) vulnerabilities have been introduced: RIDL
[2], Fallout [3] and LVI [4] exploit these vulnerabilities to leak
data from internal CPU buffers. Also, the new CacheOut [5]
attack adds the ability to select which data to leak from the
L1 cache to the MDS-based attack.

Various components in a modern processor pipeline are
susceptible to attacks [1], exposing many side-channels. A
large body of work has been devoted to identifying each of
these attacks, with industry responding with appropriate patches.
However, this is a cat-and-mouse game as new attacks continue
to appear at a regular cadence.

Prior work on detecting side-channel attacks relies on
querying hardware performance counters via software to reveal
malevolent behavior and prevent data from being leaked [6], [7],
[8], [9], [10], [11], [12]. Unfortunately, relying on performance
counters poses practical problems that can hurt detection
and performance. First, the number of events available to
performance counters is limited, e.g. on recent Intel processors,
performance counters can only monitor up to 4 events at a
time. Thus, detection techniques that require monitoring a rich
feature space must multiplex counters, potentially degrading
accuracy, providing opportunities for evasion, and missing
opportunities to detect an attack. Second, because performance
counters are accessible in software, an attacker may be able to
access them and modulate its attack to evade detection. Third,
the sampling rate of performance counters is low enough to
allow an attacker to adjust the bandwidth of an attack to fit
within the sampling interval of a software based detector.

We propose an alternative approach: a first line of defense
that protects systems against broadly-defined microarchitectural
attacks by leveraging a distinct microarchitectural footprint of
each attack to detect and classify these attacks-in-progress. This
technique enables countermeasures to be deployed proactively,
before the attack can be successful. There is evidence that
microarchitectural attacks are being used to hide other, more
traditional attacks as well, so it is important for security
solutions to be able to detect attacks in the speculative execution
feature space [13].

Our hardware classifier can capture the signature of an attack
in a much richer feature space, allowing higher classification
accuracy. Security guarantees are stronger in systems that rely

on microarchitectural statistics and are monitored in hardware.
The detector cannot be disabled by software even if the kernel
is compromised, which is important for threat scenarios where
a compromised kernel may be attempting to compromise a
secure enclave [14], [15]. Lastly, our hardware-based detector
has a sampling frequency that makes it impossible for an
attacker to time its attack to the sampling interval.

Our proposed approach to detecting microarchitectural
attacks moves the detection of active attacks to hardware from
software, allowing the predictor to efficiently use and monitor
a large set of microarchitectural features that is not limited to
the commit state and includes speculative instructions. There
has been prior work on detecting malware in hardware [16],
[17], [18], [19].

However those works were (1) not specific to microarchi-
tectural attacks; and (2) primarily look at features related
to committed state such as instruction mixes or memory
access distribution. This is important because the signature
for microarchitectural attacks is different than the signature of
malware. We compare PerSpectron to these and other works
in Section VII-B.

Designing such a system in hardware poses multiple chal-
lenges. First, we need a way to select a set of features to
use as input to the detector. The features should be strongly
correlated to known microarchitectural attacks. Identifying
features that correlate well with an active microarchitectural
attack is challenging, as it requires understanding the subtle
interactions between various and plentiful pipeline stages across
different processor components. It is also important that these
features be discriminatory; otherwise, attackers may be able
to evade them. Worse, normal programs may lead to false
positives, reducing the effectiveness of the defense.

We propose a perceptron-based algorithm that streamlines the
feature selection process. From the 1159 microarchitectural fea-
tures available in our hardware simulator, our algorithm selects
106 features that show the strongest correlation to a range
of microarchitectural attacks, including SpectreV1, Spectr-
eRSB, Meltdown, breakingKSLR, Flush+Flush, Flush+Reload,
Prime+Probe, and Calibration. The selected features are then
used as inputs to a hardware predictor for microarchitectural
attack detection and classification. The attacks that we examine
are complex, yet identifiable.

The second challenge is designing the mechanism to predict
and classify microarchitectural attacks rapidly and with both
high precision and recall. The artificial neural networks that
are used currently to recognize microarchitectural attacks
in software typically use multiple layers of learned feature
detectors that produce scalar outputs. By contrast, we use
replicated perceptron detectors in hardware with overlapping
features. We know that deep neural networks learn complicated
features using multiple hidden layers. We show how replicated-
perceptron detectors with a large set of low-level features can be
used to detect complicated features related to microarchitectural
attacks without hidden layers. We argue that this is a more
promising way of dealing with variations in speculative attacks
and cache attacks than the methods currently employed.

With any machine learning based detection solution, there are
concerns about the ability of the attackers to evade detection by
modifying their behavior to fool the detector [19]. We believe
that the nature of microarchitectural attacks, and the fact that
most of them are timing sensitive, substantially limit the ability
of the attackers to evade detection. Moreover, we believe that
solutions such as RHMD [19] where multiple detectors are used
and invoked stochastically can substantially mitigate the threat
of evasion. Another consideration with hardware detection is
the threat of false positives: our detectors experience a very
low false positive rate. Moreover, we view them as a first line
of defense that simply alerts the operating system to enable the
invocation of subsequent mechanisms to isolate a suspicious
process or to monitor it more closely.

This paper makes the following contributions:

1) A novel use of perceptron learning to detect and clas-
sify a broad range of microarchitectural attacks. We
introduce new replicated perceptron-based algorithms for
the selection of highly correlated invariant features of
microarchitectural attacks across, the different pipeline
stages, most relevant for attack classification.

2) A comprehensive analysis of microarchitectural features
that indicate footprints of an attack. We show using the pro-
posed detection and classification algorithms, that valuable
insights pertaining to the properties of microarchitectural
attacks can be gleaned from a systematic analysis of the
weights of the features in the perceptron design.

3) A hardware design of the proposed detection system and
a fast classification system with low area and performance
overhead. We provide proof that it is robust to even
tweaked variations of considered attacks, including one
of Flush+Flush, which prior work could not detect in
hardware.

II. BACKGROUND AND MOTIVATION

The following two subsections explain the attacks considered
in our work. We categorize them as (1) cache side-channel
attacks, which exploit timing differences caused by the lower
latency of CPU caches (compared to physical memory),
and (2) speculative attacks, which exploit microarchitectural
vulnerabilities and leak the data using the above-described
side-channel attacks.

In particular, for cache side-channel attacks, we examine
Prime+Probe, Flush+Reload, and Flush+Flush attacks. For
speculative (also known as transient execution) attacks, Spectre
Variant1 (SpectreV1), Meltdown, and SpectreRSB. Our training
set is limited to these six attacks.1

We then describe the perceptron, a small, single-layered
learning network that is cheaply implementable in hardware
and is the foundational computational structure of our work.

1For practical reasons, our data set does not include all known microarchitec-
tural attacks (e.g, some variants of speculation attacks, side channels on other
CPU structures, and RowHammer attacks); however, we believe PerSpectron
can be trained to detect additional attacks.

A. Cache attacks

In a Prime+Probe attack [20], the attacker primes the cache
by filling cache sets with its own code or data, then waits
for a set time while the victim executes. Finally, the attacker
probes the cache by executing and measuring the time to load
each set of the primed data or code. If the victim has accessed
some cache sets, it will have evicted some of the attacker’s
cache lines, which the attacker observes via increased access
latencies for those lines.

In a Flush+Reload attack [21], the attacker and the victim
share some pages in their address space, e.g. via shared libraries.
First, the monitored data is flushed from the cache hierarchy.
Second, the attacker waits to allow the victim time to access this
data. Third, the attacker reloads the memory line, measuring
the time to load it. If during the waiting phase the victim
accesses the data, the line will be present in the cache and the
reload operation will take a short time, exposing the victim’s
access behavior. If the victim has not accessed the memory
line, the attacker will observe a longer access time.

Unlike the above attacks, a Flush+Flush attack [22] does not
make any memory accesses and causes no cache misses from
the attacker process. Instead, this attack relies on the execution
time of the flush instruction: if an address is present in the cache,
flushing takes more time. Flush+Flush attacks are stealthy [22],
i.e. the spy process cannot be detected based on cache hits
and misses detection mechanisms [22]. Because Flush+Flush
conducts neither caches accesses nor causes misses, it cannot
be detected by Cyclone [23], a state-of-the-art side channel
detection solution.

B. Speculative attacks

Spectre Variant1 [24], or SpectreV1, exploits branch pre-
dictors used to predict the direction of conditional branches.
The attacker mis-trains the branch predictor to bypass the
boundary check of a data structure and speculatively access
secret data out of bounds. As a result, the CPU speculatively
brings indexing data into the cache that would not have been
loaded otherwise. The attacker uses the secret data to index
into its own address space and uses a cache side-channel (such
as Flush+Reload) to leak the data.

The Meltdown attack [25] relies on the fact that permission
checks are performed late in the execution pipeline, and a fault
is generated only for a committed instruction. From the time an
instruction is marked for permission exception at the beginning
of the pipeline, to the time that an exception can be raised, if
the attacker makes a (normally unauthorized) memory access,
the secret data can be cached and leaked using a side-channel.

SpectreRSB [26] is another Spectre attack variant that exploits
the return stack buffer (RSB), a predictor unit to predict the
target of return instructions. In this attack, the attacker pollutes
the RSB with an unmatched call/return pair, which redirects
the speculative control flow of the program to a malicious
Spectre-like setup.

C. Perceptron

We address software limitations by moving the detection of
attacks to hardware, allowing the selection of features from a
larger set of events without incurring performance overhead.
Neural network models used in current work feature deep multi-
layered networks (e.g. RNN) that are not easily amenable to
hardware due to design and runtime complexity. We show
that using a simple single-layered perceptron can provide a
readily implementable solution. Perceptron learning has shown
to be implementable in hardware for various applications
including branch prediction, prefetching, replacement policies,
and CPU adaptation [27]. Recent microarchitectures from
Oracle [28], AMD (e.g. Bobcat, Jaguar, Piledriver, Zen, etc.),
and Samsung [29], [30] are documented as featuring perceptron-
based branch predictors.

We adapt the single-layer perceptron model used by prior
work for detecting and classifying side-channel attacks. A
perceptron is a vector of weights that records correlations
between an input vector and a target value. It can be used to
classify inputs into one of two classes [31]. We construct a
quantized desired response d(n) to a perceptron:

d(n) =

(
+1, if x(n) belongs to malicious class.
�1, if x(n) belongs to benign class.

The perceptron computes the weighted sum of the input patterns
x(n) and compares it to a threshold value. If the sum exceeds
the threshold, the output of the perceptron is +1, otherwise,
is it -1. The perceptron weights are updated after the desired
outcome d(n) of the predicted event is known. If the prediction
was correct then the weights remain unchanged. Otherwise,
the inputs are used to update the corresponding weights:
w(n+1) = w(n)+µ[d(n)�y(n)]x(n) where µ is the learning-
rate parameter and the difference d(n)�y(n) is the error signal.

Perceptrons are a natural choice for building a microar-
chitectural attack detector because they can be efficiently
implemented in hardware. Other forms of neural networks
such as those trained by back-propagation, and other forms
of machine learning such as decision trees, are less attractive
because of excessive implementation costs.

III. THREAT MODEL

The main goal of PerSpectron is to detect cache-based side
channel attacks and speculative attacks and prevent the attacker
from leaking the memory contents of a victim program that is
otherwise not accessible to the attackers. In the attack scenario,
we assume a strong adversary model where the attacker may
execute any code with the privileges of a normal user. Our
defense also applies for attacks that target secure enclaves,
where the attacker may even have operating systems privileges
and use them to attack the enclave using microarchitectural
attacks, although the appropriate action upon the detection
of an attack may be different (for example, we may tear
down the enclave). Note that our detectors are specialized to
microarchitectural attacks; traditional software vulnerabilities
such as memory corruption bugs, or physical side channel

attacks, are different threat models and out of scope for our
defense.

IV. PERSPECTRON OVERVIEW

A. General Approach

In microarchitectural attacks, information about suspicious
activity comes from different parts of the processor. We observe
this for different attack variants, as well as attempts to evade
detection. For example, in SpectreV1, the attacker trains the
branch prediction unit, while other variants use the Branch
Target Buffer (BTB) or the return stack buffer (RSB). Figure 1
shows that information on the activity of these attacks hops
between input domains.

We can see that while SpectreRSB does not have a high
branchPredindirectMispredicted value, it has a high RASIn-
corrects value. Meltdown cannot be predicted with a high
SquashedLoads value, but it causes high NonSpecInstrsAdded
to the IQ. Different variants of attacks present a problem similar
to the viewpoint problem of image recognition that standard
learning models struggle with [32], [33]. The same is true for
cache attacks2. Each variant of an attack or evasion presents
some common features and some unique compared to others,
similar to the way an image does when it is rotated. We need
to address this problem to detect different attack variants.

Importantly, common evasion techniques are unlikely to be
effective against detecting distinct architectural footprints. For
example, using polymorphism to produce different binaries,
which can be effective against signature detection or features
that look for specific instruction distributions, is unlikely
to evade PerSpectron. Since microarchitectural attacks have
distinctive time-sensitive microarchitectural footprints (e.g..,
misspeculation contention), evasion is difficult. For example,
if the attack slows to the point where it cannot execute within
the misspeculation window, it is no longer effective. Moreover,
we believe that techniques for evasion-resilience [19] used by
other hardware detectors can also be applied to PerSpectron
to further improve its resilience to evasion. We will explore
this idea in future work.

We know that information about attacks moves around the
processor and shows up in different places similar to an image
being rotated. We should detect these moving signatures in any
component of the processor where they appear. Thus, we use
the replicated features approach [34], an established solution
for this type of problem. The idea is that if a feature vector
was useful in detecting one target, it is likely that a similar
feature detector with different positions in the input space can
detect the replicated information, amplifying the signal and
attenuating the noise.

Local features yield the well-known advantages of replicated
features. Convolutional networks force the extraction of local

2While Flush+Flush does not cause high PendingQuiesceStallCycles, it
causes abnormal commitNonSpecStalls. Also, while Flush+Reload does not
cause abnormal commitNonSpecStalls, it causes an abnormal number of
PendingQuiesceStallCycles. While Prime+Probe does not cause abnormally low
tol2bus.transdist.CleanEvict or PendingQuiesceStallCycles values, it causes
abnormal tol2bus.transdist.CleanEvict values(See Figure 1).

tol2bus.trans_dist::CleanEvict

fetch.PendingQuiesceStallCycles

commit.commitNonSpecStalls

FlushFlush FlushReload PrimeProbe

FlushFlush FlushReload PrimeProbe

FlushFlush FlushReload PrimeProbe
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

benchmarks

system.cpu.branchPredindirectMispredicted

system.cpu.branchPred.RASInCorrect

iq.iqNonSpecInstsAdded

Meltdown SpectreRSB SpectreV1

Meltdown SpectreRSB SpectreV1

Meltdown SpectreRSB SpectreV1
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

benchmarks

Fig. 1: Information hops between input dimensions. To detect
different variants of attacks we need viewpoint invariant
features and replicated detectors.

features by restricting the receptive of hidden units to be local
[35]. Pipeline components already exhibit this property. Table I
shows a subset of replicated features from different pipeline
stages that we found equally correlated in classifying attacks.

We do not disregard mutually correlated features of different
types, but rather we use them to our advantage. Hinton [32]
finds that using the entire space of possible instantiation
parameters in the training set allowed the use of a simpler
architecture, which could efficiently handle more complex
images. In addition, no hidden layer was necessary—the
mapping from the features’ instantiation parameters to the
object’s instantiation parameters became linear.

Our solution to this viewpoint problem starts with extracting
a large, redundant set of features across each pipeline stage
that are invariant under transformation and evasion similar to
the invariant feature approach. Ullman [36] observed that a
large set of invariant features is sufficient to solve the problem.
By using the entire space of possible features in the training
set we can efficiently detect multiple variations of attacks
and evasions without needing to represent the relationships
between features directly because other features capture them.
PerSpectron applies the same method in a single layer. Using
detailed microarchitectural features in hardware enables us to
apply the invariant feature approach.

An example of an invariant feature is the effect of misses
and stalls in the Fetch stage. The squashed cycles in each stage,
all the ROB, IQ, and Register full events, undone maps in
the Rename stage, and memory order violation in the IEW
stage propagate back to the Fetch stage. The relationship
between these events’ Fetch is not a simple cumulative
function in an out-of-order processor. However, features such
as fetch.MiscStallCycle capture the relationship. By including
overlapping and redundant features, one feature tells us how
other features are related. This solves the domain-hopping
problem caused by different variants of microarchitectural
attacks and also makes our detector more difficult to evade.

B. Feature selection
In this section, we explain extracting the invariant features

and building the replicated perceptron detectors.
The first step of the selection procedure derives, for each of

the 1159 features, a measure of mutual information. We use
the Pearson correlation coefficient, a number between -1 and
1 that indicates the extent to which two variables are linearly
related. We then create a correlation matrix and, based on
the values in it, we group features f1 . . . fm that are closely
correlated into group g1 . . .gc, c = 17 is number of components.
Features i and j are closely correlated if the value |ci, j| in the
matrix is above a threshold, 0.98. The members of 4 out of
53 corresponding correlation group with |ci, j| above 0.98 are
presented in Table I.

The next step is to decorrelate the features within a
component, still keep one from every group, gi. This process
seeks to maximize the information about the class contained
in each component and minimize the correlation within a
component. There was no statistically significant decrease
in validation accuracy when we started discarding mutually
correlated features within a group, but the accuracy on the
validation set decreases significantly when we discard mutually
correlated features of different components.

The third step is to select a bank of n features from each
component of pipeline. We sort F1 . . .Fn in each component by
the mutual information about the class benign or suspicious.
We then use a greedy iterative selection process, initialized
by selecting the f1 with the highest correlation with the class.
Features are added one per each component until the gain in
accuracy is small or until a limit on the features m is reached.
This method enforces the replication of invariant features.

8QLW�� �
)HWFK

8QLW��
'HFRGH

8QLW��� �
PHPBFWUO

:HLJKW�Q

:HLJKW��

:HLJKW��

� 6DIH�RU�
6XVSLFLRXV

Fig. 2: Architecture of PerSpectron

C. Hardware Design
We simplify our input values into a hardware-friendly

representation. In particular, we design a k-sparse binary feature
to represent values of microarchitectural statistics, where a k-
sparse binary feature has k 1s in the vector and 0s elsewhere.
Specifically, the k-sparse binary feature vector is represented
as x 2 {0,1}u, where u is the total number of features and the

tth entry xt is a 0/1 indicator, denoting whether the tth scaled
statistic is less than 0.5 or higher than 0.5. Scaled statistic t
is the value of the tth feature divided by the corresponding
maximum value for a given sampling point. Maximum values
are stored in a two-dimensional matrix M, with u rows and
s columns. The value on the ith row and jth column is the
maximum value for the counter i at the execution point j.

The example shown partially in Figure 1 is represented as a
vector of inputs that when normalized to the maximum value
of the counter would generate input vectors, which in this case
are distinctive signatures.

[f1 = ReadResp, f2 = commitNonSpecStalls, f3 = Pend-
ingQuiesceStallCycles, f4 = CleanEvict]

suspicious :< 0,1,0,0 >

suspicious :< 1,0,1,0 >

suspicious :< 0,0,0,1 >

sa f e :< 1,1,0,0 >

The above vectors show the one-hot representation and k-
sparse binary feature for three attacks and one safe program
(example shown in Figure1). We see that regardless of the order
and the position of each feature, the k-sparse representation
for four program are distinctive, and only contain 0/1 values,
thereby simplifying the prediction problem.

D. Training and prediction
We train our perceptron using the 106 features that we

selected from offline training. The result of this training is a
vector of 106 weights that will be used for building one final
perceptron in hardware for prediction (Figure 2).

E. Computing the perceptron output
Since 0 and 1 are the only possible input values to the

perceptron, multiplication is not necessary to compute the dot
product. Instead, we simply add the weight when the input
bit is 1 and subtract when the input bit is -1. Furthermore,
only the sign bit of the result is needed to make a prediction.
This allows the other bits of the output to be computed slowly
without waiting for a final value.

F. Performance Overhead
PerSpectron has negligible performance impact since the

sampling and prediction happens in hardware and in parallel to
the execution. The inference step is not on any critical perfor-
mance path for the processor. The inclusion of any additional
hardware counters not already present in the microarchitecture
is also of little concern for overhead, as microprocessor design
usually includes hundreds of counters in various parts of the
chip as a means to debug and verify processors.

Previous work adapting perceptron learning to branch pre-
diction was done under very tight timing constraints, requiring
complex, high-speed arithmetic logic. For example, the original
perceptron branch prediction paper suggests an expensive
Wallace-tree adder [37] taking the same area and energy as
a large integer multiplier circuit. However, for our purposes

group 1 group 2 group 3 group 4
commit.SquashedInsts commit.SquashedInsts commit.NonSpecStalls branchPred.condIncorrect

lsq.squashedStores iew.lsq.forwLoads l2.ReadSharedReq misses commit.op class 0::No OpClass
iew.memOrderViolationEvents dtlb.rdMisses rename.serializingInsts iew.iewExecSquashedInsts

fetch.SquashCycles iew.SquashCycles membus.trans dist::ReadSharedReq iew.lsq.thread0.ignoredResponses
iew.lsq.forwLoads fetch.SquashCycles l2.ReadSharedReq mshr miss latency iq.iqSquashedInstsIssued

decode.SquashCycles iq.SquashedNonSpecRemoved dcache.ReadReq mshr miss latency iew.iewDispSquashedInsts
iq.SquashedInstsExamined decode.SquashCycles l2.ReadSharedReq accesses branchPred.RASInCorrect

lsq.squashedLoads iew.memOrderViolationEvents l2.ReadSharedReq miss latency iq.fu full::FloatMemWrite
iew.SquashCycles fetch.IcacheSquashes dcache.ReadReq mshr misses commit.op class 0::FloatAdd
iew.BlockCycles lsq.squashedLoads tol2bus.trans dist::ReadSharedReq fetch.PendingQuiesceStallCycles

memDep.conflictingStores iq.SquashedInstsExamined commit.membars iew.lsq.thread0.rescheduledLoads
dtb.rdMisses iew.BlockCycles dcache.ReadReq misses commit.branchMispredicts

iq.SquashedNonSpecRemoved memDep.conflictingLoads l2.ReadSharedReq mshr misses branchPredindirectMispredicted
rename.SquashCycles iq.fu full::MemRead membus.trans dist::ReadResp commit.op class 0::SimdCvt

memDep.conflictingLoads lsq.squashedStores rename.serializeStallCycles iq.fu full::IntAlu
rename.UndoneMaps rename.UndoneMaps mem ctrls.selfRefreshEnergy iew.branchMispredicts
fetch.IcacheSquashes memDep.conflictingStores iq.NonSpecInstsAdded iew.predictedNotTakenIncorrect

iq.SquashedOperandsExamined rename.SquashCycles tol2bus.trans dist::ReadResp tol2bus.snoop filter.tot requests

TABLE I: Subset of highly correlated features. Features are ranked by correlations between the true class labels and the feature
value from top to bottom and left to right. Features in each group have high mutual correlation but belong to different pipeline
components and are used to construct Replicated Perceptron detectors.

the timing constraints are much more relaxed. The central
computation of perceptron-based inference, the dot-product
computation, can be performed using a very modest circuit
that sequentially adds partial products. This generates a result
in a number of cycles proportional to the number of inputs,
i.e. on the order of 100 cycles for our perceptron. Since the
inputs are binary, the circuit simply adds or subtracts weights
corresponding to inputs with the value of 1 or 0, respectively.
Such a circuit would take negligible area and energy and
deliver a prediction in a very timely manner compared with
the sampling interval.

G. Using PerSpectron within the System

Once the detector identifies an attack, it is natural to ask how
this information will be used within an end to end strategy
for defending the system. Because any low-level machine
learning detector can experience false positives, we are hesitant
to suggest termination of a process that is suspected to be
malicious. Rather, we use PerSpectron as a low-level detector
that provides information to the system to trigger further
mitigations. We discuss two possible classes of mitigations
next.

1) Hardware Mitigations
We envision our technique being deployed with the ability

to update the neural weights using a vendor distributed patch
reflecting training with the most recent known classes of attacks.
The weights are small and few so the overhead of distributing
and applying the patch would be modest.

The output of a perceptron before being thresholded can be
used as a confidence measurement that can also be passed along
to the operating system should an attack be suspected. Based on
the category of the attack and the confidence, the technique uses
a low-cost solution. For example, for mitigating cache attacks,
the technique could apply changes to replacement policies
to make set eviction harder or enable index randomization

in the LLC like Qureshi’s CEASER [38], or making unsafe
loads invisible in the cache hierarchy [39], [40] to mitigate
the attack only when suspicious activity was predicted with
high confidence. For mitigating branch predictor attacks, when
an attack is suspected, we can inject noise into the branch
predictor, or invoke load fences [41] so that it occasionally
reverses its taken/not-taken prediction. Increasing the frequency
of the noise increases the time for an attack to succeed and
decreases performance, however.

2) Software Mitigations
In order to generalize to other classes of attacks, the weights

of replicated detectors can be adjusted to cover an arbitrary
group of attacks provided that we are exposed to them during
training. The detectors are “software defined,” meaning there
is a secure update process to configure them. They are also
replicated per pipeline component. So, we can add classifiers
for additional attacks using the same infrastructure if new
attacks emerge.

V. METHODOLOGY

We use the gem5 [42] cycle-level simulator. Table II gives
the parameters of the simulated architecture. We used the
FANN C library [43] to implement PerSpectron to work with
gem5. We used the scikit-learn python library to measure the
performance of other machine learning models, including K-
nearest neighbors, Decision Tree, Logistic Regression, and
Neural Network.
Data: For speculative attacks, we simulate
SpectreV1,SpectreV2, SpectreRSB, Meltdown, breakingKSLR
(based on Meltdown) and CacheOut attack. For cache attacks,
we run Flush+Flush, Flush+Reload, and Prime+Probe along
with their respective profiling-calibration phases. Calibration
programs threshold distinguishing cache hits and cache misses
based on different cache attack techniques [20], [21], [22].

For benign programs, we run individual SPEC CPU 2006
applications [44]. The workloads include C compression

programs modified to do most work in memory (rather than
I/O), optimization scheduling, Ethernet network simulator, high-
rank artificial intelligence programs, discrete event simulation,
gene sequence protein analysis, the A* algorithm, and more.

We have written an interface to gem5 that dumps statistics
once every 10K, 50K, and 100K instructions, and samples all
event counters for each program. Using this tool, we collect
multi-dimensional time-series traces of applications.
Statistics: We examined 1159 microarchitectural counters,
including features related to cycle accounting and micro-
operation (µop) flow, stall decomposition, precise memory
access events, latency events, precise branch events, core
memory access events, and other core and uncore events. For
each event (if applicable) we measure total number, cycles,
rate, average and distribution. For each counter, we maintain a
maximum possible value for each sampling simulation point.
Each statistic is normalized over the maximum value of that
counter.

We include events related to stalls and differentiate between
types of stalls and among various points in the pipeline. We
differentiate between read and write latency, and what came
from the master ports and was forwarded to the slave (requests
and responses). Likewise, what came from the slave and was
forwarded to the master. We also examined features related to
energy consumption in different microarchitectural units and
pipeline stages. Also tracked are complete power state machine
statistics such as Active, Idle, Active Power-Down, Precharge
Power-Down, and Self-Refresh values.

Architecture

X86 O3CPU 1 core Single Thread at 2.0GHz
Core

Tournament branch predictor
16 RAS entries, 4096 BTB entries

LQEntries=32, SQEntries=32, ROBEntries=192
fetch/dispatch/issue/commit width=8

numPhysIntRegs=256,numPhysFloatRegs=256
L1 I-Cache

32KB, 64B line, 4-way
L1 D-Cache

64KB, 64B line, 8-way
Shared L2 cache

2MB bank, 64B line, 8-way,
mshrs=20, tgtsPerMshr=12, writeBuffers=8

tagLatency=20, dataLatency=20, responseLatency=20

TABLE II: Parameters of simulated architecture

Training and Validation: We train the perceptrons for 1000
epochs, or until the training error falls below 0.4. We used
3-fold stratified splitting with randomization. The class split
for each fold for 100K setting is as follows:
Class: [benign malicious]
train - [4820, 1500] — test - [2420, 740]

VI. SECURITY ANALYSIS

We structure the security analysis of PerSpectron around
three questions: (1) How well does PersPectron detect the
different attacks? We seek to show that it can indeed reliably

detect all the classes of attacks it was exposed to during
training; (2) Can attackers evade detection by modifying the
attacks? We consider different evasion strategies and discover
that PerSpectron is robust against evasion attempts; and (3)
Could PerSpectron generalize to detect novel cache based or
speculation attacks? We show using examples of new attacks
(that were not part of the training set) that PerSpectron is
indeed able to detect them, likely indicating that it is detecting
the basic signatures of these attacks in the microarchitecture.
This is an encouraging sign that the approach can help protect
against zero day microarchitectural attacks (novel attacks not
seen before) even before we include them in the training set.

A. Resilience to evasion
It is natural to expect that an attacker would attempt to

change their attack to avoid detection using evasive attacks.
In general, this is the problem of adversarial attacks against
machine learning, which has been considered even against
hardware detectors [19]. Although solutions such as RHMD
can also be applied to our detector, we believe that the nature
of microarchitectural attacks makes it difficult for attackers to
evade detection without interfering with the attack, meaning
that the attack features are strong discriminators that cannot
be hidden without disabling the attack.

To support this hypothesis, we investigate the robustness
of PerSpectron to two evasion techniques in this section:
(1) Resilience to polymporphic evasion (where the attacker
attempts to produce different binaries implementing the attack);
and (2) Resilience to bandwidth reduction mimicry: a common
evasion strategy is to slow down the rate of the attack to
weaken the microarchitectural signal.

1) Polymorphic evasion
We generated variants of the attack PoC code-snippets used

in this study to investigate whether our predictor is resilient
to such variations. This is a typical strategy used by malware
to evade signature based detectors [45], [46]. PerSpectron was
not exposed to any of the modified attacks: they were not used
in any of the feature selection phases or final model training.
We considered the following transformations:

• Moving the leak to a function that cannot be inlined.
• Add a left shift by one on the index.
• Use x as the initial value in a for() loop.
• Check the bounds with an AND mask, rather than <.
• Compare against the last-known good value.
• Use a separate value to communicate the safety check.
• Leak a comparison result in which the attacker is assumed

to provide both x and k.
• Make the index the sum of two input parameters.
• Do the safety check into an inline function.
• Invert the low bits of x.
• Use memcmp() to read the memory for the leak.
• Pass a pointer to the length.
Figure 3 shows a stacked line chart of perceptron output

pre-threshold versus the number of instructions simulated for
different versions of a Spectre attack with the same leakage
frequency. All variations were detected and triggered the

0

2

4

6

8

0 250000 500000 750000 1000000
instruction

O
ut
pu
t

variation
spectre_and_mask

spectre_check_incline

spectre_double_array

spectre_invert_bit

spectre_left_shift

spectre_memcmp

spectre_no_incline

spectre_operator1

spectre_pointer

spectre_sum_index

Fig. 3: Perceptron output vs. number of instructions for Spectre
variations with same leakage frequency. All variants were
flagged as suspicious at the same sampling interval.

perceptron output as suspicious at the same sampling interval,
showing that the variations do not cause failure in the detection.

2) Bandwidth reduction evasion
A typical microarchitectural attack encompasses a priming

phase used to place the system into an initial state, e.g. flushing
the cache, a speculation phase that exposes a victim’s data, a
disclosure gadget phase that readies the data for transmission,
and a final disclosure primitive phase that leaks the data to the
adversary. We seek to detect suspicious activities before the
disclosure phase begins so that appropriate countermeasures
are launched on time to prevent leaking the first byte of data.

0

5

10

0 500000 1000000 1500000
instruction

O
ut
pu
t

bandwidth
0.25x

0.50x

0.75x

1.0x

Threshold

Fig. 4: Perceptron output pre-threshold vs. number of instruc-
tions for various SpectreV1 bandwidths.

Figure 4 shows perceptron output pre-threshold versus
the number of instructions simulated for various SpectreV1
bandwidths. We reduced the bandwidth of Spectre by 75%,
50%, and 25% over the original attack code by injecting safe
source code into the program. The safe code was injected after
the disclosure primitive phase as well as before the priming
phase, in proportion to the ratio of bandwidth reduction. Our
safe code does not tamper with branch history or the secret
cache line.

Figure 4 shows that even though the unmodified Spectre
(1.0x) saturates the output faster, all lower bandwidth versions
stay above the cutoff threshold after the first complete phase
of the attack, showing that PerSpectron detects the suspicious
activity. Further reducing the bandwidth to less than 25% leads

to no leakage of data. While PerSpectron continues to detect
an attack at lower bandwidth, data is not leaked even after
many tries within 2,000,000,000 executed instructions.

Bandwidth evasion is based on timing the completion of
all attack atomic tasks to fit within the sampling interval.
It is a problem with the low sampling frequency of the
software detector. Li and Gaudiot [47] demonstrated that
performance counter-based detectors can be evaded by changing
the bandwidth of the attack so that it runs inside the 100 ms
sampling interval of the detector. They identified three ”Atomic
Tasks” that, if interrupted, will disable the attack: (1) Flushing
cache lines - 10 µs (2) Mistraining branch predictor - 13 µs (3)
Attempting to infer the secret byte that is loaded into cache - 38
µs. The authors concluded that putting the attack to sleep after
all three tasks were completed is the optimum evasion strategy
for an attack. This means that the attack runs for 61 µs before
being put to sleep, which allows Spectre to run inside the 100
ms sampling interval of the detector. Our sampling interval is
3 µs, which gives 20 sampling intervals within the 61 µs run
time it takes to complete all three tasks, making PerSpectron
resistant to this evasion strategy. The authors acknowledged that
future work should be done on a dedicated hardware detector
to reduce performance overhead. Therefore evasion is made
more difficult by decreasing the sampling interval to below the
run time of essential tasks of the attack.

B. Generalization to Other Attacks
When evaluating trained models at development time, our

goal was to estimate the generalization accuracy, i.e. the
predictive performance of a model on future (unseen) attacks.
Thus, we use K-fold cross-validation (CV) to characterize the
distribution of possible model behaviors on workloads not
present in the training set.

We start by splitting our dataset into three parts: a training
set for model fitting, a validation set for model selection,
and a test set for the final evaluation of the selected model.
We merge the training and validation sets (excluding the test
set) after model selection. At every fold, we remove all the
samples belonging to attacks in the test set and hence they were
not used for model selection. Therefore, our cross validation
confidence interval of (0.9979±0.0065) simulates new data
that the model has not seen before. Thus, we are naturally
evaluating the generalization of the detection to attacks not
part of the training or validation set.

We also explored whether PerSpectron can generalize to
newly discovered attacks within the category of microarchitec-
tural and speculative execution attacks. Specifically, we consider
the CacheOut attack, which was disclosed after PerSpectron
was developed [5]. CacheOut attacks Read from Line Fill
Buffer, a feature that PerSpectron identified as invariant prior to
disclosure of CacheOut. CacheOut (94% true-positive detection)
demonstrates PerSpectron’s robustness on detecting advanced
MDS attacks. We also held out SpectreV2 from any of the
independent training set of 3-cross-validation and were able to
detect it (91% true-positive) providing evidence of robustness
in detecting new variations.

Both CacheOut and SpectreV2 transmit values via a
Flush+Reload channel. To assure that PerSpectron is detecting
both recovery and transmission portion of attacks, we used
different cache channels for the attacks in the test set and the
training set of the each CV fold (see Table III).

Note that PerSpectron does not rely on a cache channel
for detection; it relies on replicated detectors and invariant
features that monitor contention in all CPU components i.e.,
buffers and ports. Our CV results confirm that there are
distinct signatures for these attacks that should hold across their
different variations, and by extension to newly discovered ones,
which shows our detector to be generalized to more variations.

C. Attack Coverage
Table IV shows that DT-CART [48] with MAP [16] features

was not able to detect Prime+Probe and SpectreV1 with a
bandwidth smaller than 0.75x post leakage. DT-CART using
PerSpectron features was able to detect Prime+Probe but still
was not able to detect attacks with bandwidth lower than
(< 0.75x). KNN was unable to detect calibration-ff, calibration-
pp, and Prime+Probe even after leakage. Interestingly KNN
could detect polymorphic attacks using PerSpectron features.
Logistic Regression with MAP features suffered from high false
positives, and could not detect Prime+Probe and polymorphic
attacks until post leakage. Perceptron, with the large feature
set of 1159, had false negatives on Prime+Probe pre-leakage.
A neural network with MAP features suffered from false
positives on memory and interrupt intensive workloads when
they were dropped out of the training set. Neural network with
PerSpectron features had fewer false positives and could detect
11 out of 12 polymorphic attacks. PerSpectron could detect all
of the attacks before they leaked with only false negatives on
initial and pre-leakage samples. This includes the Prime+Probe
as well as Flush+Flush attacks3.

VII. EXPERIMENTAL EVALUATION

This section details our experimental results exploring dif-
ferent aspects of the behavior of PerSpectron. Specifically, we
first study the impact of the sampling granularity, discovering
that prediction accuracy improves up to a sampling rate of 10K
instructions. We also compare PerSpectron to other models
and feature sets and see that it achieves substantially higher
accuracy than these models for the types of attacks we consider.
Finally, we explore the individual feature behavior across the
pipeline to demonstrate both the interpretability of the behavior
of the detector and how the signatures manifest in different
pipeline stages, supporting a hypothesis that PerSpectron is
both generalizable and difficult to evade.

A. Sampling granularity and threshold
We tested different sampling granularities and threshold

values. We present the receiver operating characteristic (ROC)
curves in Figure 5 to show the relationship between true

3Note that Perspectron does not detect occurrence of leakage. PerSpectron
detects suspicious activity related to microarchitectural attacks that leads to
leakage. Some variations don’t leak in the simulation environment.

positive and false positive rate. The figure shows ROC curves
under three different sampling intervals: 10K, 50K and 100K
instructions. We can see the 10K interval is better than the
50K and 100K.

We found that a threshold of 0.25 is the best with an
area under the curve. PerSpectron has high sensitivity and
specificity (AUC of 0.9949) to atomic tasks and benign code.
The prediction statistics are as follows: mean accuracy is 0.9979,
standard deviation is 0.0015 and accuracy range of (0.9914,
1.0000).

0

25

50

75

100

0 25 50 75 100
FPR

TP
R granularity

10K

100K

50K

Fig. 5: ROC curve for different sampling granularities. A 10K
interval is better than 50K and 100K intervals.

B. Comparison with other models and feature sets
To compare different models’ performance, we specifically

used standard K-fold cross-validation (CV). Standard CV is
the unbiased estimate of prediction error, which is the expected
loss on future instances. More precisely, our CV is defined as
follows. Let there be N = |D| data cases in the training set.
Denote the data in the k’th test fold by Dk and all the other
data by D�k (Table III). At every fold, we remove all samples
belonging to attacks and benign programs in the test set so
they are not used for training the model, analytically removing
the effect of the i’th training case. Benign programs on these
fold are chosen so the class proportions are roughly equal in
each fold.

Our experiments with multi-way classification achieves a
near-perfect F1-score on the training set. However, due to
the limited number of attacks per category, excluding test
and training set for K-fold-CV was impractical for multi-way
classification. Thus, in this section we report the accuracy of
binary classification comparing with previous works. Table III
shows which attacks were chosen for training and which attacks
are excluded.4

We investigated the features used in previous works that
had success using Logistic Regression for detecting malware.
Table IV shows Logistic Regression trained with features
similar to MAP [16], achieving 75.5% accuracy in detecting

4We excluded CacheOut from all the folds to further stress the CV results—
especially to compare the robustness of models on detecting advanced MDS
attacks.

k’th test fold Dk D�k
1 spectreRSB, spectreV2, cacheOut, breakingKSLR, prime+probe meltdown, spectreV1, flush+flush, flush+reload
2 spectreV1, spectreV2, cacheOut, flush+reload meltdown, spectreRSB, breakingKSLR, flush+flush, prime+probe
3 spectreV2, cacheOut, meltdown, breakingKSLR, flush+flush spectreV1, spectreRSB, flush+reload, prime+probe

TABLE III: Estimating the risk using cross validation. At each fold, we excluded one version of each categories of attacks,
trying to predict the attack using a model trained on data that does not contain that attack.

microarchitectural attacks while majority labeling yielded
74.4% accuracy. These results show that the signatures of
microarchitectural attacks are different than signatures of
malware attacks. In addition, memory, branch, and interrupt
intensive benign workloads such as h264ref, povray, gcc, sjeng,
and gobmk were shown as false positive using the features from
previous work. We also tried Logistic Regression using the
106 highly correlated features we extracted via the PerSpectron
algorithm. The accuracy increased to 89.7%, showing that using
a highly correlated feature set improves detection accuracy. The
K-nearest neighbor algorithm showed a high mean accuracy of
94.8% with the best k = 3 and PerSpectron features. However,
KNN is not suitable for implementation in hardware due to its
high overhead and classification latency.

Table IV shows that the decision tree with CART [48]
algorithm has 87.1% accuracy with MAP [16] features and
90.5% accuracy with the 106 highly correlated PerSpectron
features. Decision tree, on the other hand, leads to hard
decisions in different regions of input space, causing poor
performance on classifying attacks that were unseen during the
training. Lastly, CART was unable to correctly classify low
bandwidth attacks.

We also investigated neural networks using the features
from previous works [16], yielding a low accuracy of 80.2%.
We noticed that the values of features kept constant during
the different phases of attacks show that the previous work
did not use features suitable for microarchitectural attack
detection. The neural network, when trained with 106 features
selected with the PerSpectron algorithm, yields an accuracy
of 98.2%. However, a deep neural network has high hardware
overhead and classification latency, making it unsuitable for
implementation in hardware.

Finally, PerSpectron gave the highest accuracy with 99.7%
and a tight confidence interval. PerSpectron does not suffer
from a greediness problem similar to decision trees. Unlike
the single perceptron, miss-classification by one component
can be recovered by the replicated feature detector from the
other component of the pipeline.

C. Interpretation through feature analysis
An important aspect of our model is its interpretability. In

perceptron based detectors, when features in an active program
carry high positive weights, suspicious activity is indicated,
whereas a negative weight indicates a benign program. Thus, the
weights attached to each feature potentially convey insightful
information related to how each feature correlates to the
output giving us a detailed understanding of the footprint
of these microarchitectural attacks in our feature space. This
interpretability contrasts with deep neural network models

whose features are automatically generated from the data,
and therefore resist interpretability. In the following, we take
advantage of this visibility to explore the footprint of the attacks
in groups of our features related to different components of
the architecture.
Rename unit features: We found that CommittedMaps is an
invariant feature that contributes highly to different classes of
the suspicious activity including speculative and cache attacks.
The Committed Map table holds the speculative mappings from
ISA registers to physical registers. If enabled, this allows a
single-cycle reset of the pipeline during flushes and exceptions
of any kind. On every branch, the Rename Map tables are
used to allow single-cycle recovery on a branch misprediction.
Otherwise, pipeline flushes require multiple cycles to “unwind”
the ROB to write back in the rename state at the commit
point, one ROB row per cycle. This functionality explains why
CommittedMaps is invariant to different versions of transient
execution attacks. Polymorphic evasions that uses contention
on the Register File were detected preleakage after including
CommittedMaps features even by the simplest models i.e. (DT-
CART) which shows this feature is highly informative.

The other invariant features from the rename stage are serial-
izeStallCycles, LQFullEvents and tempSerializingInsts. We also
observe that Flush+Flush-type attacks have an unusually high
number of temporary serializing instructions in the rename unit
which also manifest in the commit unit as a high number of
stalls.
Memory controller features: One feature that we found to
be both strongly correlated to attacks and invariant against a
range of them is the bytesReadWrQ selected from Memory
Controller. The bytesReadWrQ tracks the number of DRAM
read requests that are serviced by the write queue. We observe
that the access rate to the write queue is abnormally high in
all attacks early on before the completion of the first iteration
of attacks. Including this feature reduces the false positive for
memory intensive workloads. This feature illustrates the fact
that most attacks attempt to read data freshly evicted from
the caches while constructing a covert channel inside the tight
speculative window at a rate much higher than typical even in
memory intensive workloads.

Another two invariant features from mem ctrl were bytes-
PerActivate with large positive weights, and wrPerTurnAround
with lowest negative weight. Feature bytesPerActivate is the
number of accessed bytes per row activation in DRAM and
wrPerTurnAround is the number of writes before turning the
bus around for reads. We noticed that including these two
features reduces the number of false positives and remain
discriminatory for reduced bandwidth attacks in all the models.

Model DT-CART* DT-CART Logistic Regression* Perceptron KNN NN* NN PerSpectron

Feature MAP PerSpectron MAP 1159 features PerSpectron MAP PerSpectron PerSpectron

Mean Accuracy 0.8718 0.9058 0.7594 0.8974 0.9487 0.8026 0.9822 0.9979
95.00% Confidence 0.8718 ± 0.1005 0.9058 ± 0.0120 0.7594 ± 0.0018 0.8974 ± 0.2030 0.9487 ± 0.1435 0.8026 ± 0.0026 0.9822 ± 0.0089 0.9979 ± 0.0065

False Positives
> 20samples

dealII,gcc,
gobmk,bzip2 dealII, gcc h264ref,povray,gcc

sjeng,gobmk gobmk,dealII sjeng,gobmk dealII,povray
bzip2,gobmk gobmk,dealII gobmk

False Negatives
post/preleakage

prime+probe,
spectre< 0.75x
post leakage

spectre< 0.75x,
polymorphic
post leakage

prime+probe,
spectre< 0.75x,

polymorphic
post leakage

prime+probe,
spectre< 0.75x

pre leakage

calibration-ff/pp*
post leakage

prime+probe
spectre< 0.75x

pre leakage
not post leakage not post leakage

Hardware Complexity low low low low high high high low
*pp: prime+probe

TABLE IV: ML Model and Feature Set comparison

Another invariant feature is the selfRefreshEnergy from
mem ctrl. The system’s DRAM will enter a low power self-
refresh mode when it is not being actively utilized. Many
variations cause high volumes of memory accesses to non-
cache resident arrays (for example, due to Flush operations
common in Flush+X attack variants). Including selfRefreshEn-
ergy decreases the false positive rate by 2% and makes the
predictor more resilient to polymorphic evasions5.
L2 bus features: We found that features ReadCleanReq, Write-
backClean and readsharedreq remain discriminative across a
range of attacks and evasive variations. Essentially, these events
capture cache evictions, but do not focus on the mechanism
(whether using Flush or cache priming to cause the eviction of a
cache line). Our results show previous detections were not able
to detect prime+probe correctly without causing an increase
in false positives. The reason is prime+probe behaves similar
to the large memory footprint applications when monitored by
high-level features. We were able to detect prime+probe by
including ReadCleanReq, readsharedreq and WritebackClean
without causing an increase in false positives.
Fetch unit features: The fetch unit contains highly correlated
features that are invariant to variations of stalls, flush, miss and
traps used in the polymorphic attacks. The reason is because
stalling a pipeline involves stopping not only the pipe stage ex-
periencing i.e. the data dependency, but previous stages as well.
And therefore such signals propagated backward to the fetch
stage. Features PendingQuiesceStallCycles, IcacheSquashes,
MiscStallCycles and PendingTrapStallCycles are mutually
decorrelated in the fetch unit but they have high correlation with
stalls and traps in other components, i.e. commit.NonSpecStalls,
lsq.thread0.rescheduledLoads and dcache.blocked:no mshrs,
constructing a perfect set for replicated detectors as explained
in Section IV. This combination particularly enabled us to
classify orthogonal speculative attack techniques [46] (e.g.,
speculative read in spectre vs. page fault trap in Meltdown)
with perceptron in a linearly separable space.

We believe that the interpretability of our features provides
confidence that they are strong discriminators that are difficult
to evade. It also provides confidence that the large number of
features across the whole pipeline capture different aspects of
attack signatures, supporting generalization across different at-

5This is an interesting observation because flush operations are also essential
for Rowhammer attacks [49]. We have not simulated the Rowhammer attack
due to the limitations of simulator, but this result is promising with respect
to the generalization of PerSpectron to other micro-architectural attacks that
share concepts with the attacks we considered in our feature set.

tacks, provided they manifest in one or more of the components
of the feature space.

VIII. RELATED WORK

We discuss the related work in two categories: (1) Detection-
based solutions which attempt to monitor behavior and identify
attacks, and (2) other defenses against microarchitectural
attacks. We focus primarily on solutions that are rooted in
hardware and do not discuss software-only solutions.

A. Detection based solutions
Prior work [6], [7], [8], [9], [10], [11], [12] has used

hardware performance counters to detect cache-based side-
channel attacks. These approaches are based on the assumption
that all cache attacks cause unusual cache access patterns.
To detect the attacks, they use cache related counters such
as L1miss, L3hit, L1D and L1I accesses and others. These
counters are highly biased toward the cache access patterns
and are unable to detect attacks like Flush+Flush, which do
not access the cache. It would be easy for an attacker to evade
such approaches since they use only a few simple counters.

FortuneTeller [50] uses Recurrent Neural Networks and
hardware performance counters at the OS-level to predict
Meltdown, Spectre, RowHammer and ZombieLoad. They tested
36 counters with their selection method. They used 3 counters
to profile for anomaly detection, as the desktop processors Intel
Core i5 and i7 are limited to 3 programmable counters. The
three selected counters are L1InstMiss, L1InstHit, LLCMiss.
The overall performance degradation of FortuneTeller is 24.88%
for 10µs sampling rate [50].

Similar to our approach, prior work has explore the idea of us-
ing a hardware detector to detect malicious software [16], [18].
Unlike PerSpectron, these classifiers target general malware,
which are software attacks with a footprint that should manifest
in the committed instructions of the program. In contrast, our
goal is to detect microarchitectural attacks that are inherently
exploiting hardware. As a result, the signature of these attacks
is reflected in the behavior of the processor pipeline overall,
and not only in the features present in the committed stage
of the pipeline. Thus, we focus on features related directly to
these microarchitectural attacks and view our solution to be
solving a different problem and looking at different feature
spaces. CC-Hunter [51] detects contention-based CPU side
channels by detecting unsual contention patterns. In a similar
vein, ReplayConfusion [52] records a running application,
then replays it on a different cache configuration to detect

whether contention patterns are sensitive to the configuration
of the cache (indicating an attack). GPUGuard applies a similar
strategy of detecting microarchitectural attacks using a decision
tree classifier and then invoking defenses. Sadly, it is limited to
the context of GPUs, where these attacks are still limited [53].

While some studies have explored some high level features
such as cache hits/misses and branch missprediction, they
do not consider individualized features in the pipeline stage.
PerSpectron’s feature space is much more detailed because
signature of microarchitectural attacks is more complex and
different than the signature of malware.

B. Other Defenses
A number of solutions have been proposed to protect against

micro-architectural attacks including side- and covert-channels
on caches, as well as transient execution attacks such as Spectre
and Meltdown.

1) Defenses against Cache-based Side channels
In this section, we review proposed work on defending

against side channel attacks on shared cache hierarchies.
NoMo [54] proposes dynamic cache partitioning; it controls
the number of ways for each application to interfere with
the attacker’s ability to prime the cache. CATalyst [55] is
another partitioning technique that partitions the cache into
security sensitive and a non-secure regions. RPCache [56] and
CEASER [57] try to prevent the attacker from evicting target
lines from caches by randomizing the mapping of addresses to
cache sets. TimeWarp [58] and FuzzyTime [59] add noise to
the system clock to prevent attacks that measure cache access
latency and execution time. RIC [60] exploits the inclusion
property of the LLC to prevent LLC side-channel attacks. This
approach prevents the attacker from replacing the victim’s data
from the local core caches, thus preventing the leakage of
secret data.

2) Defenses against transient execution attacks
To defend against SpectreV1, Intel and AMD proposed to use

serializing instructions [61], [62] near the branch, eliminating
the performance gain of speculation execution. A low overhead
hardware solution to mitigate SpectreV1 attacks is Context
Sensitive Fencing [41]. In this approach, serializing instructions
are injected dynamically to the target of the branches based
on the run time conditions or taint analysis engine.

To mitigate Spectre-BTB and SpectreRSB attacks, Intel and
AMD [61], [63] include new instructions (i.e, IBRS) in that
control speculation around indirect branches. Experiments show
that these instructions impose high overhead. Retpoline [64] is
a software mitigation technique against a Spectre-BTB attack
that converts indirect branches to a sequence of direct call and
return and uses an infinite loop or a serializing instruction to
prevent the CPU from speculating on the target of an indirect
branches.

Several hardware-based techniques are proposed to mitigate
different types of speculative execution attacks. DAWG [65]
propose partitioning the cache at the cache way granularity
to provide isolation between protection domains, which can
prevent leakage through cache-based side channel attacks.

SafeSpec [39], InvisiSpec [40] and CleanupSpec [66] hide
transient microarchitectural side effects from the committed
state of the processor, unless they are committed. NDA [67] and
SpecShield [68] prevent the propagation of potential secrets
to the speculative instructions that may leak the secrets by
forming a side channel. STT [69] propose using taint tracking
to prevent the forwarding of the sensitive data to speculative
instructions.

SpecCFI [70] proposed to use hardware-level control-flow
integrity to reduce the range of possible indirect call targets to
a small set, and then protecting this small set of call sites using
the known lfence-based technique to mitigate all 8 variants of
Spectre. In contrast to these efforts, PersPectron uses a different
approach of detecting the footprint of these microarchitectural
attacks, enabling rapid reaction to them, rather than on re-
architecting the processor to interfere with these attacks.

We should note that several of the detection and defense
mechanisms discussed either impose high performance over-
head to the system and/or only mitigate a specific variant of
the attacks. We believe that PerSpectron offers an inexpensive,
always-on solution that can provide wide coverage against
microarchitectural attacks. We also believe that there are
interesting possibilities when combining PerSpectron with
other defenses, for example to raise the alarm to activate other
defenses to avoid their overhead unless an attack is suspected.

IX. CONCLUSION AND FUTURE WORK

This paper proposes a detection mechanism for a broad
range of micro-architecture side-channel attacks in hardware.
Previous approaches achieve low accuracy in detecting unseen
variations. Software-only methods are also prone to bandwidth
evasion. PerSpectron design uses two techniques from Vision
(in ML); replicated detectors and invariant feature selection,
leveraging a large set of features available in hardware from
all components of the processor including ports, buffers, buses,
and uncore.

PerSpectron mapped a non-linearly separable problem to
linear, which was then separable by perceptron and is imple-
mentable in hardware. The result is competitive with a more
complex deepNN that is not easily implementable in hardware.
The use of machine learning gives an opportunity to cover
other attacks in the future by expanding the feature set and
updating the perceptron weights.

Many features used in PerSpectron are invariant to the
nature of the attack and are difficult to evade: for example,
speculation attacks exploit mispredictions or exceptions. The
large number of features potentially make prior evasion attacks
prohibitively expensive [19]. In the future, we hope to evaluate
and, if necessary improve the security of PerSpectron against
adversarial ML attacks, for example by exploring approaches
that randomize the feature subset being used over time similar
to the RHMD defense [19].

ACKNOWLEDGMENT

We thank Jeffrey N. Collins for his help and comments
during the drafting of this paper. This research was supported

by National Science Foundation grants CNS-1938064, CCF-
1912617, and generous gifts from Intel Corporation.

REFERENCES

[1] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in USENIX Security Symposium,
2019.

[2] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,”
in S&P, May 2019.

[3] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck,
and Y. Yarom, “Fallout: Leaking data on meltdown-resistant
cpus,” ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 769–784. [Online]. Available:
https://doi.org/10.1145/3319535.3363219

[4] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin,
Y. Yuval, B. Sunar, D. Gruss, and F. Piessens, “LVI: Hijacking Transient
Execution through Microarchitectural Load Value Injection,” in 41th
IEEE Symposium on Security and Privacy (S&P’20), 2020.

[5] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“CacheOut: Leaking data on Intel CPUs via cache evictions,” https:
//cacheoutattack.com/, 2020.

[6] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using hardware performance counters,” Applied
Soft Computing, vol. 49, pp. 1162–1174, 2016.

[7] T. Zhang, Y. Zhang, and R. B. Lee, “Cloudradar: A real-time side-channel
attack detection system in clouds,” September 2016 2016.

[8] F. Herath. These are not your grand daddy’s cpu performance
counters - cpu hardware performance counters for security. [Online].
Available: https://www.blackhat.com/docs/us-15/materials/us-15-Herath-
These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-
CPU-Hardware-Performance-Counters-For-Security.pdf

[9] M. Payer, “Hexpads: a platform to detect stealth attacks,” in International
Symposium on Engineering Secure Software and Systems. Springer,
2016, pp. 138–154.

[10] X. Wang, C. Konstantinou, M. Maniatakos, and R. Karri, “Confirm:
Detecting firmware modifications in embedded systems using hardware
performance counters,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov 2015, pp. 544–551.

[11] Y. Zhang and M. K. Reiter, “Düppel: retrofitting commodity
operating systems to mitigate cache side channels in the cloud,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, ser. CCS ’13. New York, NY, USA: ACM,
2013, pp. 827–838. [Online]. Available: http://doi.acm.org/10.1145/
2508859.2516741

[12] M. Mushtaq, A. Akram, M. K. Bhatti, V. Lapotre, and G. Gogniat,
“Cache-Based Side-Channel Intrusion Detection using Hardware
Performance Counters,” in CryptArchi 2018 - 16th International
Workshops on Cryptographic architectures embedded in logic devices,
Lorient, France, June 2018. [Online]. Available: https://hal.archives-
ouvertes.fr/cel-01824512

[13] J. Wampler, I. Martiny, and E. Wustrow, “Exspectre: Hiding malware in
speculative execution.” in Proc. NDSS, 2019.

[14] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre
attacks: Stealing intel secrets from sgx enclaves via speculative execution,”
arXiv preprint arXiv:1802.09085, 2018.

[15] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang,
and C. A. Gunter, “Leaky cauldron on the dark land: Understanding
memory side-channel hazards in sgx,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2017, pp. 2421–2434.

[16] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev,
“Malware-aware processors: A framework for efficient online malware
detection,” in 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA), Feb 2015, pp. 651–661.

[17] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and
D. Ponomarev, “Ensemble learning for low-level hardware-supported
malware detection,” in Proceedings of the 18th International Symposium
on Research in Attacks, Intrusions, and Defenses - Volume 9404,
ser. RAID 2015. Berlin, Heidelberg: Springer-Verlag, 2015, p. 3–25.
[Online]. Available: https://doi.org/10.1007/978-3-319-26362-5 1

[18] M. Kazdagli, V. J. Reddi, and M. Tiwari, “Quantifying and improving
the efficiency of hardware-based mobile malware detectors,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–13.

[19] K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and L. Yu, “Rhmd:
Evasion-resilient hardware malware detectors,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 315–327. [Online]. Available:
https://doi.org/10.1145/3123939.3123972

[20] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE Symposium on Security
and Privacy. IEEE, 2015, pp. 605–622.

[21] Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low noise,
l3 cache side-channel attack,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 719–732.

[22] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, J. Caballero, U. Zurutuza, and R. J. Rodrı́guez,
Eds. Cham: Springer International Publishing, 2016, pp. 279–299.

[23] A. Harris, S. Wei, P. Sahu, P. Kumar, T. Austin, and M. Tiwari,
“Cyclone: Detecting contention-based cache information leaks through
cyclic interference,” 10 2019, pp. 57–72.

[24] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in IEEE Symposium on
Security and Privacy (Oakland), 2019.

[25] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in USENIX Security
Symposium (Security), 2018.

[26] E. Koruyeh, K. Khasawneh, C. Song, and N. Abu-Ghazaleh, “Spectre
returns! speculation attacks using the return stack buffer,” in USENIX
Workshop on Offensive Technologies (WOOT), 2018.

[27] S. J. Tarsa, R. B. R. Chowdhury, J. Sebot, G. Chinya, J. Gaur,
K. Sankaranarayanan, C.-K. Lin, R. Chappell, R. Singhal, and H. Wang,
“Post-silicon cpu adaptation made practical using machine learning,”
in Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19. New York, NY, USA: ACM, 2019, pp.
14–26. [Online]. Available: http://doi.acm.org/10.1145/3307650.3322267

[28] M. Shah, R. Golla, G. Grohoski, P. Jordan, J. Barreh, J. Brooks,
M. Greenberg, G. Levinsky, M. Luttrell, C. Olson, Z. Samoail, M. Smittle,
and T. Ziaja, “Sparc t4: A dynamically threaded server-on-a-chip,” IEEE
Micro, vol. 32, no. 2, pp. 8–19, 2012.

[29] B. Burgess, “Samsung’s exynos-m1 cpu,” in Hot Chips: A Symposium
on High Performance Chips, August 2016.

[30] J. Rupley, “Samsung’s exynos-m3 cpu,” in Hot Chips: A Symposium on
High Performance Chips, August 2018.

[31] F. Rosenblatt, “Perceptron simulation experiments,” Proceedings of the
IRE, vol. 48, no. 3, pp. 301–309, March 1960.

[32] G. E. Hinton and K. J. Lang, “Shape recognition and illusory conjunc-
tions.” in IJCAI, 1985, pp. 252–259.

[33] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM
routing,” in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=HJWLfGWRb

[34] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” in Shape, contour and grouping in computer
vision. Springer, 1999, pp. 319–345.

[35] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[36] S. Ullman and E. Bart, “Recognition invariance obtained by extended
and invariant features,” Neural Networks, vol. 17, no. 5-6, pp. 833–848,
2004.

[37] D. A. Jimenez and C. Lin, “Dynamic branch prediction with perceptrons,”
in Proceedings HPCA Seventh International Symposium on High-
Performance Computer Architecture, Jan 2001, pp. 197–206.

[38] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Oct 2018, pp.
775–787.

[39] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Ponomarev,
and N. Abu-Ghazaleh, “Safespec: Banishing the spectre of a meltdown

with leakage-free speculation,” in Design Automation Conference (DAC),
2019.

[40] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and J. Torrellas,
“Invisispec: Making speculative execution invisible in the cache hierarchy,”
in IEEE/ACM International Symposium on Microarchitecture (MICRO),
2018.

[41] M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing:
Securing speculative execution via microcode customization,” in ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2019.

[42] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, August 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[43] S. Nissen, “Implementation of a fast artificial neural network library
(fann),” Department of Computer Science University of Copenhagen
(DIKU), Tech. Rep., 2003, http://fann.sf.net.

[44] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, September 2006.
[Online]. Available: http://doi.acm.org/10.1145/1186736.1186737

[45] “Spectre mitigations in microsoft’s c/c++ compiler,” https://www.
paulkocher.com/doc/MicrosoftCompilerSpectreMitigation.html, accessed:
2019-09-30.

[46] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in 2019 IEEE Symposium on
Security and Privacy (SP), 2019, pp. 1–19.

[47] C. Li and J. Gaudiot, “Challenges in detecting an ”evasive spectre”,”
IEEE Computer Architecture Letters, no. 01, pp. 18–21, feb 5555.

[48] J. R. Quinlan, “Induction of decision trees,” MACH. LEARN, vol. 1, pp.
81–106, 1986.

[49] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), 2014,
pp. 361–372.

[50] B. Gulmezoglu, A. Moghimi, T. Eisenbarth, and B. Sunar, “Fortuneteller:
Predicting microarchitectural attacks via unsupervised deep learning,”
2019.

[51] J. Chen and G. Venkataramani, “Cc-hunter: Uncovering covert timing
channels on shared processor hardware,” in 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 2014, pp. 216–
228.

[52] M. Yan, Y. Shalabi, and J. Torrellas, “Replayconfusion: detecting
cache-based covert channel attacks using record and replay,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–14.

[53] Q. Xu, H. Naghibijouybari, S. Wang, N. Abu-Ghazaleh, and M. An-
navaram, “Gpuguard: mitigating contention based side and covert channel
attacks on gpus,” in Proceedings of the ACM International Conference
on Supercomputing, 2019, pp. 497–509.

[54] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev,
“Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks,” ACM Transactions on Architecture and Code Optimiza-
tion (TACO), vol. 8, no. 4, pp. 1–21, 2012.

[55] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in 2016 IEEE international symposium on high performance
computer architecture (HPCA). IEEE, 2016, pp. 406–418.

[56] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the 34th annual
international symposium on Computer architecture, 2007, pp. 494–505.

[57] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 775–787.

[58] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: rethinking
timekeeping and performance monitoring mechanisms to mitigate side-
channel attacks,” in 2012 39th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2012, pp. 118–129.

[59] W.-M. Hu, “Reducing timing channels with fuzzy time,” Journal of
computer security, vol. 1, no. 3-4, pp. 233–254, 1992.

[60] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-
Ghazaleh, D. Ponomarev, and A. Jaleel, “Ric: Relaxed inclusion caches
for mitigating llc side-channel attacks,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 2017, pp. 1–6.

[61] I. ADVANCED MICRO DEVICES, “Software techniques for managing
speculation on amd processors,” https://developer.amd.com/wp-content/
resources/90343-B SoftwareTechniquesforManagingSpeculation WP
7-18Update FNL.pdf, 2018.

[62] ARM, “Cache speculative side-channels,” https://bugs.chromium.org/p/
project-zero/issues/detail?id=1528, 2018.

[63] Intel, “Intel analysis of speculative execution side channels,”
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-
Analysis-of-Speculative-Execution-Side-Channels.pdf, 2018.

[64] P. Turner, “Retpoline: a software construct for preventing branch-target-
injection,” https://support.google.com/faqs/answer/7625886, 2018.

[65] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in 2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 974–987.

[66] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An” undo” approach
to safe speculation,” in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, 2019, pp. 73–86.

[67] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci,
“Nda: Preventing speculative execution attacks at their source,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 572–586.

[68] K. Barber, A. Bacha, L. Zhou, Y. Zhang, and R. Teodorescu, “Specshield:
Shielding speculative data from microarchitectural covert channels,”
in 2019 28th International Conference on Parallel Architectures and
Compilation Techniques (PACT). IEEE, 2019, pp. 151–164.

[69] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher, “Speculative taint tracking (stt) a comprehensive protection
for speculatively accessed data,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
954–968.

[70] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song, and
N. Abu-Ghazaleh, “Speccfi: Mitigating spectre attacks using cfi informed
speculation,” 2019.

