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Abstract—The vast disparity between Last Level Cache (LLC)
and memory latencies has motivated the need for efficient
cache management policies. The computer architecture literature
abounds with work on LLC replacement policy. Although these
works greatly improve over the least-recently-used (LRU) policy,
they tend to focus only on the SPEC CPU 2006 benchmark suite
– and more recently on the SPEC CPU 2017 benchmark suite –
for evaluation. However, these workloads are representative for
only a subset of current High-Performance Computing (HPC)
workloads.

In this paper we evaluate the behavior of a mix of graph
processing, scientific and industrial workloads (GAP, XSBench
and Qualcomm) along with the well-known SPEC CPU 2006 and
SPEC CPU 2017 workloads on state-of-the-art LLC replacement
policies such as Multiperspective Reuse Prediction (MPPPB),
Glider, Hawkeye, SHiP, DRRIP and SRRIP. Our evaluation re-
veals that, even though current state-of-the-art LLC replacement
policies provide a significant performance improvement over
LRU for both SPEC CPU 2006 and SPEC CPU 2017 workloads,
those policies are hardly able to capture the access patterns
and yield sensible improvement on current HPC and big data
workloads due to their highly complex behavior.

In addition, this paper introduces two new LLC replacement
policies derived from MPPPB. The first proposed replacement
policy, Multi-Sampler Multiperspective (MS-MPPPB), uses mul-
tiple samplers instead of a single one and dynamically selects
the best-behaving sampler to drive reuse distance predictions.
The second replacement policy presented in this paper, Multi-
perspective with Dynamic Features Selector (DS-MPPPB), selects
the best behaving features among a set of 64 features to improve
the accuracy of the predictions. On a large set of workloads
that stress the LLC, MS-MPPPB achieves a geometric mean
speed-up of 8.3% over LRU, while DS-MPPPB outperforms
LRU by a geometric mean speedup of 8.0%. For big data and
HPC workloads, the two proposed techniques present higher
performance benefits than state-of-the-art approaches such as
MPPPB, Glider and Hawkeye, which yield geometric mean
speedups of 7.0%, 5.0% and 4.8% over LRU, respectively.

Index Terms—cache management, big data, graph processing,
workload evaluation, micro-architecture

I. INTRODUCTION

The vast disparity between main memory and CPU speed

has led to hierarchical caching system in modern CPUs. The

goal of the cache hierarchy is to keep data on-chip, close to the

cores that are accessing it, thus avoiding hitting the memory

wall [28]. Although computer architects highlighted the need

for multiple levels to the cache hierarchy, the Last Level Cache

(LLC) suffers from a high latency compared to the other cache

levels. In addition, the LLC suffers from poor temporal and

spatial locality in the access sequence as some accesses are

filtered by the upper levels of the hierarchy. This phenomenon

is exacerbated when considering emerging workloads such

as big data or graph-processing workloads displaying highly

irregular behavior. Thus, emerging workloads require more

sophisticated cache replacement policies that can cope with

a broader set of workloads than the traditional ones.

State-of-the-art LLC replacement policies such as

MPPPB [14], Glider [21], Hawkeye [10], SHiP [27],

DRRIP, and SRRIP [12] show significant improvement when

challenged by SPEC CPU 2006 [11] and SPEC CPU 2017

workloads. However, when facing workloads representative of

another part of the spectrum of the HPC applications, these

policies fail at delivering significant improvement over the

baseline LRU policy. Such workloads with highly irregular

behavior prevent the LLC replacement policies mentioned

above from capturing the access patterns and, therefore,

producing meaningful predictions and decisions. To address

this issue, we argue that future work on LLC replacement

policies should consider a more extensive set of workloads

such as the one we study in this paper, which is composed of

the following benchmark suites:

• the GAP benchmark suite [4].

• the XSBench benchmark suite [25].

• Qualcomm workloads for the CVP1 [1] championship.

This paper also proposes two MPPPB variants that increase

its benefits. First, we propose Multi-Sampler Multiperspective
(MS-MPPPB), a variant of MPPPB that uses four samplers

and perceptron structures. MS-MPPPB adapts its replacement

policy to the workload in a phase-wise manner, selecting the

sampler that provides the best predictions out of the four

available and using the most accurate sampler to make predic-

tions and drive placement, promotion and bypass decisions in

the LLC. Second, this paper proposes Multiperspective with
Dynamic Features Selector (DS-MPPPB), another variant of

MPPPB that is also able to adapt its behavior to the execution

phases of the workloads by dynamically selecting the most

accurate subset of 16 features from a bigger pool of 64

features.

This paper makes the following contributions:

1) It evaluates state-of-the-art LLC replacement policies

over a broader set of benchmark suites than usually

considered in the literature. The selected benchmark

suites better represent current and emerging big data

and scientific workloads on HPC systems. This paper
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considers the SPEC CPU 2006 and the SPEC CPU 2017

suites, a large set of workloads provided by Qualcomm

for the CVP1 championship, the GAP benchmark suite,

and the XSBench. This paper also takes the opportunity

to build knowledge on these workloads and analyzes

their behavior and impact on the LLC and the memory

hierarchy, thus paving the way for further work.

2) We present MS-MPPPB and DS-MPPPB, two novel

LLC replacement policies derived from MPPPB. The

main idea behind both schemes is to improve the ac-

curacy of the predictions by dynamically selecting the

most accurate features for each phase of the running

workload. On a set of 50 cache intensive benchmarks,

these new designs respectively yield a geometric mean

speed-up of 8.3% and 8.0% over LRU, and outperform

all the state-of-the-art approaches.

The rest of this paper is organized as follows: Sections II

and III describe the workloads and the state-of-the-art replace-

ment policies evaluated in this paper, respectively. Section IV

motivates the need for additional benchmarks in the evaluation

of LLC replacement policies. Section V proposes MS-MPPPB

and DS-MPPPB, two designs derived from MPPPB that

achieve higher accuracy on the studied benchmarks. Section

VI defines the evaluation methodology. Section VII presents

the results of our experiments and comment on them. Finally,

Section VIII remarks the main conclusions of this work.

II. WORKLOADS

Benchmarks are of paramount importance for the computer

architecture community, as they are used in practically all the

stages of processor development, from the very initial research

to the final performance verification of the processors that are

manufactured for all market segments, from embedded devices

to the most powerful supercomputers in the world. Benchmark

suites are composed of a series of codes and representative

input sets, and their goal is to mimic the behavior of real

workloads to define the performance goals of a processor

design and to bring to light unexpected design issues. Hence,

their choice is of crucial importance. This section presents a

set of benchmarks that are commonly used by the community

to model the behavior of different types of workloads.

A. SPEC CPU Benchmark Suites

The SPEC CPU benchmark suite [11] is a set of benchmarks

aimed at studying the performance of CPU designs. These

benchmarks are well-known and highly used by the computer

architecture community, specially to evaluate new proposals

in the area of microarchitecture. These benchmarks provide

representative codes of real compute intensive workloads such

as compilers, data compression, AI algorithms, and physics.

These workloads are mostly scientific applications or com-

monly used algorithms in computer sciences such as data

compression and parsers which loop over data structures in a

reasonably predictable manner, which allows the cache struc-

tures of the CPUs to leverage the locality of these workloads.

However, although these benchmarks cover a broad spectrum

of applications, they do not represent some codes running on

current HPC systems and mobile devices.

B. GAP Benchmark Suite

To help to standardize the evaluation of big data and

graph processing algorithms, Beamer et al. proposed the GAP

Benchmark Suite [4], a set of domain specific workloads that

include graph computational kernels as well as representative

input graphs. These domain specific workloads provide com-

puter architects with the ability to extend their working sets

of workloads. The benchmark suite provides a standardized

evaluation framework for commonly used graph algorithms

such as Page Rank and Connected Components, along with

standard graph inputs available in industry and research.

1) Graph kernels: Next we provide a short description of

each of the six graph kernels available in the benchmark suite.

Breadth-First Search (BFS) was proposed in 1945 by Kon-

rad Zuse and it is one of the most well-known and widely used

graph processing algorithms. Its principle is rather simple,

and it comes down to a straightforward statement: first, one

designates a root vertex to initiate the search algorithm,

then the kernel traverses all the neighbouring vertices before

moving to the next depth level.

Single Source Shortest Path (SSSP) is a prevalent problem

in graph theory and engineering in general. This algorithm

computes the distance to any reachable vertices from a given

source vertex, being the distance between two vertices the

minimum sum of edge weights along a path connecting the

two vertices.

Page Rank (PR), invented by Larry Page to quantify the

popularity of a web page, is a widespread algorithm in our

daily life as it allows search engines to build meaningful

proposals to our questions. It is an iterative algorithm that

associates a score (a PageRank) to each vertex of the graph.

During an iteration, the algorithm updates the score of every

vertex proportionally to the sum of the scores of its incoming

neighbourhood. The algorithm stops when the variation of

PageRanks in the graph falls below a limit, which means

that the sum of the variations of the scores of all the vertices

between two steps is below a certain threshold.

Connected Components (CC) is an algorithm meant to iden-

tify and label connected components in a graph. A connected

component is a sub-graph in which its paths connect any two

vertices, and the vertices of the sub-graph are not connected

to any other vertex in the super-graph.

Betweeness Centrality (BC) is a crucial concept in graph

and network theory that allows measuring the influence of

a vertex in the data transfers of a network, assuming ideal

transfers through the shortest paths.

Triangle Count (TC) is an algorithm that is mostly used

in social network analysis to detect communities by detecting

triangles in a graph. Triangles are a group of three vertices

directly connected.

2) Input graphs: The GAP Benchmark suite comes with

five inputs graphs of diverse origin (synthetic versus real

world). The real world data sets model the connection between
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people, websites and roads. When selecting these real world

graphs, the authors paid particular attention to the size of the

graphs so that they can fit in the memory of most servers while

stressing the cache hierarchy of such systems.

Twitter is a crawl of Twitter that has been commonly used

by researchers to evaluate prior work and thus allows fair

comparisons. It allows working with a typical example of

social network topology, and its real world origin gives it

interesting properties such as irregularities.

Web is a web crawl of the .sk domain. Even though it has

a large size, it exhibits good locality and high average degree.

Road is an input graph that models the distances of all of

the roads in the USA. Although it has a modest size compared

to the other graphs available, it has a rather high diameter that

can cause some algorithms to present large execution times.

Kron provides continuity with prior work as it has been

used frequently in research. This graph uses the Kronecker

synthetic graph generator.

Urand represents a worst case scenario as all vertices have

an equal probability of being a neighbour of every other vertex.

C. XSBench workloads

XSBench workloads [25], as stated by their authors Tramm

and Siegel, are meant to represent the most computationally
intensive steps of a robust nuclear core Monte Carlo particle
transport simulation. These workloads provide a variety of

grid types, sizes and browsing algorithms, which allows com-

puter architects to stress the memory hierarchy of a CPU in

different ways and to expand their working set of workloads

towards new scientific applications.

The XSBench suite allows customizing the code that will be

effectively executed in order to stress the memory hierarchy.

The benchmark suite relies on a handful of parameters to

achieve this flexibility. In this work we focus on the three

parameters that put more pressure on the cache hierarchy and,

thus, have a higher significance for this work.

1) Problem size: When solving the particle transport prob-

lem, the size of the problem has a dramatic influence on

performance and on the stress that is being put on the memory

hierarchy. Eventually, increasing the size of the problem has a

significant impact on performance as data structures are much

larger, so we use the two largest sizes of grid available.

2) Grid type: This parameter allows the user to select

among three types of grids. The nuclide grid is known as

a naive implementation and does not require any additional

memory other than what is necessary to store the point-wise

cross-section data. However, it is computationally intensive as

the benchmarks execute a binary search with high frequency.

Unionized is a grid type that allows for higher performance

as it uses an acceleration structure to reduce the number

of binary searches triggered during the execution. Here, this

optimization sacrifices memory footprint to leverage increased

performance. The hash grid is presented as a competitive

alternative to the unionized grid type as it allows to achieve

similar performance while using far less memory.

3) Number of cross-section look-ups: This parameter sets

the number of look-ups to perform per particle.

D. Industrial workloads

During the CVP1 contest, the evaluation of Value Prediction

mechanisms used a set of over 2000 industrial workloads

provided by Qualcomm. These are typical server and database

workloads such as Redis and MongoDB, among others. Real

world database workloads traverse vast amounts of data while

processing a query and show low reuse of data over time.

Thus, these workloads are known to be memory intensive and

they stress the LLC more than the SPEC CPU 2006 and the

SPEC CPU 2017 workloads.

III. CACHE REPLACEMENT POLICIES

While developing new cache replacement algorithms for

LLCs, one needs to evaluate the policy against a set of work-

loads that show the behavior of interest. This section reviews

the most relevant cache replacement algorithms designed for

LLCs. As this work studies the impact of emerging work-

loads on the LLC, we present the state-of-the-art replacement

policies developed for this specific cache level. The cache

replacement problem is slightly more complex in the context

of the LLC than in the context of L1 and L2 caches. Although

the underlying idea remains the same, the LLC suffers from

poor locality as the upper-level caches filter accesses and

leave only a cluttered sequence to the LLC. To cope with

this particular replacement problem, researchers have come

up with more and more sophisticated design ideas to leverage

higher prediction accuracy and performance.

The next subsections present the most relevant state-of-the-

art work on LLC replacement policies.

A. Reuse Distance Prediction

As reuse distance is a crucial concept when it comes to

cache replacement, recent works focus on proposing new

techniques to build run-time approximations of the distance

to the next reuse of a cache block. Re-reference Interval

Prediction (RRIP) and all its derivatives are efficient yet light-

weight implementations of reuse distance prediction.

The main idea behind RRIP is the classification of blocks

into re-reference classes. In their work, Jaleel et al. propose

three versions of the RRIP replacement policies [12], [20]:

SRRIP, BRRIP, and DRRIP. The former, scan-resistant, is

limited to always inserting new coming blocks in a fixed class.

In contrast, BRRIP provides more flexibility by frequently

inserting blocks in the distance re-reference class and infre-

quently inserting blocks in the long re-reference class. Finally,

DRRIP leverages Set-Dueling to determine which of SRRIP

and BRRIP is best suited for a given workload or program

phase, making it both scan and thrash resistant.

B. Signature-based Hit Predictor

Building on the reuse distance prediction [12], [20] frame-

work built by Jaleel et al. and program-counter based dead
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block prediction [16], Wu et al. [27] proposed a LLC re-

placement policy design that uses a program-counter based

signature as a feature.

As stated while describing reuse distance prediction mecha-

nism in Section III-A, SRRIP learns the re-reference intervals

of the living cache blocks relatively to one another. The

primary feature of Signature-based Hit Predictor (SHiP) [27]

is that, not only it allows the SRRIP policy to learn the

relative re-reference intervals, but it also tries to learn the

likelihood of cache blocks to experience hits through a feature.

The intuition being that cache blocks with the same signature

behave comparably. In order to learn the likelihood of a cache

block to experience further hits, SHiP maintains a prediction

table with an entry per signature. When a signature gets hit, the

associated saturating counter is incremented. Conversely, when

a signature misses, the associated counter is decremented.

With the prediction values thus learned, SHiP modifies SR-

RIP policy for insertion by inserting new coming cache blocks

in the distant re-reference interval if the prediction associated

with the signature of that cache blocks is zero. A zero in the

prediction table gives a strong hint that the associated signature

belongs to the distance re-reference interval.

C. Multiperspective Reuse Prediction

The Multiperpsective Reuse Prediction [14] cache replace-

ment algorithm (hereafter MPPPB) leverages perceptron learn-

ing for reuse prediction and drives placement, promotion and

bypass decisions. This replacement policy extends the idea of

features developed in previous work [16], [24], [27] to achieve

higher accuracy. It is essentially made of two components,

a sampler and a perceptron predictor. The sampler, based

on observations of block evictions relatively to its features

associativity, is responsible for triggering learning signals to

the perceptron. The perceptron, based on the learning signals

triggered by the sampler, updates its prediction tables.

MPPPB relies on the idea of correlating reuse prediction of

a cache block with a large number of features that ranges from

PCs to characterizing bursty access patterns. In this context,

a feature can be defined as a hash function applied to cache

block characteristics such as the PC or the physical address.

When a prediction request occurs, the perceptron selects

weights out of its prediction tables using hashes of multiple

features. Each feature is hashed to index its prediction table,

and the weights obtained are gathered in a single prediction

value by a simple addition and compared to a set of thresholds

to drive actions such as bypass, promotion and placement.

Perceptron learning is used to update the weights of the

prediction tables through the learning algorithm. At the time

a sampled block is reused or evicted, the perceptron updates

the weights of the prediction tables associated with the last

access to this block, according to the perceptron learning rule.

For instance, if a block hits in the sampler while having its

LRU stack position lower than the associativity of a feature,

it is trained positively for that feature. Conversely, if a block

gets demoted beyond the associativity of a given feature, it is

trained negatively for that feature.

With this work, Jiménez and Teran demonstrated the useful-

ness and impact of combining multiple features. Among the

correlating features, the sequence of PCs leading to the usage

of a block is one; however, the sequence of PCs is highly

filtered by the other levels of the cache hierarchy, making it

inaccurate for predictions. The introduced additional features

such as bits extracted from the memory address help mitigating

the inaccuracy of a filtered PC sequence. MPPPB relies on

this idea of combining multiple features while significantly

augmenting the set of available features.

D. Optimal Replacement Approximation

The Hawkeye [10] replacement policy marked the birth

of a new class of cache replacement algorithms aiming at

approximating, in a relatively affordable way, optimal but

unimplementable algorithms such MIN [6].

Hawkeye and its successor, Glider [21], are primarily made

of two major building blocks: an optimal solution approxima-

tion component and a predictor that learns from the former

component. The predictor is used to compute predictions

and to trigger actions based on these predictions. The first

component provides a binary output about the cache block

of interest: needs to be cached or not. For this outcome, the

predictor gets trained for the associated PC as it is a PC-based

predictor. When the replacement policy requests a prediction to

drive its decision making, the predictor is indexed, and it uses

its outcome to place blocks in the matching RRIP categories,

thus prioritizing eviction for blocks classified as cache-averse.

Conversely, blocks identified as cache-friendly tend to stay in

the immediate-reuse category.

Further work on the Hawkeye predictor provided it with

a more complex predictor infrastructure. That infrastructure,

named Glider, leveraged on the knowledge obtained through

the offline training of a machine learning model, yielding

additional performance improvements.

IV. MOTIVATION

To highlight the need for new benchmarks in the context of

the development of new cache replacement policies for LLCs,

we provide a quantitative analysis to build intuition on why the

current state-of-the-art techniques need to take into account a

broader set of workloads in the process of their constructions.

This analysis relies on results obtained using the simulation

methodology detailed in VI.

Figure 1a shows the average LLC MPKI for each of the

benchmark suites described in Section II using the baseline

LRU replacement policy. In both Figures 1a and 1b we only

consider the cache-intensive benchmarks of these benchamrks

suites, namely the ones which present a LLC MPKI over

1.0 with the baseline LRU replacement policy. The GAP

benchmark suite and all the different runs of XSBench,

with respective LLC MPKI of 78.29 and 36.62, provide a

significantly higher LLC MPKI than what is provided by the

SPEC CPU benchmarks. The industrial Qualcomm workloads

and the SPEC CPU workloads, with respective LLC MPKI of

10.63 and 15.76, do not show such a high impact on the LLC.
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These results demonstrate that big data graph processing

workloads like the ones modeled in the GAP benchmark suite

highly stress the cache hierarchy, and particularly the LLC,

much more than well-known workloads such as SPEC CPU

2006 and SPEC CPU 2017 suites do. This is due to the nature

of these workloads, where moving from edge to edge in a

graph structure leads to extremely unpredictable and sparse

access patterns [29], [30]. Also, the memory footprint of the

inputs is an important factor, as jumping from edges to edges

in an extensively large graph exhibits very low spatial and

temporal locality, which are two key concepts in the design of

cache replacement policies.
Figure 1b shows the speed-up of the state-of-the-art cache

replacement policies presented in Section III over the baseline

LRU policy for the different benchmark suites presented in

Section II. Each bar represents a single replacement policy,

and each bar group stands for a benchmark suite. Results show

that the different policies can catch a different kind of access

patterns and are beneficial for different kind of workloads.
For the SPEC benchmarks, the plot shows that every single

replacement policy is consistently delivering improvements

over the baseline LRU and the previously proposed replace-

ment policies in the literature, incrementally improving the

performance of these benchmarks.
The replacement policies based on Reuse Distance Predic-

tion (SRRIP and DRRIP) are consistent in their improvement

over the baseline LRU, while more complex policies such as

SHiP, Hawkeye, Glider and MPPPB have more difficulties

generalizing to all the benchmark suites. The main reason

behind this observation is that all these replacement policies

rely either on assumptions about the access patterns (e.g.,
SHiP and Hawkeye) or on a training phase over a set of

workloads (e.g., Glider and MPPPB). On the one hand, SHiP

and Hawkeye use the observation that they can accurately

learn the access patterns to the LLC using the PCs that

triggered the memory accesses as a classification feature. On

the other hand, both Glider and MPPPB rely on a learning

algorithm that learns the access patterns of a couple of

workloads and provide correlating features such as the i-
th PC of the history or some bits of the physical address

of the accessed block. Thus, although these state-of-the-art

replacement policies deliver some performance improvements,

they suffer from a structural bias that prevents them from

generalizing to unexplored benchmarks in an optimal way.
The main conclusions arising from our analysis are:

1) The commonly used SPEC CPU 2006 and SPEC CPU

2017 suites no more represent a challenge for computer

architects, as they are well studied and there are plenty

of ingenious mechanisms that cope with their behavior.

2) The current state-of-the-art LLC replacement policies do

not generalize well to new benchmarks.

3) Emerging big data and HPC workloads do represent a

challenge for computer architects, as they stress more

the cache hierarchy than traditional workloads. Never-

theless, they reveal the need to take into account their

behavior in the design of forthcoming CPUs.

(a) Average LLC MPKI of the different benchmark suites using the LRU
replacement policy.

(b) Geometric mean speed-up over LRU of state-of-the-art LLC replacement
policies for the different benchmark suites.

Fig. 1. LLC MPKI using the LRU replacement policy and performance
improvement of state-of-the-art LLC replacement policies for the different
benchmark suites.

V. DESIGN PROPOSALS

Along with the state-of-the-art cache replacement policies

presented in Section III, we introduce MS-MPPPB and DS-

MPPPB, two new LLC replacement policies derived from the

original MPPPB. These two policies try, in distinct manners,

to adapt themselves to the behavior of the emerging big data

and HPC workloads.

A. Multi-Sampler Multiperspective

With MPPPB, Jiménez and Teran provide a replacement

policy based on a reuse predictor, which ultimately relies on

a hashed perceptron table.

Our first proposed design, named MS-MPPPB, is based on

the idea that having not just one but many hashed perceptron

tables can yield higher prediction accuracy and improved

performance by dynamically choosing one of the perceptrons

to trigger predictions. To perform the selection of the best

behaving perceptron that will eventually trigger predictions,

all perceptrons are competing against each other though a

two-rounds decision tree scheme [15] that duels each of the

four available perceptrons and selects the one that minimizes

misses in the LLC. Although not used to produce a prediction,

the three perceptrons left unused are concurrently updated

following the process described by Jiménez and Teran in

Multiperspective reuse prediction [14].

The additional hardware budget required for this proposal

is rather high, as a naive implementation would lead to

the instantiation of 4 individual samplers along with the 4

perceptron tables bound to them. Each block of the sampler

holds an indices trace of the last accessed elements of the

prediction tables, which requires a maximum of 128 bits. For

each block, the sampler holds a 16-bit partial tag along with
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a 5-bit LRU state and a 9-bits confidence value. The sampler

takes the form of a cache with 80 sets and 18 ways.

B. Multiperspective with Dynamic Features Selector

In the second design proposal, named DS-MPPPB, we use

an additional concept along with the already existing idea of

weights. Our new concept, Coefficients, revisits the conception

of a hashed perceptron [22] by introducing the weights used

in the mathematical definition of a perceptron [26].

We thus differentiate two key concepts. The weights are the

actual values contained in the prediction tables of a hashed

perceptron. These values are meant to reflect the learned reuse

distance based on the observation of past events. These events

can be the occurrence of a specific PC, a physical address

or any other source of information used as feature [3], [16],

[18]. The coefficients are confidence counters that reflect how

accurate is the prediction table bound to a specific confidence

counter.

The original code of MPPPB is shipped with not just one

set of features but four, which adds up to a total of 64 features.

Each of these sets of features was developed following the hill-

climbing methodology described in Multiperspective Reuse
Prediction [14] and is designed to fit each of the possible

configurations of the CRC2 contest.

We gather all the features in a single set and build a

perceptron predictor using them all. Although we now have a

set of 64 features, we want to select only the 16 best behaving

ones among the 64 available. To do so, for each prediction

triggered by the replacement policy, the predictor searches

for the 16 features with the highest confidence values and

uses them to build a prediction, and the other features are left

unused for that prediction. However, confidence values of all

features are updated following algorithm 1.

Algorithm 1 Updating confidence values of prediction tables

hit← false
truth← 0Bn {A n-vector of falses.}

pred ∈ �−32; 31�n {A vector of individual predictions.}

if Accessed block hits in the sampler then
hit← false

else
hit← true

end if
for all i such that 0 ≤ i ≤ n− 1 do
truth [i]← ((pred [i] < 0) = hit)
if truth [i] = true then
confi ← max(confi + 1, confmax,i)

else
confi ← min(confi − 1, 0)

end if
end for

For clarity, we include a summary of the notations we use.

F denotes the set of features, n is the total number of features

and m the number of features we include in the prediction

value. We denote the confidence counter of the i-th feature

as conf(fi) = confi along with the upper bound of the

confidence counters confmax,i. We denote as ti the prediction

table associated with feature fi.
We thus define F̆, the set of all possible arrangements of

unique m features taken out of F and F̆max the element of

F̆ that maximizes the sum of confidence counters. Finally, we

compute the prediction value by summing the weights taken

out of the tables of the elements of F̆max.

Table I summarizes the hardware budget of each design pro-

posal described in this section. Along with the total hardware

budget required for each proposal, we also provide the budget

required by each component, namely: the replacement states

(here we use MDPP, a modified Tree-based PLRU [13], [23]

policy that uses a custom transition vector to determine to

which position an accessed block should be moved to), the

sampler(s) and perceptron(s).

Replacement states Sampler(s) Percpetron(s) Total
MS-MPPPB 3.75KiB 111.09KiB 12KiB 126.84KiB

DS-MPPPB 3.75KiB 95.27KiB 12KiB 111.02KiB

TABLE I
HARDWARE BUDGET OF THE PROPOSED DESIGNS.

VI. METHODOLOGY

In this section we present the evaluation methodology

used to report results in Section VII. In particular, the next

subsections present the set of workloads used to evaluate the

different LLC replacement policies and our workload selection

methodology, a description of the simulation environment, and

the evaluated replacement policies and their configuration.

Overall, we follow the same evaluation methodology as the

one used by Shi et al. [21] with the aim of building the fairest

comparison possible against state-of-the-art techniques.

A. Workloads

For the evaluation of the different LLC replacement policies

we consider the following sets of workloads:

• Over 2000 Qualcomm workloads used for CVP1 contest.

• All SPEC CPU 2006 and CPU 2017 benchmarks.

• All workloads included in the GAP Benchmark Suite.

• All workloads included in the XSBench Suite.

From all these benchmarks we select the 50 most intensive

workloads so that our evaluation set of workloads is a blend

of each suite designated above. We use the SimPoints [19]

methodology to identify intervals (hereafter SimPoints) rep-

resentative of at least 5% of the SPEC, GAP and XSBench

workloads. Each SimPoint is 1 billion instructions long and

characterizes a different phase of these workloads. Each Sim-

Point is executed for 200 million instructions in order to

warm-up the memory hierarchy, and then it is executed for an

additional 1 billion instructions to report experimental results.

We only evaluate these workloads in a single-thread context.

We deliberately chose to restrict our evaluation to single-core

as this work focuses on the characterization of the access

patterns of the selected workloads to the LLC. The modeled

architecture being composed of a shared LLC, modeling an

architecture using multiple cores we would not be able to
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Component Description
Branch Predictor hashed perceptron

CPU 4GHz, 4-wide out-of-order processor
6-stage pipeline, 128-entries re-order buffer

L1 ITLB 64-entry, 4-way, 1-cycle latency, 8-entry MSHR

L1 DTLB 64-entry, 4-way, 1-cycle latency, 8-entry MSHR

L2 TLB 1536-entry, 12-way, 8-cycle latency, 16-entry MSHR

L1-I Cache 32KiB, 8-way, 4-cycle latency, 8-entry MSHR

L1-D Cache 32KiB, 8-way, 4-cycle latency, 8-entry MSHR
next line prefetcher

L2 Cache 256KiB, 8-way, 12-cycle latency, 16-entry MSHR
ip-stride prefetcher

LLC 2MiB, 16-way, 26-cycle latency, 32-entry MSHR

DRAM 4GiB, DDR4 SDRAM
data-rate: 3.2GT/s, I/O bus frequency: 1.6GHz
tRP = tRCD = tCAS = 24 cycles

TABLE II
SYSTEM SIMULATION PARAMETERS.

properly measure reuse distances as the different cores would

be asking for distinct data in the same cache, thus compro-

mising our measurements. The results reported per benchmark

(for SPEC, GAP and XSBench) are the normalized weighted

averages of the results for individual SimPoints. In contrast,

the Qualcomm workloads are single-trace benchmarks that do

not use such methodology.

B. Experimental setup

Our evaluation considers ChampSim [7], a detailed trace-

based simulator that models an out-of-order CPU along with

its cache hierarchy, prefethcing mechanisms and memory sub-

system. Table II provides a detailed configuration of the

modeled CPU and the memory hierarchy.

C. Replacement policies simulated

We evaluate the workloads described in Section II against

the most relevant cache replacement policies proposed in the

literature: SRRIP, DRRIP, SHiP, MPPPB, Hawkeye and Glider,

all detailed in Section III. Although there is a vast amount of

work in reuse prediction available in the literature [2], [5],

[8], [12], [13], [16], [17], [23], [24], [31], the aforementioned

replacement policies that have been selected for the evaluation

are the most recent and relevant approaches in the state-of-

the-art. In addition, in the evaluation we also include the two

new replacement policies proposed in this paper, explained

in Section V. These two new techniques are derived from

MPPPB and leverage the usage of multiple perceptrons to

achieve higher accuracy. For MPPPB we used the code that

is publicly available on the website of the CRC2 contest [9].

For Glider we use code graciously provided by the authors.

VII. RESULTS, ANALYSIS AND DISCUSSION

This section presents our experimental campaign along with

the results obtained and the characterization of the studied

workloads. Section VII-B presents the performance benefits

yielded by the different state of the art cache replacement

policies mentioned in Sections VI-C and V. Section VII-A

studies the impact of these workloads on the LLC in terms

of misses and presents the MPKI reduction obtained by the

replacement policies mentioned above. Finally, Section VII-C

studies the behavior of the studied workloads via the reuse

distance of the cache blocks to highlight the different behavior

of these benchmark suites.

A. Misses

Figure 2a shows the LLC MPKI of the 50 most intensive

workloads using the LRU replacement polity These workloads

show a very high impact on the LLC, with an average MPKI

of 120, much larger to the workloads used in previous work.

We use this to define the set of workloads that will be used in

Section VII-B to evaluate state-of-the-art replacement policies

along with our custom designs. These results clearly show the

high impact on the LLC of Qualcomm, GAP and XSBench

workloads. This selection of benchmarks is comprised of

each of the studied benchmark suites and allows to evaluate

replacement policies against a broad range of workloads with

different behaviors.

B. Performance

Figure 2b shows the speed-up of various replacement poli-

cies presented in Section VI-C and in Section V. LLC MPKI

sorts the benchmarks with a baseline LRU policy. While

Figure 1b was showing Glider standing out against MPPPB

in some situations, Figure 2b clearly shows the versatility

of the former and its ability to consistently deliver good

performance even facing the most intensive and hard to predict

workloads. MPPPB and Glider provide respectively 7.0% and

5.0% speed-up over baseline LRU. Thus, Glider is not able

to deliver significant improvement over the baseline LRU

compared with MPPPB. This fact suggests that the machine

learning algorithm used to design the predictor of Glider

should be trained against a wider variety of workloads, hence

the need to include the workloads used in this paper in further

work on LLC replacement policies.

Besides, we justify the difference of performance improve-

ment in Figures 1b and 2 between Glider and MPPPB com-

pared to the results published in Applying Deep Learning
to the Cache Replacement Problem [21] by a difference in

the methodology. As a matter of fact, we use the SimPoint

methodology to generate at most ten simpoints and we only

use the ones accounting for more than 5% of the whole

execution, whereas the original results of Glider were reported

with only a single trace per benchmark. We argue that our

methodology is more robust as we cover more distinct behav-

iors, thus challenging the different techniques studied.

We also report significant performance improvements for

our proposed techniques derived from MPPPB. The two de-

signs proposed in this paper, MS-MPPPB and DS-MPPPB,

respectively yield 8.3% and 8.0% speed-up over the baseline

LRU, and both new approaches also outperform MPPPB. We

observe that this performance improvement is due to the ability

to adapt the set of features used for prediction in a execution

phase-wise manner, providing more versatility to the design

than the previously discussed techniques.
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(a) LLC MPKI using the LRU replacement policy for the 50 most intensive workloads.

(b) Speed-up over LRU of the state-of-the-art LLC replacement policies and our custom replacement policies for the 50 most intensive workloads.

Fig. 2. LLC MPKI using the LRU replacement policy and performance improvement of LLC replacement policies for the 50 most intensive workloads.

C. Reuse distances

Figure 3 shows the distribution of reuse distances for each

benchmark suite used in this work. Figure 3 is organized as a

box plot; the horizontal line of each distribution representing

its median, the box ranging from the first to the third quartiles

and the whiskers representing extreme values through the first

and ninth deciles of the distributions. For readability purposes,

we cut the box plot to only show whiskers but not flyers.

For instance, the distribution of reuse distances of the GAP

workloads have ninth decile around 2000 and a median of 116.
We complete figure 3 with Table III as it provides additional

characteristics of the distribution such as maximum, median,

mean and standard deviation of the observed reuse distances.

In this work, we define reuse distance as the number of

accesses to different cache blocks between two consecutive

accesses coming from the CPU (e.g. read and writes but not

prefetches and write-backs) to the same cache block. Looking

at this figure, it is quite clear that all the benchmark suites

suffer from the presence of dead blocks in their access patterns.

However, having a closer look at each of the distribution

presented can provide us with valuable knowledge and give

intuition about the results obtained in Sections VII-B and

VII-A. Blocks that do not experience a single reuse during the

whole execution of a workload are not represented on Figure 3.

However, in order to still provide that valuable information,

we show in Table III the average proportion of accesses to

dead blocks during the execution.

For the rest of this section, we define as cache-friendly
blocks those blocks with a reuse distance lower than the

associativity of the LLC. Conversely, we define cache-averse
blocks as blocks with a reuse distance higher than the LLC

associativity. Assuming an LRU policy for the cache, if a

cache block A gets inserted in the LLC and the cache sees

16 accesses to different blocks before re-referencing block A,

the second access to block A will cause a miss because it will

have been evicted. This block A occupies part of the cache

capacity that can be used to allocate another block, hopefully

cache-friendly, and can provide a hit instead of miss.

1) SPEC benchmarks: As Figure 3a and Table III show,

the SPEC workloads present an average reuse distance of 126
and a standard deviation as low as 572.94, so the aggregated

distribution of reuse distances for these workloads focuses

mainly on low values with a relatively low standard deviation

which translates into a cache-friendly behavior. Also, most

accesses being cache-friendly, a bypass policy is not required

to achieve reasonable performance over LRU.

This behavior explains why policies such as Hawkeye and

Glider perform well when applied to SPEC workloads. These

policies are focusing on prioritizing eviction for blocks that

previously showed cache-averse behavior. Doing so allows to

free space for cache-friendly blocks, however, as we will see
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Parameter (in accesses) SPEC XSBench all XSBench unionized XSBench others Qualcomm GAP all GAP kron & urand GAP others
Maximum 21 076 12 677 2248 12 677 59 934 34 836 33 771 34 836

Median 10 61 84 55 4 116 45 27

Mean 126.23 343.23 193.21 385.36 93.76 907.89 880.88 349.25

Standard deviation 572.94 875.68 256.33 977.54 541.80 2106.41 1885.68 1050.23

Avg. proportion of dead block accesses 48.03% 37.32% 46.63% 28.01% 10.54% 55.84% 59.31% 54.06%

TABLE III
MAIN PARAMETERS OF THE DISTRIBUTION OF REUSE DISTANCES FOR CACHE BLOCKS IN THE DIFFERENT BENCHMAKRS.

(a) Distribution of the reuse distances of the cache blocks for the different
benchmark suites.

(b) Distribution of the reuse distances of the cache blocks for the GAP
benchmark suite with different input sets.

Fig. 3. Distribution of the reuse distances of the cache blocks for the different
benchmark suites.

in details for GAP benchmarks and XSBench benchmarks in

the next subsections, replacement policies in general are less

effective when the memory footprint increases and the access

patterns become unpredictable.

2) XSBench benchmarks: The XSBench benchmark suite, as

expected based on the reuse distance characteristics established

in Table III, shows a very distinct behavior from the well-

known SPEC CPU 2006 and SPEC CPU 2017 workloads. As a

matter of fact, the XSBench workloads present an average reuse

distance of 343.23 and a standard deviation as high as 875.68,
which reveals a hard to predict behavior. However, they do

experience less dead accesses to the LLC, the proportion of

dead block accesses being 37.32%.

With both mean and median reuse distances being the

double of the SPEC ones, it is clear that these workloads

are much more biased towards a cache-averse behavior than

the SPEC workloads. However, with such high distribution

parameters, we can still still make a crucial observation when

it comes to reuse prediction and dead blocks. We observe that,

even though the XSBench workloads experience reasonable

reuse of cache blocks that are accessed more than once during

the execution, this happens for all the grid types except the

unionized, which has a substantially larger memory footprint

than the other grid types. We explain such behavior by the

vast amount of data that the solver needs to traverse during

the workloads execution and the algorithms used to do so.

3) Qualcomm benchmarks: When it comes to Qualcomm

workloads, we observe that the distribution of reuse distances

stretches towards higher values (Table III shows that the tail

of the distribution goes as high as 60 000 accesses). However,

these workloads are relatively biased towards a cache-friendly

behavior as the standard deviation is 541.80 and the dead block

accesses proportion is of 10.54%. This stretched shape leads

to a rather low standard deviation and to the appearance of

low reuse distances with higher probability than of high reuses

distances. We understand the long-wide tail of the distribution

as a low amount of dead blocks thrashing the LLC, using

space that would be a better fit for cache-friendly blocks.

Thus, this observation gives us intuition about the behavior

of Glider on the Qualcomm benchmarks presented in Figures 2

and 1b. Glider is a replacement policy that does not implement

bypass, so it keeps on inserting dead blocks in the cache even

though it has learned that these blocks are cache-averse. The

absence of a bypass policy explains the poor results of Glider

compared to MPPPB and the two proposed approaches derived

from it.

4) GAP benchmarks: Based on the characteristics of the

reuse distance distribution shown in Table III and Figure 3 for

the GAP benchmark suite, these graph processing workloads

show a very cache-averse behavior with an average reuse

distance of 907.89, which is around 5.8 times higher than

the one of SPEC workloads, and a proportion of dead block

accesses of 55.84%. Such behavior is expected as GAP

workloads are executing graph processing algorithms and are

known to traverse vast amount of data in a very unpredictable

way. Table III shows a median of 28 accesses, which provides

us with useful information as 50% of the blocks accessed

experience a reuse distance of 28 or fewer accesses. This

characteristic suggests that having higher LLC associativity

could help to achieve higher performance.

In addition, these benchmarks show very high standard

deviation on reuse distances, which suggests that the CPU

triggers accesses to both cache-averse and cache-friendly

blocks with relatively uniform probabilities, which results in

the eviction of useful blocks. Thus, we deduce that using a

bypass policy like MPPPB does would provide performance

benefits. Results shown for GAP benchmarks on Figure 2

highlight this property of graph processing workloads.

As we observe that GAP benchmarks with inputs kron and

urand show dramatically low reuse of cache blocks during

execution, we categorize GAP benchmarks in two categories:

(i) GAP workloads using kron and urand inputs; (ii) GAP

workloads using other inputs.

As figure 3 shows, workloads using kron and urand
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Fig. 4. LLC MPKI reduction and speedup of a 16MiB LLC over the baseline
2MiB LLC.

inputs tend to stress more the LLC. As stated by Beamer et al.
in the specification of the benchmark, these inputs present a

very high memory footprint compared to the other inputs used

in this work and, moreover, their graphs have a very distinct

topology. Urand represents a worst-case as every vertex has

an equal probability of being a neighbour of every other vertex.

Thus, the graph processing kernel in charge of traversing these

inputs has to request memory blocks very distant from another,

which eventually causes poor reuse.

As a result, we see that LLC replacement policies are

impractical solutions in this context as these workloads are

biased towards a cache-averse behavior, all accesses being

cache-averse. Although replacement policies cannot improve

performance for these workloads, an excellent way to cope

with these workloads would be to increase the capacity of

the cache substantially or to incorporate a prefetcher that can

predict the access patterns to the memory blocks and bring

them to the cache before they are accessed.

To demonstrate the need for increased cache capacity, we

increase the size of the LLC from 2MiB to 16MiB and

present the results in Figure 4. Results show a clear benefit

from the increased capacity of the LLC. The average MPKI

over the whole set of GAP benchmarks drops by 18%, which

delivers a geometric mean speedup of 6.1% compared with

a 2MiB LLC with an LRU replacement policy. However,

some workloads show reduced MPKI while suffering from

an IPC slow-down. The reason for this this phenomenon are

the DRAM latencies. While increasing the LLC capacity,

these workloads have similar statistics in terms of cache

accesses and miss rates, but the miss rate in the DRAM row

buffers increases. We interpret this behavior as a symptom of

workloads with extremely poor temporal and spatial locality.

This clearly shows the need for improved memory allocation

policies when it comes to graph processing algorithms. To

illustrate this example, we focus on pr.road, as Page Rank

is an algorithm that should show better locality than the others.

When computing the score of an edge of the graph, the

algorithm only visits neighbouring edges to that edge. Thus,

the only way for the DRAM to exhibit higher row buffer miss

rate is that neighbouring edges in graphs are stored in very

distant places in main memory. This showcases the need for a

memory allocation policy that takes into account the topology

of the graph. Another way to improve the performance of

these graph processing workloads would be to incorporate a

dedicated on-chip storage structure able to serve, at a low cost,

not only the required edges but also their neighbours.

To wrap up this discussion about GAP benchmark suite,

the presented results show that there is still a good amount

of work to be done on the algorithmic and software side of

these workloads to make them cache-friendly. In addition, the

reported characteristics of this benchmarks are hard to exploit

by traditional cache hierarchies and cache replacement poli-

cies, so different solutions should be explored on the hardware

side to improve the performance of these benchmarks.

VIII. CONCLUSIONS

For many years, advances in cache replacement policies

have provided important performance improvements. How-

ever, many techniques proposed in the literature have consid-

ered a reduced amount of CPU-centric benchmarks for their

evaluations. Emerging big data and HPC workloads present

very different behaviors than traditional benchmarks, specially

in terms of memory access patterns. Thus, cache replacement

policies need to be re-evaluated to understand their benefits

and limitations and to extend the performance benefits they

provide to a wider range of workloads.

This paper characterizes different benchmark suites and

evaluates state-of-the-art cache replacement policies with these

workloads. In particular, we evaluate a mix of graph pro-

cessing, scientific and industrial workloads (GAP, XSBench

and Qualcomm) along with the SPEC CPU 2006 and 2017

benchmark suites, and we observe that the replacement poli-

cies provide significant improvements over LRU for the SPEC

workloads, but they are not effective in capturing the complex

access patterns of HPC and big data workloads.

This paper also proposes two perceptron-based replace-

ment policies that provide good performance across all the

considered workloads by dynamically adapting the prediction

mechanisms in each program phase.
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