
CHiRP: Control-Flow History Reuse Prediction
Samira Mirbagher-Ajorpaz

Computer Science and Engineering
Texas A&M University
College Station, USA
samiramir@tamu.edu

Elba Garza
Computer Science and Engineering

Texas A&M University
College Station, USA

elba@tamu.edu

Gilles Pokam
Intel Labs

Santa Clara, USA
gilles.a.pokam@intel.com

Daniel A. Jiménez
Computer Science and Engineering

Texas A&M University
College Station, USA

djimenez@acm.org

Abstract—Translation Lookaside Buffers (TLBs) play a critical

role in hardware-supported memory virtualization. To speed up

address translation and reduce costly page table walks, TLBs

cache a small number of recently-used virtual-to-physical address

translations. TLBs must make the best use of their limited

capacities. Thus, TLB entries with low potential for reuse should

be replaced by more useful entries. This paper contributes to

an aspect of TLB management that has received little attention

in the literature: replacement policy. We show how predictive

replacement policies can be tailored toward TLBs to reduce miss

rates and improve overall performance.

We begin by applying recently proposed predictive cache

replacement policies to the TLB. We show these policies do not

work well without considering specific TLB behavior. Next, we

introduce a novel TLB-focused predictive policy, Control-flow

History Reuse Prediction (CHIRP). This policy uses a history

signature and replacement algorithm that correlates to known

TLB behavior, outperforming other policies.

For a 1024-entry 8-way set-associative L2 TLB with a 4KB

page size, we show that CHIRP reduces misses per 1000 in-

structions (MPKI) by an average 28.21% over the least-recently-

used (LRU) policy, outperforming Static Re-reference Interval

Prediction (SRRIP) [1], Global History Reuse Policy (GHRP) [2]

and SHiP [3], which reduce MPKI by an average of 10.36%,

9.03% and 0.88%, respectively.

Index Terms—Translation Lookaside Buffers, Replacement

Policies, Paging, Microarchitectures

I. INTRODUCTION

Virtual-to-physical address translation is expensive [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. Translation
lookaside buffers (TLBs) help minimize the need for costly
page table walks by caching recently retrieved virtual-to-
physical address mappings [16], [17].

Recent studies by Google [18], asmDB [19], and Face-
book [20] confirm that modern deeply pipelined speculative
OoO CPUs face increasing challenges associated with TLB
performance. For example, server workloads show growing
code footprints and working set sizes [18], [21], [22], [23],
placing tremendous pressure on caches and TLBs [24]. The
caches and TLBs of future systems will need to improve at a
similar rate to maintain performance.

Unfortunately, TLBs are limited in size, and thus reach, due
to power, timing, and area constraints [25]. The TLB lies on

 SHiP

Fig. 1. Comparing predictive policy efficiency with a heat map shows CHIRP
maintains more live TLB entries compared to other policies when analyzed
on 870 different benchmarks. A lighter color block indicates higher TLB
efficiency, while darker denotes lower efficiency.

the critical path to accessing memory. Thus, increasing L2 TLB
sizes to reduce TLB misses is difficult because larger TLBs
incur higher access latencies [26].

Meanwhile, TLB misses are a first-order concern in terms
of their negative impact on performance. Recently published
measurements [26], [27] on Intel Skylake processors indicate
that many programs can spend hundreds of extra cycles
conducting address translations that did not hit in the TLBs.
The authors also find L2 TLB miss costs range from 61 cycles
in the canneal benchmark to 1158 cycles in the connected
component graph benchmark for the Skylake i7-6700. This is
despite the fact that the Skylake architecture includes special
MMU/paging structure caches (or PSCs) to lessen the page
walk penalty [28]. Translation overheads running into 100+
cycles have also been reported in prior work [13], [14]. Address

translation latencies due to TLB misses represent between 20%
and 50% of system run-times today [9], [10], [13], [14], [29],
[30], [31], [32], [33], [34], [35], [36] and consume a substantial
share of processor energy [4], [5], [6], [7], [11], [15], [37].

Peng et al. conduct a thorough study of TLB behavior of Java
applications [38], reporting 230+ cycle TLB miss latencies
and indicate TLB miss overhead accounts for 5.5% to 19%
of the total execution time. Their study finds that five out of
seven benchmarks exhibit similar TLB overhead.

These concerns motivate us to investigate mechanisms to
improve TLB performance that do not require increasing
TLB sizes. Similar efforts to improve TLB performance have
included using varied page sizes and superpages [24], [39],
[40], [41], [42], [43] as well as prefetching [31], [44], [45],
[46].

Fortunately, TLBs’ organization makes them amenable to
predictive replacement policies. TLBs are organized with
tagged set-associative SRAM arrays much like cache memories.
Predictive replacement policies have been well-explored and
have been shown to perform well in data caches [3], [47],
[48], [49] that depend on spatial and temporal locality of
data accesses to maintain useful entries. Access patterns to
TLBs are similar to cache accesses at a larger granularity.
Thus, it is reasonable to apply previous work on cache
replacement/management to TLBs.

TLB replacement policy has received little attention in the
literature. Recent work [14], [29], [31], [32], [33], [50], [51],
[52], [53] advocates using an LRU replacement policy for all
levels of TLBs. Other prior work focuses either on reducing
the cost of a page table walk upon a TLB miss [10], [29],
[44], [45], [46] or reducing the TLB miss rate by extending
the size of the TLB [26]. In this paper, we suggest tackling
the fundamental problem of the TLB’s insufficient capacity by
improving its replacement policy.

Our work builds on prior predictive replacement policies
geared toward the last-level cache (LLC), such as static re-
reference interval prediction (SRRIP) [1], signature-based hit
prediction (SHiP) [48], and Global History Reuse Prediction
(GHRP) [2], to extract key insights for the TLB. We propose
a novel mechanism, Control-flow History Reuse Prediction
(CHIRP), that provides superior prediction accuracy and
performance by better correlating to TLB reuse behavior.

We begin with predictive policies adapted from the cache
replacement literature, in particular the last-level cache (LLC),
and show that they are not a good fit for TLBs. We show
that features used by these schemes do not correlate well to
TLB reuse, resulting in negligible performance gains. Moreover,
LLC-focused prediction policies are designed with less stringent
cycle time requirements and can tolerate several accesses
to their prediction tables. TLBs, on the other hand, have
tighter timing requirements for TLB access. Based on this and
other insights, we introduce a policy that efficiently indexes
prediction tables using a novel signature specifically designed
to correlate to TLB behavior. We focus on the L2 TLB as L2
TLB misses account for most of the cycles spent in the TLB
miss handler [36].

This paper makes the following contributions:
1) A first study and exploration of TLB replacement policies

by implementing and adapting policies from previous
work on data caches and branch target buffers to the TLB.

2) An intuition on why previous predictive replacement
policies may or may not be as effective on TLBs. We
evaluate the impact of various optimizations on adapted
predictive replacement policies over a large suite of
industry-sourced traces.

3) A new predictive replacement policy, Control-flow History
Reuse Prediction (CHIRP). This policy indexes prediction
tables using a signature specially designed to correlate
with TLB behavior. It reduces L2 TLB misses by 28.21%
on average over LRU, resulting in significant speedup. For
example, for a page walk latency of 150 cycles, CHIRP
yields a geometric mean speedup of 4.8%.

II. BACKGROUND

Processor performance is affected by the TLB in two ways:
the number of TLB misses and the TLB miss penalty in cycles.
While other solutions have mainly focused on reducing the
TLB miss penalty, very little work has focused on reducing
the number of misses in the TLB directly. There have been a
handful of papers on prefetching into the TLB [31], [44], [45].
However, to the best of our knowledge, no previous work has
proposed a predictive replacement policy specifically for TLB.
Rather, recent work employs LRU or Random replacement
policies [14], [29], [31], [32], [33], [50], [51], [52], [53], [54].
We advocate using a predictive replacement policy that relies on
a variety of program features to guide TLB entry replacement
to improve performance without needing to increase the TLB’s
size.

Recent work in cache and BTB replacement shows that
reuse prediction can significantly reduce misses and improve
performance [2], [3], [48], [49], [55], [56], [57], [58]. Predictive
replacement policies attempt to predict whether a cached item
will be used again before it is evicted. If not, then it is a prime
candidate for eviction. This idea is superior to LRU replacement,
in which a block with no near-term reuse must migrate all the
way down the recency stack before being replaced. However,
a highly accurate predictive replacement policy for one cache-
like structure may not work for another cache-like structure.
For example Mirbagheret al. [2] show that while PC-based
policies such as SDBP [3] and SHiP [48] reduce the number of
dead blocks in the LLC, it is detrimental to instruction caches
and BTBs. We find the same applies to TLBs.

There are three main challenges in designing a predictive
replacement policy. The first is finding the microarchitectural
features that correlate with reuse for a particular cache-like
structure. These features vary for different structures such as
the TLB and data caches, and even different applications [2],
[3], [48], [49], [55], [56], [58]. The second is building an
efficient signature by combining the identified correlating
features. The features are combined to reduce their hardware
storage budget and prediction time. The third is designing a
fast/low-cost prediction algorithm to use this signature. The

latter is particularly important for the TLB as it lies on the
critical path to a memory access.

Once we identified highly correlating features of TLB entry
reuse, we adapted previous algorithms to propose a novel,
low-cost algorithm specifically tailored for reuse prediction
in L2 TLBs. Previous work on LLC reuse prediction that
uses prediction tables has used multiple features hashed to
multiple indices [3] or signature [49], [58] to combine several
predictions into one. Because the TLB is on the critical path to
accessing memory, we reduce accesses to a single table with
a signature combining several features as the most latency-
sensitive approach.

We explore using predictive cache replacement policies
such as static re-reference interval prediction (SRRIP) [1],
signature-based hit prediction (SHiP) [48], and Global History
Reuse Prediction (GHRP) [2] for the TLB, and propose a new
mechanism, Control-flow History Reuse Prediction (CHIRP),
to better guide TLB entry replacement.

A. Static Re-Reference Interval Prediction

SRRIP [1] predicts which blocks will be referenced again
(i.e. re-referenced) in the cache. Each block has a 2-bit re-
reference prediction value (RRPV) placing the block into one
of four categories ranging from near-immediate re-reference
to distant re-reference. A first prediction is made on block
placement and revised when a block is reused or replaced.
Blocks with distant re-reference prediction are evicted. If there
are none, the RRPV for each block in the set is incremented
until there is at least one eviction candidate. We adapt SRRIP
to work with TLB entries instead of cache blocks.

B. PC-Based Dead Block Predictors

In sampling-based Dead Block Prediction (SDBP) [3], a
predictor learns the pattern of accesses and evictions from a
small number of sets kept in a structure called the sampler.
When a load or store accesses the LLC, the address (PC) of
that instruction is hashed to index prediction tables. Counters
read from the tables are summed and thresholded to predict
whether the block is dead. In the original SDBP paper, blocks
are predicted on each access [3]. Signature-based Hit Prediction
(SHiP) improves on this idea by using the prediction only for
placement in a RRIP-replaced cache, reducing the number of
predictions and significantly improving performance.

However, sampling is not suitable for structures indexed by
instruction addresses such as the BTB and instruction cache [2].
Sampling works for data caches because the behavior of a
memory access instruction, represented by its PC, generalizes
over the entire cache. Instruction streams do not allow set
sampling to generalize the behavior of accesses to such
structures since the PC itself forms the index into the structure.

We find that sampling also does not work well for second-
level TLBs. The reason is the coarser granularity of TLB entries
versus cache blocks. A PC accesses different data addresses that
are in the L2 TLB, which might lead one to believe sampling
should generalize across the TLB. However, in the LLC, one
sampled set may map to many cache sets all accessed by the
same PC, which allows behavior to be generalized across sets.

On the other hand, in the L2 TLB, one PC accesses data that
are mapped to much fewer TLB entries than cache blocks.
Spatial locality for data accessed by a single PC does not
expand beyond a few TLB entries, so generalization fails.

Because of this failure, in this work we evaluate SHiP with
the same general algorithm, but with bits of PC kept as metadata
in each TLB entry, which is equivalent to keeping a sampler
the same size as the structure. We consider SHiP to be the
best cache replacement policy from previous work that would
be implementable under the tight timing requirements of the
TLB access critical path.

C. Global History Reuse Prediction

Global History Reuse Prediction (GHRP) [2] is the state-
of-the-art predictive replacement policy for BTB and i-cache
replacement. We adapt GHRP for TLB replacement. GHRP
has a structure similar to SHiP, but the signature used to index
the prediction tables is specifically designed for instruction
streams. Like a branch predictor, it uses the global history of
conditional branch outcomes [59] as well as lower-order bits
from branch addresses to form an index into a table of counters
that keep track of reuse behavior.

D. Offline Learning

We use insights from neural networks to design a new hand-
crafted feature that represents a program’s control-flow history
compactly and that can be used with a much simpler linear
learning model. Offline training has been used for designing
replacement policies in the past through using genetic algorithm
by Jiménez et al. [60] and LSTM by Shi et al. [61]. Their work
shows how insights from offline training can improve learning
model for online prediction in the LLC. We use ADALINE
(ADAptive LINear Element) [62], [63] to find insights for TLB
replacement policy.

ADALINE uses a vector of weights that records correlations
between an input vector and a target value. It can be used to
classify inputs into one of two classes.

ADALINE computes the weighted sum of the input patterns
x(n).

y(n) = wT (n)x(n) + ✓

ADALINE weights are updated after the desired outcome d(n)
of the predicted event is known. If the prediction was correct
then the weights remain unchanged. Otherwise, the inputs are
used to update the corresponding weights.

w(n+ 1) = w(n) + µ[d(n)� y(n)]x(n)

where µ is the learning-rate parameter and the difference d(n)�
y(n) is the error signal.

E. CHIRP

We explored adapting predictive cache replacement policies
to the TLB and observed that features that correlate well to
cache reuse behavior may not necessarily correlate well to TLB
reuse behavior. In contrast to a cache access, a TLB access is
of coarser granularity with many PCs that map to the same
TLB entry. Furthermore, depending on the context, each such

PC may result in an eviction or a reuse of the same TLB entry.
We find that predicting a TLB entry’s reuse requires multiple
features that we compose into a single signature for better
prediction accuracy and overhead reduction.

III. THE REUSE PREDICTION PROBLEM IN TLB & OUR
SOLUTION

We find that predictive policies for the LLC, instruction
cache, and BTB do not apply well to L2 TLBs, and describe
the main reasons why in this section.

We simulated 870 workloads from a variety of categories
provided publicly by Qualcomm [64] to prevent overfitting to
one type of workload. More information about the full details
of our simulation methodology can be found in Section V.

We first applied signature-based hit prediction (SHiP) [48],
which was shown to be useful in the LLC. SHiP uses only
the address (PC) of the most recent instruction. However, our
results show that a solely PC-based reuse entry prediction does
not perform much better than LRU, giving a reduction in MPKI
of only 0.88%.

We investigated whether aliasing was the cause of the
observed mispredictions, but found that even with an unlimited
prediction table size (i.e. no aliasing), SHiP is not able to
detect dead entries in the TLB, giving a reduction in MPKI
of only 0.63%. Since prediction table size was not the source
of the mispredictions, we further investigated by limiting the
prediction to only a subset of the TLB sets and used LRU for
the rest. This technique also just slightly improves accuracy,
reducing MPKI by 1.28%, leading to the following observation:

Observation 1: The inaccuracy in previous predictive poli-
cies for the TLB is not due to conflicts among multiple sets
but rather within the sets themselves.

We find that a TLB entry may experience many hits from one
or more PCs that map to the same entry before it is eventually
evicted. This is because a larger range of unique addresses map
to the same entry in the TLB compared to accesses to a block
in a cache. Indeed, there is a nearly two order-of-magnitude
difference between a 4KB page and a 64B block.

Therefore, we obtain our second observation:
Observation 2: The coarse-grained nature of TLB accesses

results in increased aliasing in previous predictive policies,
which cause the prediction counters to saturate too quickly,
rendering the predictor ineffective.

From Observation 2 we posit that in order to dissipate this
noise, we need to slow down the rate at which the prediction
counters are updated. We do this by limiting updates to
accesses that hit non-contiguous TLB sets. We call this method
Selective Hit Update. Selective Hit Update improves accuracy
by reducing average MPKI by 5.85%.

Previous work [2], [61] has shown that a longer history
of past PCs would benefit predictive replacement policies in
the LLC and i-cache. Figure 2 shows our results conducting
a similar study for the TLB. Here, we analyze varying PC
history lengths from 4 to 40 and their resulting speedups.
We find that the benefits of using longer global PC history
for TLB reuse prediction diminishes beyond a length of 15.
This contrasts with prior work on predictive policies for the

LLC, which show benefits of using global PC history length
of 60 or more. This is likely due to the coarse-grain nature
of TLB accesses that may limit the global history window
from capturing enough information pertaining to TLB reuse.
To improve on this, we augment the global PC history with
branch path history information, resulting in a history length
greater than 30 (Figure 2). Hence, our third observation is as
follows:

Observation 3: TLB reuse prediction does not benefit from a
global PC history of length 15 or more. However, by combining
branch path history into a prediction signature, CHIRP can
take advantage of a PC history length of 30 or more.

Fig. 2. Speedup does not increase for global PC history length more than 15.
However, combining branch history into signature, CHIRP can benefit from
history lengths longer than 30.

Branch history is effective because L2 TLB accesses come
from both data and instructions in the first-level TLBs. Con-
ditional branch histories can reflect the data accesses when
global path history does not. Branch path history can also
reveal high-level program semantics that also contribute to
TLB misses.

A. PC Bits Carry Uneven Weights

Previous work [60], [61] shows that certain features from
program behavior are important to predicting reuse of a block in
the LLC. We come to the same conclusion with regard to TLBs,
recognizing that some bits of the PC carry more weight than
others in reuse prediction. To show this for the case of TLBs,
we use the weights of a trained ADALINE neural network to
score the bits of PCs that we incorporate into the global history.
The idea is based on the principle that the weights of the input
nodes corresponding to less important features are expected to
be smaller in trained ADALINE networks. The incorporation
of appropriate regularization terms in the ADALINE update
function encourages such weights to converge to zero and
ultimately be eliminated.

Figure 3 shows that the two lower-order bits of a PC address
(bits 2 and 3) contain important information, as indicated by
their higher-weight color values. Thus, passing on these bits
to the signature function yields a high chance of preserving
information to reduce aliasing. In our proposed CHIRP policy

Fig. 3. Each row represents an offline-trained ADALINE weight vector for
one benchmark. The x-axis shows the PC bit used as input. The white boxes
show reuse prediction in TLB entries is strongly correlated with bits 2 and bit
3 of the PC.

described in Section IV, we keep these two correlated bits in
the global path history.

B. Modeling Efficient Signatures

Aliasing in the prediction table is harder to solve in the
TLB than caches. With TLB reuse prediction, far too many
PCs map to the same TLB entry, i.e., 64 times more than to
a cache block. The problem of aliasing is exacerbated further
with large footprint applications.

If a counter in the prediction table changes direction
frequently due to aliasing, the same problem will only be
exacerbated with a smaller table size. To achieve high reuse
prediction accuracy with a smaller table size, we have to solve
aliasing first.

This problem can be addressed by coordinating how the
input bits are transformed by designing a succinct signature.
We found that employing shifting and scaling techniques as
described by Lecun and Hinton [65], [66] improves prediction
accuracy.

We accomplished this by injecting and shifting leading
zeros into specific bit positions of different components of
the signature including the global path history, conditional
branch history, indirect branch history, and the shifted PC of
the access (section IV).

Doing this both shifts the individual PCs and scales the
less salient history bits down to make them less visible to
the learning process, allowing the prediction table to converge
to an accurate counter value with 3 times fewer entries than
GHRP.

The above techniques of shifting and scaling the signature
bits are simple to implement in hardware and provide significant
reduction in TLB MPKI. Figure 6 shows that while adding
conditional branch path history to the signature would reduce
MPKI by 23.88%, adding two leading zeros in the path history

would allow the effect of conditional branch history to reduce
MPKI by 26.98%.

In the next section we discuss our signature function and
the individual effect of above optimizations.

IV. CONTROL-FLOW HISTORY REUSE PREDICTION
ALGORITHM

A. Overview

CHIRP correlates TLB replacement with reuse history.
CHIRP uses features that best correlate to reuse behavior
and combines them into a signature that is used to uniquely
tag each TLB entry (IV-B).

This signature is subsequently used to track the reuse
behavior of the associated TLB entry by means of a prediction
table indexed by the signature (IV-C). The prediction table is
updated on an eviction or a reuse, and the resulting prediction
status is written back into the corresponding TLB entry to
inform the next TLB replacement operation (IV-D). Figure 4
describes the main components of CHIRP and Algorithm 5
provides the CHIRP algorithm.

B. CHIRP Signature

CHIRP contributes four features that correlate with reuse
behavior. The first is the global path history of PCs. The global
path history in CHIRP is 64 bits wide and is updated on each
access by shifting the two lower-order bits of the PC into the
path history, followed by two zero bits (Figure 5, line 27), as
previously discussed in subsections III-A and III-B, respectively.
The global path history in CHIRP allows recording the last
16 accesses.

The second and third features are the conditional and
unconditional indirect branch address history, respectively. Each
of these histories is 64 bits and is updated by shifting the
eight bits of the PC [11:4] into the branch history on every
conditional (resp. unconditional indirect) branch instruction
(Algorithm 5, line 30.), recording the last 8 branch accesses
for each type.

The fourth feature is the current PC, shifted right by two bits.
The signature is constructed by XOR-ing the global path history
with the conditional branch history, the unconditional indirect
branch history, and the shifted PC of the access (Figure 5,
line 5).

To compute indices into the prediction table, CHIRP
computes a 16-bit hash of the constructed signature (Figure 5,
line 6).

Note that the signature relies on bits from the branch PC,
not conditional branch outcomes or bits from branch targets.

C. CHIRP Prediction Table

CHIRP stores metadata for each L2 TLB entry, consisting of
3 LRU stack position bits, a valid bit, a 16-bit signature and a
prediction bit (See Figure 4, Updating TLB Metadata). CHIRP
uses a table of saturating counters to provide a prediction.
The table is indexed by a hash function of the signature. The
corresponding counter is thresholded, and if the counter exceeds
the threshold, the entry is predicted as dead.

Fig. 4. CHIRP TLB metadata and prediction table update flow using a signature.

1: int predTable[numCounters]
2: procedure ACCESSTLB(int VA)
3: set calcSet(VA)
4: isMissed isTagMatch(VA)
5: sign VA»2� pathHist� condBrHist� unCondBrHist
6: index Hash(sign) mod 216

7: cntrNew predTable[index]
8: if isMissed = true then . miss
9: entry victimEntry(set)

10: if entry.isDead = false then . lru
11: index Hash(entry.signature)
12: updatePredTables(index, true)
13: else . hit
14: entry matchedEntry(set, tag)
15: if firstHit = true then . access table
16: indices Hash(entry.signature)
17: updatePredTables(index, false)
18: entry.dead predict(cntrNew, deadThresh)
19: firstHit false
20: entry.signature sign
21: updateLRUstackPosition()
22: UpdatePathHist(VA, pathHist)
23: if instType = conditionalBranch then

24: UpdateBrHist(VA, condBrHist)
25: if instType = unConditionalBranch then

26: UpdateBrHist(VA, uncondBrHist)

27: procedure UPDATEPATHHIST(int VA, int history)
28: history history << 4
29: history (history| VA2..3)

30: procedure UPDATEBRHIST(int VA, int history)
31: history history << 8
32: history (history| VA4..11)

33: procedure PREDICT(int counter, int threshold)
34: if counter > threshhold then return true
35: else return false

36: procedure VICTIMENTRY(Set set)
37: for int i = 1 to associativity do

38: entry set.entries[i]
39: if entry.isDead = true then return entry

return LRUentry()

40: procedure UPDATEPREDTABLE(int index, bool Dead)
41: if Dead = true then

42: predTable[index]++
43: else

44: predTable[index]��

Fig. 5. CHIRP algorithm.

D. CHIRP Operations

In contrast to SHiP and GHRP that require updating the
prediction table on each TLB access, the bulk of CHIRP
operations occurs off the TLB critical path, with minimal
impact to TLB latency. In particular, CHIRP updates its
prediction table on a TLB miss only if the selected victim is
LRU (i.e. no dead entry is found).

The operations pertaining to a TLB miss involve (1) selecting
a victim, (2) updating the victim’s reuse history in the prediction
table if the victim is LRU, and (3) updating the prediction
metadata for the new TLB entry.

a) Victim selection

On a TLB miss, CHIRP first attempts to select a victim
among the entries predicted as dead. If no such entry is found,
CHIRP evicts the LRU entry (Figure 5, line 36).

b) Prediction table update

Because CHIRP updates its prediction table only if the
victim is LRU (Figure 5, line 10 – 12), evicting the LRU entry
effectively makes it a dead candidate the next time around.
This justifies why the prediction table needs be updated. The
signature of the victim entry is used to index the prediction
table and the corresponding counter is incremented, since the
entry was just shown to be dead (Figure 5, line 40).

c) Prediction metadata update

After the new entry is inserted into the TLB, its CHIRP
metadata is updated to inform CHIRP of the next replacement
decision. First, the signature of the new entry is used to index
the prediction table and then the corresponding counter is read
out (Figure 5, line 6). The counter value is thresholded and
used to decide if the incoming entry should be predicted dead
or live in the future. The resulting prediction status is then
used to update the prediction bit in the CHIRP metadata.

On a TLB hit CHIRP updates its prediction table only if the
current access is the first hit to the TLB entry line 15). These
optimizations improve both performance and energy as they
reduce the frequency of access to the CHIRP prediction table
to only 10.14% of all TLB accesses (Figure 11). In addition, for
smaller prediction tables, they prove very effective at improving
MPKI by reducing aliasing (Figure 9). These optimizations
and results are discussed in detail in Section VI).

A TLB hit (Figure 5, line 13) involves the following
operations:

d) Prediction table update

On a hit the prediction table is accessed only on the first
access or reuse (Figure 5, line 15). The old signature in the
entry (Figure 5, line 16) is used to index the prediction table
and the corresponding counter is then decremented to assure
this entry will be predicted as live under the same conditions
in the future (Figure 5, lines 17 and 40). Then the old signature
is replaced with the new one.

e) Prediction metadata update

The new signature of the hitting entry is used to index the
prediction table and then the corresponding counter is read
out. The counter value is thresholded and used to decide if
that entry should be predicted dead or live in the future. The
resulting prediction status is then used to update the prediction
bit in the CHIRP metadata. Figure 5 summarizes the steps
taken during a TLB hit.

E. Adapting Training Algorithm for TLB

Access to a TLB reuse predictor must be fast and energy
efficient, as the TLB is on the critical path to accessing memory.
Thus, we are motivated to minimize the number of updates
made to prediction structures. We find that two specific events
are sufficient for an accurate training update:

• The first hit of an entry.
• A miss in a set with no dead entry (this leads the algorithm

to choose an entry to evict based on LRU.)
With this technique, CHIRP reduces the access ratio to the

prediction tables by 90% compared to SHiP and GHRP (see
Figure 11), which must access tables on every access to the
TLB.

V. METHODOLOGY

To implement and test CHIRP, we use the simulator and
traces released for the recent Championship Value Prediction
Competition (CVP1) [64]. There are hundreds of traces avail-
able (of which we use 870) , coming from a variety of workload

Component Size

Prediction bits 1 bit⇥ 1024 128B
Signature bits 16 bits⇥ 1024 2KB
Path history register 64 bit⇥ 1 = 8B
Cond. history register 64 bit⇥ 1 = 8B
Uncond. history register 64 bit⇥ 1 = 8B
Counters 128B .. 8KB
Total 2.65KB .. 8.14KB

TABLE I
STORAGE OVERHEAD OF CHIRP FOR A 1024 ENTRY, 8-WAY L2 TLB WITH

4KB PAGES.

Processor Parameter

L1 i-Cache 64KB, 8 way, 4 cycles
L1 d-Cache 64KB, 8 way, 4 cycles
L2 Unified Cache 256KB, 16 way, 12 cycles
L3 Unified Cache 8MB, 16 way, 42 cycles
DRAM 240 cycles
Branch Predictor Hashed perceptron, 4K

entry BTB, 20 cycle
miss penalty

L1 i-TLB 64 entry, 8 way, 1 cycle
L1 d-TLB 64 entry, 8 way, 1 cycle
L2 Unified TLB 1024 entries, 8 way,

8 cycle hit latency, 20 to
360 cycle miss penalty

TABLE II
SIMULATION PARAMETERS

categories of interest to Qualcomm who provided them. In
particular, the workloads come from the team working on their
(now defunct) server project. The traces contain SPEC, database,
crypto, scientific, web, “big data” and other applications, many
of which exhibit interesting address translation behavior. The
traces contain very detailed information such as instruction type,
register values, effective addresses of loads and stores, and data
values, making them suitable to drive a performance simulator.
Short traces are simulated completely, while long traces are
allowed to run for 100 million instructions. Microarchitectural
structures are warmed using the first half of the instructions
in the trace. To measure the performance numbers we built
a timing-approximate performance model similar to previous
work [32].

Our model simulates first-order sources of processor latency
such as the memory hierarchy composed of L1 i-TLB and
L1 d-TLB, L1 i-cache, L1 d-cache, L2 and L3 unified caches,
DRAM, a branch prediction unit that includes an indirect
branch predictor, a conditional branch predictor with branch
target buffer, and an in-order pipeline model. We use a hashed
perceptron predictor as the branch direction predictor [67].

We measure misses per 1000 instructions (MPKI) as well
as instructions per cycle (IPC) based on the simulated mi-
croarchitecture across a variety of page table walk latencies
derived from previous work. A recent reverse engineering study
on TLB [27] reported a range of L2 TLB miss penalties for
Intel microarchitecture: 230 cycles for Coffeelake, 272 cycles
for BroadwellXeon, 212 cycles for Skylake and 18 cycles for

Haswell. A related study on TLBs, Li et al. [12], uses 150
cycles for L2 TLB miss penalties. We measure speedup for
a range of 20 to 340 cycles page walk latencies, shown in
Figure 10.

We model static re-reference interval prediction (SRRIP),
signature-based hit prediction (SHiP), global history reuse
prediction (GHRP) and control-flow history reuse prediction
(CHIRP). CHiRP keeps metadata for each L2 TLB entry.
CHiRP also uses one prediction table. Each of the entries in
the table contains a two bit counter. The additional metadata
for each entry consists of 1 prediction bit, 3 bits to maintain
LRU positions, and 16 bits of signature. Table-I summarizes
the storage requirements for CHiRP for a 1024-entry 4KB
page size L2 TLB with 8-way associativity.

We assume a 4KB page size similar to previous work [12].
Large pages are supported in current microarchitectures, e.g.
Intel’s Skylake supports page sizes of 4KB, 2MB, 4MB, and
1GB. Large pages can reduce capacity misses in TLBs when
program behavior exhibits high locality. However, 4KB pages
are still the norm for most mobile and desktop operating sys-
tems, providing a good balance between impact of page faults
for workloads with good locality and impact of fragmentation
for workloads with poor locality. It would be easy to say, “just
use large pages” but the performance of legacy systems, mobile
apps, cloud computing workloads, etc. that continue to use
4KB pages matters to users of those systems.

The complexity of variable-sized TLB entries (as compared
to fixed-sized lines in cache replacement) further complicates
efforts to improve TLB replacement. Entries for different sized
pages share the L2 TLB; as the L2 TLB is built for capacity,
it is not partitioned among page sizes.

Reasoning about how to do replacement with a mix of page
sizes is an interesting problem we plan to tackle in future
work; imagine, when one entry covers 4KB and another covers
2MB, which one is is more important to keep? It is no longer
a matter of pure replacement in the sense of trying to achieve
Bélády’s optimal result [68], but now requires taking into
account the different costs of replacing different sized entries
[69], [70], [71], [72]. This question is beyond the scope of this
initial study. In addition, large pages’ susceptibility to memory
fragmentation requires simulating traces with varying levels
of known fragmentation behavior, complicating an already
complex issue. We hope this initial work invites the community
to consider and tackle the problem of TLB replacement further
from the surface work seen so far. Thus, in this initial study
of predictive replacement policies for TLBs, we focus on the
standard 4KB page size.

VI. RESULTS

In this section, we describe the results of experiments
simulating the CHIRP policy and demonstrate its superior
over policies used in previous work. Results with a range
of hardware budgets are presented. In the absence of public
data about L2 TLB size, our calculation accounts only for
tag, physical page number, replacement metadata, protection
bits, valid bit, and ASID, estimating 118 bits for a TLB entry,
giving 14.75KB for a 1024-entry TLB.

A 6% TLB overhead places CHiRP at 1KB, which still
offers a 28% MPKI improvement (see Figure 9).

A. MPKI Results

Figure 7 shows an S-curve of MPKIs for 870 benchmarks.
The x-axis shows the benchmarks in order of sorted MPKI for
LRU and is compared with other policies. Insets highlight key
areas of the graph.

LRU and Random yield an average 1.51 and 1.47 MPKI,
respectively. SRRIP, which uses a simple static prediction
on each TLB entry placement and has a lower cost than
LRU, yields 1.35 MPKI, a 10.36% improvement over LRU.
SHiP, a PC-based reuse predictor, gives an average 1.50 MPKI,
performing almost the same as LRU with 0.88% improvement.
GHRP, which uses a more detailed prediction signature, yields
an average 1.37 MPKI, or a 9.03% reduction in misses over
LRU. CHIRP, with a signature specially designed for TLB
replacement, gives an average MPKI of 1.08% an improvement
of 28.21% over LRU. Nearly all of the tested benchmarks
exhibit considerable MPKI reduction under CHIRP, achieving
an improvement of 58.93% in some cases.

These results demonstrate that the case for LRU as a TLB
replacement policy is weak, as even Random replacement
slightly outperforms it. SRRIP, which is a simpler and low-
overhead policy, could more conveniently be deployed in
current processors, yielding better performance. CHIRP is
somewhat more complex but yields the best improvement,
more than double the improvement provided by SRRIP.

B. Accesses to Prediction Table

Predictive replacement policies often access tables of coun-
ters to make a prediction. Previous work on cache and BTB
replacement policies read out from the tables on every access
to the cache/BTB to make a prediction for the next access. The
tables are also modified frequently as counters are updated.

CHIRP only accesses the prediction table on a TLB miss
or on a hit to a TLB set different than the one accessed last,
following our selective hit update policy. It follows from this
that consecutive hits to the same set do not result in writing
or reading from the prediction table but only updates to the
signature in the TLB entry. Updating the signature bits in the
TLB entry has the same overhead as an LRU stack update. Thus,
the energy and timing properties of CHIRP are considerably
more favorable to implementation than techniques based on
previous predictive replacement policies.

Figure 11 shows a density plot of the rate of the number
of accesses to prediction table over accesses to the TLB for
SHiP, GHRP and CHIRP. The plot shows the distribution of
access rates over all the benchmarks. For SHiP and GHRP,
the access rate has a very high variance, reaching over 100%
in many cases. The rate can exceed 100% because, for every
TLB access, there could be two accesses to the prediction
table: one to read out the prediction, and another to update the
table for training. For CHIRP the access rate is quite low, and
has low variance, making for a far more practical policy for
implementation. On average CHIRP accesses the prediction
table for 10.14% of the accesses to L2 TLB.

Fig. 6. Effect of correlating features, transforming input, signature formula and prediction table update policies on reducing misses in the L2 TLB. The x-axis
is the reduction rate of average MPKI over 870 traces over a baseline LRU. Previous predictive replacement policies need specific optimizations to work for L2
TLBs. Results show the advantage of CHIRP.

Fig. 7. MPKI comparison of various policies. The horizontal axis shows the benchmarks in the order of sorted MPKI for LRU. Multiple zoomed-in areas of
the graph are shown in insets.

C. Speedup

Figure 8 shows speedup for various policies with TLB miss
penalty of 150 cycles. Page walk latency depends on several
microarchitectural and software parameters. Thus, we explore
a range of L2 TLB miss penalties to provide an estimate
of performance under different assumptions. With TLB miss
penalty of 150 cycles, CHIRP improves performance by 4.80%
compared to 0.42% for Random, 1.65% for SRRIP, 0.13%
for SHiP, and 0.94% for GHRP. At higher latencies, the
advantage of predictive policies grows. With a penalty of 320
cycles, representing more memory intensive behaviors, CHIRP
provides a speedup of over 10%. Other predictive replacement
policies do not provide significant speedup. Clearly, CHIRP
provides significant improvement to performance over all other

replacement policies.

D. TLB Efficiency

Cache efficiency is the average amount of time in which a
block was live in the cache. We calculate cache efficiency [73]
for TLB entries instead of cache blocks. Figure 1 depicts cache
efficiency for the L2 TLB for 870 benchmarks. Each row is the
cache efficiency of one benchmark for various policies scaled by
LRU. Benchmarks are sorted from low to high cache efficiency
from down to up respectively. Figure 1 shows Random helps
improve the cache efficiency of some benchmarks (most which
had high efficiency already) but CHIRP removes most of the
dead entries in TLB for all 870 benchmarks. CHIRP improves
average cache efficiency over 870 traces by 8.07% compared
to LRU. This number is 2.92% for GHRP, 1.85% for SHiP,

●
●●●●●●●
●●●●●●
●●●●
●●●

●

●●
●
●
●●

●

●

●

−5

0

5

10

Random SRRIP PcDP GHRP CHiRP
Replacment Policy

sp
ee

du
p

policy
CHiRP

GHRP

PcDP

Random

SRRIP

 SHiP

SHiP

Fig. 8. Speedup for 870 traces.

2.84% for SRRIP, and 3.10% for Random.

E. Complexity and Efficiency

Note that CHIRP is more complex than simple replacement
policies such as LRU and RRIP. However, it is far less
complex than, for example, branch prediction techniques such
as TAGE [74] and perceptron [75] that have been implemented
in recent processors. These predictors require far more logic,
dynamic energy, and state than CHIRP and have tighter timing
constraints. Thus, we believe the complexity of CHIRP is very
manageable given its benefits to front-end performance.

Consistent with branch predictor implementation,
CHIRP only updates the tables of counters at commit with
right-path branches to prevent pollution of the tables. For
misprediction recovery, CHIRP maintains two path histories:
the speculative history updated using the outcome of the branch
predictor, and a non-speculative history updated when a branch
commits.

The energy overhead of predictive policies results from
accesses to the prediction table. Because CHIRP reduces the
number of accesses to the prediction table by 90% compared
to previous predictive policies (i.e. SHiP and GHRP), energy
consumption should be less of a concern (Figure 7).

F. Impact of Predictor Size

Figure 9 shows MPKI improvement over LRU for CHIRP
with a range of prediction table sizes. The size of the prediction
table has an impact on area, energy, and timing, so we would
like to choose a size that yields a good improvement while
maintaining a reasonable cost. At a very small hardware budget
of 128B, we note that even though we may experience higher
conflicts rate in the prediction table, CHIRP still yields up to
7% MPKI improvement over LRU. As we double the prediction
table size to 256B and 512B, the MPKI improvement increases
to up to 20% and 22%, respectively. What this shows is that
even with a small hardware budget size of 256B, CHIRP
doubles the MPKI improvement realized by an 8K GHRP
(9%). Table sizes of 1K and 2K yield similar improvement:
about 28% MPKI reduction; our main results are presented

0

10

20

30

0

10

20

30

128B 256B 512B 1KB 2KB 4KB 8KB

Prediction Table Size

M
PK

I I
m

pr
ov

em
en

t (
%

)

CHiRP with a range of prediction table size

Fig. 9. MPKI improvement over LRU for CHIRP with a range of prediction
table sizes.

with a 1K budget. Gains realized by larger table sizes are
higher, but come with larger area overhead.

G. Performance Gain

This first study focuses on single core. IPC gains in each
generation are usually within 10-15%, of which 20-40% might
come from the front-end (2-4% overall), which is considered
aggressive. A 4.8% improvement over LRU is a significant
milestone in this case. Figure 11 shows the speedup for CHIRP
is statistically significant over 870 workloads assuming a TLB
miss penalty of 150 cycles.

H. Area Overhead vs. Performance

CHIRP reduces hardware overhead by two-thirds compared
to GHRP because the signature formula enables CHIRP to
use one prediction table rather than the three needed by GHRP.
The predictor cost was evaluated for a range of extra overhead.
Figure 9 shows even a small 256B predictor leads to a 20%
MPKI reduction. As a matter of comparison, a recent study
from Intel [76] demonstrates a branch prediction technique
that costs 64KB hardware overhead improves IPC by 2.7%.
CHIRP for a TLB with 1KB overhead and 4.80% speedup is
13⇥ more efficient in terms of speedup-per-KB overhead. This
is due to the high TLB page walk latency compared to other
miss penalties in the pipeline.

VII. RELATED WORK

A. Reuse Prediction

This paper proposes reuse prediction for TLB replacement.
However, reuse prediction has a long history in the literature.
Caches often retain dead blocks, i.e. blocks in the cache that
will not be used again until they are evicted [55]. Dead blocks
waste space and energy in the cache. Lai et al. initially proposed
dead block prediction [55] to prefetch data into predicted dead
blocks. Kharbutli et al. propose a counter-based dead block
prediction approach [77] for replacement and bypass. Liu et
al. [78] propose a predictor leveraging the burst-like nature of

 CHiRP
 GHRP
 SHiP
 SRRIP
 Random

Fig. 10. Average Speedup for a range of L2 TLB miss penalties over 870
traces.

●

●●

0
10
20
30
40
50
60
70
80
90

100

0
10
20
30
40
50
60
70
80
90
100

PcDP GHRP CHiRP

Ac
ce

ss
 R

at
io

(%
)

Density of accesses to Prediction Table over TLB

SHiP

Fig. 11. Density plot for rate of accesses to prediction table over accesses to
TLB for SHiP, GHRP and CHIRP with mean values.

accesses to the L1 cache. Teran et al. propose using perceptron
learning for reuse prediction [49], [58].

Dead block prediction has been evaluated in the context
of making replacement decisions in the L1 data cache [3],
[48], [49], [55], [58], [78], last-level cache [3], [78], [79],
prefetching [55], [80], bypassing [81], [82], [83], [84], [85],
[86], [87], [88], [89], [90], [91], [92], [93], power reduction [94],

[95], and cache coherence protocol optimization [96], [97], [98].
However, no replacement policy has been proposed for the
TLB based on dead block prediction.

B. Translation Lookaside Buffers

Previous work shows that superpages, i.e. any page size
larger than the default, can increase TLB reach and reduce TLB
misses. Large pages are especially beneficial for applications
with a hard upper bound of memory usage in terms of maximal
heap size [38], [39], [40], [42], [43], [99], [100]. Still, Peng et
al. [38] show that while superpages can remove nearly all the
TLB miss overhead of some benchmarks, an increased page
size of 1MB cannot cover the working set of some benchmarks
due to unpredictable memory access patterns. If memory access
patterns are predictable, TLB misses can be reduced through
prefetching and speculation [10], [29], [44], [45], [46].

Conversely, using superpages may unnecessarily increase
the memory footprint of an application, resulting in elevated,
but useless, paging traffic and memory allocation. Additionally,
handling multiple page sizes increases complexity in the
operating system [39], [40], [41], [42], [101], [102]. Algorithms
to evaluate the need for larger pages based on applications’
behavior are essential for choosing the appropriate page size.
Techniques for mapping multiple smaller pages into a single
superpage TLB entry [32], [40], [51], [52], [103] reduce
splintering and make superpage usage more efficient, but
require deep OS-hardware co-design.

With the prevalence of chip multiprocessors (CMPs) and
parallel workloads, recent TLB work has focused on distributed
TLBs in architectures. Cooperative TLB [31], [104] and shared
last-level TLB [34], [46], [50] schemes have been proposed.

VIII. CONCLUSIONS AND FUTURE WORK

This paper extensively investigated the replacement policy
of TLBs, which has been rarely studied in previous work. In
the past, the only way to provide a predictive policy for larger
cache structures was to use a sampling method. We show that
sampling does not work in the L2 TLB. The idea of sampling
is to generalize learning over sets; we used the granularity
of L2 TLB entries to generalize learning instead of sampling.
Prior work does not recognize the effect of the granularity
of a structure on sampling and dead block prediction. The
signatures of previous policies do not detect dead blocks in
the L2 TLB. Because they do not follow control flow, it was
impossible for them to learn the reuse patterns in the L2
TLB properly. They end up averaging over traces, whereas
we present a specific signature that tracks the trace of dead
blocks in a large granularity environment while minimizing
the prediction counters’ fluctuations. That allows CHiRP to
use a small table with fast convergence, providing a predictive
replacement policy that fits into constraints of the L2 TLB for
the first time. In future work we plan to extend CHIRP to
TLBs with mixed page sizes.

IX. ACKNOWLEDGEMENT

We thank Jeffrey N. Collins and Andrew Worthen for their
help and comments during the drafting of this paper. This

research was supported by NSF grants CCF-1912617, CNS-
1938064, and CCF-1332598 as well as generous gifts from
Intel Labs.

REFERENCES

[1] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High
performance cache replacement using re-reference interval prediction
(rrip),” in ACM SIGARCH Computer Architecture News, vol. 38. ACM,
2010, pp. 60–71.

[2] S. Mirbagher-Ajorpaz, E. Garza, S. Jindal, and D. A. Jiménez,
“Exploring predictive replacement policies for instruction cache and
branch target buffer,” in 45th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2018, Los Angeles,
CA, USA, June 1-6, 2018, 2018, pp. 519–532. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00050

[3] S. M. Khan, Y. Tian, and D. A. Jiménez, “Sampling dead block
prediction for last-level caches,” in MICRO, December 2010, pp. 175–
186.

[4] T. Juan, T. Lang, and J. J. Navarro, “Reducing tlb power requirements,”
in Proceedings of 1997 International Symposium on Low Power
Electronics and Design, Aug 1997, pp. 196–201.

[5] I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju, and
G. Chen, “Generating physical addresses directly for saving instruction
tlb energy,” in 35th Annual IEEE/ACM International Symposium on
Microarchitecture, 2002. (MICRO-35). Proceedings., Nov 2002, pp.
185–196.

[6] I. Kadayif, P. Nath, M. Kandemir, and A. Sivasubramaniam, “Compiler-
directed physical address generation for reducing dtlb power,” in IEEE
International Symposium on - ISPASS Performance Analysis of Systems
and Software, 2004, March 2004, pp. 161–168.

[7] D. Fan, Z. Tang, H. Huang, and G. R. Gao, “An energy efficient
tlb design methodology,” in Proceedings of the 2005 International
Symposium on Low Power Electronics and Design, ser. ISLPED ’05.
New York, NY, USA: ACM, 2005, pp. 351–356. [Online]. Available:
http://doi.acm.org/10.1145/1077603.1077688

[8] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating
two-dimensional page walks for virtualized systems,” in Proceedings
of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XIII.
New York, NY, USA: ACM, 2008, pp. 26–35. [Online]. Available:
http://doi.acm.org/10.1145/1346281.1346286

[9] T. W. Barr, A. L. Cox, and S. Rixner, “Translation caching:
Skip, don’t walk (the page table),” SIGARCH Comput. Archit.
News, vol. 38, no. 3, pp. 48–59, June 2010. [Online]. Available:
http://doi.acm.org/10.1145/1816038.1815970

[10] ——, “Spectlb: A mechanism for speculative address translation,”
SIGARCH Comput. Archit. News, vol. 39, no. 3, pp. 307–318, June
2011. [Online]. Available: http://doi.acm.org/10.1145/2024723.2000101

[11] A. Sodani, “Race to exascale: Opportunities and challenges,” in
Keynote at the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, 2011.

[12] Y. Li, R. G. Melhem, and A. K. Jones, “Ps-tlb: Leveraging page
classification information for fast, scalable and efficient translation for
future cmps,” TACO, vol. 9, pp. 28:1–28:21, 2013.

[13] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient memory
virtualization: Reducing dimensionality of nested page walks,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-47. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 178–189. [Online]. Available:
http://dx.doi.org/10.1109/MICRO.2014.37

[14] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee, “Large pages
and lightweight memory management in virtualized environments: Can
you have it both ways?” in Proceedings of the 48th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-48.
New York, NY, USA: ACM, 2015, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/2830772.2830773

[15] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. S. Unsal, “Energy-efficient
address translation,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), March 2016, pp. 631–643.

[16] J. F. Couleur and E. L. Glaser, “Shared-access data processing system,”
November 19 1968, uS Patent 3,412,382.

[17] D. W. Clark and J. S. Emer, “Performance of the vax-11/780
translation buffer: Simulation and measurement,” ACM Trans. Comput.
Syst., vol. 3, no. 1, pp. 31–62, February 1985. [Online]. Available:
http://doi.acm.org/10.1145/214451.214455

[18] S. Kanev, J. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-
Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” in
ISCA ’15 Proceedings of the 42nd Annual International Symposium on
Computer Architecture, 2014, pp. 158–169.

[19] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev,
C. Kozyrakis, T. Krishnamurthy, H. Litz, T. Moseley, and
P. Ranganathan, “Asmdb: Understanding and mitigating front-end
stalls in warehouse-scale computers,” in Proceedings of the 46th
International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: ACM, 2019, pp. 462–473. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322234

[20] A. Sriraman, A. Dhanotia, and T. F. Wenisch, “Softsku: Optimizing
server architectures for microservice diversity @scale,” in Proceedings
of the 46th International Symposium on Computer Architecture, ser.
ISCA ’19. New York, NY, USA: ACM, 2019, pp. 513–526. [Online].
Available: http://doi.acm.org/10.1145/3307650.3322227

[21] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the clouds: A study of emerging scale-out
workloads on modern hardware,” in Proceedings of the Seventeenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVII. New
York, NY, USA: ACM, 2012, pp. 37–48. [Online]. Available:
http://doi.acm.org/10.1145/2150976.2150982

[22] R. Kumar, B. Grot, and V. Nagarajan, “Blasting through the
front-end bottleneck with shotgun,” in Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18. New
York, NY, USA: ACM, 2018, pp. 30–42. [Online]. Available:
http://doi.acm.org/10.1145/3173162.3173178

[23] G. Ayers, J. H. Ahn, C. Kozyrakis, and P. Ranganathan, “Memory
hierarchy for web search,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), Feb 2018, pp.
643–656.

[24] S. Srinivas, U. Pawar, D. Aribuki, C. Manciu, and G. Schulhof,
“Runtime performance optimization blueprint: Intel architecture
optimization with large code pages,” Intel, Tech. Rep. Intel White
Paper, https://software.intel.com/sites/default/files/managed/a0/
0e/RuntimePerformanceOptimizationBlueprint_LargeCodePages.pdf,
2019.

[25] B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[26] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking tlb designs
in virtualized environments: A very large part-of-memory tlb,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 469–
480. [Online]. Available: http://doi.acm.org/10.1145/3079856.3080210

[27] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with
TLB Attacks,” in USENIX Security, August 2018. [Online]. Available:
https://www.vusec.net/download/?t=papers/tlbleed_sec18.pdf

[28] Intel Corporation, “Intel 64 and ia-32 architectures optimization
reference manual,” Intel Corporation, Tech. Rep. Order Number: 248966-
033, 2016.

[29] A. Bhattacharjee, “Translation-triggered prefetching,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: ACM, 2017, pp. 63–76. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037705

[30] Z. Yan, J. Veselý, G. Cox, and A. Bhattacharjee, “Hardware translation
coherence for virtualized systems,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA), June 2017,
pp. 430–443.

[31] A. Bhattacharjee and M. Martonosi, “Inter-core cooperative tlb for chip
multiprocessors,” in Proceedings of the Fifteenth Edition of ASPLOS
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XV. New York, NY, USA: ACM, 2010, pp. 359–
370. [Online]. Available: http://doi.acm.org/10.1145/1736020.1736060

[32] G. Cox and A. Bhattacharjee, “Efficient address translation for
architectures with multiple page sizes,” in Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’17.
New York, NY, USA: ACM, 2017, pp. 435–448. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037704

[33] A. Bhattacharjee, “Large-reach memory management unit caches,”
in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-46. New York,
NY, USA: ACM, 2013, pp. 383–394. [Online]. Available: http:
//doi.acm.org/10.1145/2540708.2540741

[34] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-
level tlbs for chip multiprocessors,” in Proceedings of the
2011 IEEE 17th International Symposium on High Performance
Computer Architecture, ser. HPCA ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 62–63. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2014698.2014896

[35] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S.
McKinley, M. Nemirovsky, M. M. Swift, and O. Ünsal, “Redundant
memory mappings for fast access to large memories,” SIGARCH
Comput. Archit. News, vol. 43, no. 3, pp. 66–78, June 2015. [Online].
Available: http://doi.acm.org/10.1145/2872887.2749471

[36] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” SIGARCH Comput. Archit.
News, vol. 41, no. 3, pp. 237–248, June 2013. [Online]. Available:
http://doi.acm.org/10.1145/2508148.2485943

[37] M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos, “Prediction-
based superpage-friendly tlb designs,” in 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), Feb
2015, pp. 210–222.

[38] J. Peng, G.-Y. Lueh, G. Wu, X. Gou, and R. Rakvic, “A comprehensive
study of hardware/software approaches to improve tlb performance
for java applications on embedded systems,” in Proceedings of the
2006 Workshop on Memory System Performance and Correctness, ser.
MSPC ’06. New York, NY, USA: ACM, 2006, pp. 102–111. [Online].
Available: http://doi.acm.org/10.1145/1178597.1178614

[39] M. Talluri, S. Kong, M. D. Hill, and D. A. Patterson, “Tradeoffs in
supporting two page sizes,” in Proceedings the 19th Annual International
Symposium on Computer Architecture, May 1992, pp. 415–424.

[40] M. Talluri and M. D. Hill, “Surpassing the tlb performance of
superpages with less operating system support,” in Proceedings
of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS VI.
New York, NY, USA: ACM, 1994, pp. 171–182. [Online]. Available:
http://doi.acm.org/10.1145/195473.195531

[41] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, transparent
operating system support for superpages,” in Proceedings of the 5th
Symposium on Operating Systems Design and implementationCopyright
Restrictions Prevent ACM from Being Able to Make the PDFs for This
Conference Available for Downloading, ser. OSDI ’02. Berkeley, CA,
USA: USENIX Association, 2002, pp. 89–104. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1060289.1060299

[42] N. Ganapathy and C. Schimmel, “General purpose operating system
support for multiple page sizes,” in Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ser. ATEC ’98.
Berkeley, CA, USA: USENIX Association, 1998, pp. 8–8. [Online].
Available: http://dl.acm.org/citation.cfm?id=1268256.1268264

[43] M. Swanson, L. Stoller, and J. Carter, “Increasing tlb reach using
superpages backed by shadow memory,” in Proceedings. 25th Annual In-
ternational Symposium on Computer Architecture (Cat. No.98CB36235),
July 1998, pp. 204–213.

[44] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-based
tlb preloading,” in Proceedings of the 27th Annual International
Symposium on Computer Architecture, ser. ISCA ’00. New
York, NY, USA: ACM, 2000, pp. 117–127. [Online]. Available:
http://doi.acm.org/10.1145/339647.339666

[45] G. B. Kandiraju and A. Sivasubramaniam, “Going the distance for tlb
prefetching: an application-driven study,” in Proceedings 29th Annual
International Symposium on Computer Architecture, May 2002, pp.
195–206.

[46] A. Bhattacharjee and M. Martonosi, “Characterizing the tlb behavior
of emerging parallel workloads on chip multiprocessors,” in 2009 18th
International Conference on Parallel Architectures and Compilation
Techniques, Sept 2009, pp. 29–40.

[47] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache replacement
based on reuse-distance prediction,” in In Proceedings of the 25th
International Conference on Computer Design (ICCD-2007), 2007, pp.
245–250.

[48] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, J. Simon C. Steely,
and J. Emer, “SHiP: Signature-based hit predictor for high performance
caching,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-44. New York, NY,
USA: ACM, 2011, pp. 430–441.

[49] E. Teran, Z. Wang, and D. A. Jiménez, “Perceptron learning for
reuse prediction,” in The 49th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-49. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 2:1–2:12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3195638.3195641

[50] S. Bharadwaj, G. Cox, T. Krishna, and A. Bhattacharjee, “Scalable
distributed last-level tlbs using low-latency interconnects,” in Proceed-
ings of the 51st International Symposium on Microarchitecture, ser.
MICRO-51. New York, NY, USA: ACM, 2018.

[51] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing tlb
reach by exploiting clustering in page translations,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture
(HPCA), Feb 2014, pp. 558–567.

[52] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt: Coa-
lesced large-reach tlbs,” in Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture, Dec 2012, pp. 258–269.

[53] M. Parasar, A. Bhattacharjee, and T. Krishna, “Seesaw: Using
superpages to improve vipt caches,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), vol. 00,
Jun 2018, pp. 193–206. [Online]. Available: doi.ieeecomputersociety.
org/10.1109/ISCA.2018.00026

[54] A. Bhattacharjee and D. Lustig, Architectural and Operating System
Support for Virtual Memory, ser. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2017. [Online].
Available: https://doi.org/10.2200/S00795ED1V01Y201708CAC042

[55] A. chow Lai, C. Fide, and B. Falsafi, “Dead-block prediction and
dead-block correlating prefetchers,” in In Proceedings of the 28th
International Symposium on Computer Architecture, 2001, pp. 144–
154.

[56] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new
approach for eliminating dead blocks and increasing cache efficiency,” in
In Proceedings of the 41st Annual IEEE/ACM International Symposium
on Microarchitecture, 2008, pp. 222–232.

[57] A. Jain and C. Lin, “Back to the future: Leveraging belady’s algorithm
for improved cache replacement,” in Proceedings of the 43rd ACM/IEEE
International Symposium on Computer Architecture, ser. ISCA ’16, 2016,
pp. 78–89.

[58] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,”
in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 ’17. New
York, NY, USA: ACM, 2017, pp. 436–448. [Online]. Available:
http://doi.acm.org/10.1145/3123939.3123942

[59] S. McFarling, “Combining branch predictors,” Digital Western Research
Laboratory, Tech. Rep. TN-36m, June 1993.

[60] D. A. Jiménez and E. Teran, “Multiperspective reuse prediction,” 2017
50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 436–448, 2017.

[61] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to
the cache replacement problem,” in Proceedings of the 52Nd Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’52. New York, NY, USA: ACM, 2019, pp. 413–425. [Online].
Available: http://doi.acm.org/10.1145/3352460.3358319

[62] B. Widrow and M. Hoff Jr., “Adaptive switching circuits,” in IRE
WESCON Convention Record, part 4, 1960, pp. 96–104.

[63] B. Widrow and M. Lehr, “30 years of adaptive neural networks:
Perceptron, MADALINE, and backpropagation,” Proceedings of IEEE,
vol. 78, no. 9, pp. 1415–1442, September 1990.

[64] The 1st Championship Value Prediction Competition (CVP-1),
http://www.microarch.org/cvp1. International Symposium on Computer
Architecture, June 2018.

[65] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient
backprop,” in Neural networks: Tricks of the trade. Springer, 2012,
pp. 9–48.

[66] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent.”

[67] D. Tarjan and K. Skadron, “Merging path and gshare indexing in
perceptron branch prediction,” ACM Trans. Archit. Code Optim.,
vol. 2, no. 3, pp. 280–300, September 2005. [Online]. Available:
http://doi.acm.org/10.1145/1089008.1089011

[68] L. A. Bélády, “A Study of Replacement Algorithms for a Virtual-storage
Computer,” IBM Systems Journal, vol. 5, no. 2, pp. 78–101, 1966.

[69] S. Albers and S. Arora, “Page replacement for general caching problems.”
Citeseer.

[70] N. E. Young, “On-line file caching,” Algorithmica, vol. 33, no. 3, pp.
371–383, 2002.

[71] M. Chrobak, G. J. Woeginger, K. Makino, and H. Xu, “Caching is
hard—even in the fault model,” Algorithmica, vol. 63, no. 4, pp. 781–
794, 2012.

[72] D. S. Berger, N. Beckmann, and M. Harchol-Balter, “Practical bounds
on optimal caching with variable object sizes,” Proceedings of the ACM
on Measurement and Analysis of Computing Systems, vol. 2, no. 2, pp.
1–38, 2018.

[73] D. Burger, J. R. Goodman, and A. Kagi, “The declining effectiveness
of dynamic caching for general-purpose microprocessors,” Technical
Report 1261, 1995.

[74] A. Seznec, “Storage free confidence estimation for the tage branch
predictor,” in High Performance Computer Architecture (HPCA), 2011
IEEE 17th International Symposium on, feb. 2011, pp. 443–454.

[75] D. A. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,”
in Proceedings of the 7th International Symposium on High Performance
Computer Architecture (HPCA-7), January 2001, pp. 197–206.

[76] N. Soundararajan, S. Gupta, R. Natarajan, J. Stark, R. Pal,
F. Sala, L. Rappoport, A. Yoaz, and S. Subramoney, “Towards
the adoption of local branch predictors in modern out-of-order
superscalar processors,” in Proceedings of the 52Nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’52. New
York, NY, USA: ACM, 2019, pp. 519–530. [Online]. Available:
http://doi.acm.org/10.1145/3352460.3358315

[77] M. Kharbutli and Y. Solihin, “Counter-based cache replacement and
bypassing algorithms,” IEEE Transactions on Computers, vol. 57, no. 4,
pp. 433–447, 2008.

[78] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A
new approach for eliminating dead blocks and increasing cache
efficiency,” in Proceedings of the IEEE/ACM International Symposium
on Microarchitecture. Los Alamitos, CA, USA: IEEE Computer
Society, 2008, pp. 222–233.

[79] S. M. Khan, D. A. Jiménez, D. Burger, and B. Falsafi, “Using dead
blocks as a virtual victim cache,” in Proceedings of the 4th Workshop
on Chip Multiprocessor Memory Systems and Interconnects (CMP-MSI),
January 2010.

[80] Z. Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the memory
system: predicting and optimizing memory behavior,” SIGARCH
Comput. Archit. News, vol. 30, no. 2, pp. 209–220, 2002.

[81] C.-H. Chi and H. Dietz, “Improving cache performance by selective
cache bypass,” in System Sciences, 1989. Vol. I: Architecture Track, Pro-
ceedings of the Twenty-Second Annual Hawaii International Conference
on, vol. 1. IEEE, 1989, pp. 277–285.

[82] Y. Wu, R. Rakvic, L.-L. Chen, C.-C. Miao, G. Chrysos, and J. Fang,
“Compiler managed micro-cache bypassing for high performance epic
processors,” in Microarchitecture, 2002.(MICRO-35). Proceedings. 35th
Annual IEEE/ACM International Symposium on. IEEE, 2002, pp.
134–145.

[83] T. L. Johnson, D. A. Connors, M. C. Merten, and W.-M. Hwu, “Run-
time cache bypassing,” IEEE Transactions on Computers, vol. 48, no. 12,
pp. 1338–1354, 1999.

[84] E. S. Tam, J. A. Rivers, V. Srinivasan, G. S. Tyson, and E. S. Davidson,
“Active management of data caches by exploiting reuse information,”
IEEE Transactions on Computers, vol. 48, no. 11, pp. 1244–1259, 1999.

[85] T. L. Johnson and W.-M. W. Hwu, “Run-time adaptive cache hierarchy
management via reference analysis,” in ACM SIGARCH Computer
Architecture News, vol. 25, no. 2. ACM, 1997, pp. 315–326.

[86] J. A. Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson, and M. Farrens,
“Utilizing reuse information in data cache management,” in Proceedings
of the 12th international conference on Supercomputing. ACM, 1998,
pp. 449–456.

[87] J. A. Rivers and E. S. Davidson, “Reducing conflicts in direct-mapped
caches with a temporality-based design,” in Parallel Processing, 1996.
Vol. 3. Software., Proceedings of the 1996 International Conference on,
vol. 1. IEEE, 1996, pp. 154–163.

[88] V. Milutinovic, B. Markovic, M. Tomasevic, and M. Tremblay, “The
split temporal/spatial cache: initial performance analysis,” in Proc. of
the SCIzzL-5, Santa Clara, CA, USA, 1996, pp. 72–78.

[89] A. González, C. Aliagas, and M. Valero, “A data cache with multiple
caching strategies tuned to different types of locality,” in ACM
International Conference on Supercomputing 25th Anniversary Volume.
ACM, 2014, pp. 217–226.

[90] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “A modified
approach to data cache management,” in Proceedings of the 28th annual
international symposium on Microarchitecture. IEEE Computer Society
Press, 1995, pp. 93–103.

[91] L. Li, I. Kadayif, Y.-F. Tsai, N. Vijaykrishnan, M. Kandemir, M. J.
Irwin, and A. Sivasubramaniam, “Leakage energy management in cache
hierarchies,” in Parallel Architectures and Compilation Techniques,
2002. Proceedings. 2002 International Conference on. IEEE, 2002,
pp. 131–140.

[92] H. Dybdahl and P. Stenström, “Enhancing last-level cache performance
by block bypassing and early miss determination,” in Asia-Pacific
Conference on Advances in Computer Systems Architecture. Springer,
2006, pp. 52–66.

[93] J. Jalminger and P. Stenstrom, “A novel approach to cache block
reuse predictions,” in Parallel Processing, 2003. Proceedings. 2003
International Conference on. IEEE, 2003, pp. 294–302.

[94] J. Abella, A. González, X. Vera, and M. F. O’Boyle, “Iatac: a smart
predictor to turn-off l2 cache lines,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 2, no. 1, pp. 55–77, 2005.

[95] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting
generational behavior to reduce cache leakage power,” in Proceedings of
the International Symposium on Computer Architecture. Los Alamitos,
CA, USA: IEEE Computer Society, 2001, p. 240.

[96] A.-C. Lai and B. Falsafi, “Selective, accurate, and timely self-
invalidation using last-touch prediction,” in International Symposium
on Computer Architecture, 2000, pp. 139 – 148.

[97] A. R. Lebeck and D. A. Wood, “Dynamic self-invalidation: Reducing
coherence overhead in shared-memory multiprocessors,” in ACM
SIGARCH Computer Architecture News, vol. 23, no. 2. ACM, 1995,
pp. 48–59.

[98] S. Somogyi, T. F. Wenisch, N. Hardavellas, J. Kim, A. Ailamaki,
and B. Falsafi, “Memory coherence activity prediction in commercial
workloads,” in WMPI ’04: Proceedings of the 3rd workshop on Memory
performance issues. New York, NY, USA: ACM, 2004, pp. 37–45.

[99] Z. Fang, L. Zhang, J. B. Carter, W. C. Hsieh, and S. A.
McKee, “Reevaluating online superpage promotion with hardware
support,” in Proceedings of the 7th International Symposium on
High-Performance Computer Architecture, ser. HPCA ’01. Washington,
DC, USA: IEEE Computer Society, 2001, pp. 63–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=580550.876428

[100] Characterizing the d-TLB Behavior of SPEC CPU2000 Benchmarks,
ser. SIGMETRICS ’02. New York, NY, USA: ACM, 2002. [Online].
Available: http://doi.acm.org/10.1145/511334.511351

[101] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. N. Bershad,
“Reducing tlb and memory overhead using online superpage
promotion,” in Proceedings of the 22Nd Annual International
Symposium on Computer Architecture, ser. ISCA ’95. New
York, NY, USA: ACM, 1995, pp. 176–187. [Online]. Available:
http://doi.acm.org/10.1145/223982.224419

[102] “"transparent huge pages in 2.6.38",” http://lwn.net/Articles/423584/,
January 2011.

[103] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid tlb coalescing:
Improving tlb translation coverage under diverse fragmented memory
allocations,” in 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), June 2017, pp. 444–456.

[104] S. Srikantaiah and M. Kandemir, “Synergistic tlbs for high performance
address translation in chip multiprocessors,” in 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, Dec 2010,
pp. 313–324.

