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Perceptual grouping is the process of identifying the constituents in the visual scene that
together form a coherent object. The goal of this thesis is to understand the neural mechanisms of
perceptual grouping. The hypotheses are that (1) perceptual grouping is carried out through syn-
chronized firing of neurons representing the same object, and that (2) self-organized lateral con-
nections encoding statistical regularities of the visual environment mediate such a synchronization.
A self-organizing neural network of spiking neurons was developed to test these hypotheses in the
perceptual grouping task of contour integration. The network self-organized orientation maps and
patchy lateral connections similar to those found in the visual cortex, and the contour integration,
segmentation, and completion performance measured by the degree of synchrony in neural popu-
lations accurately predicted human performance. Such results suggest that synchronized activity
can represent perceptual events, and statistical properties of the input can shape the structure of the
cortex and the perceptual performance. By providing a computational framework where percep-
tual performance and neural structure can be compared, the model helps us understand the neural
mechanisms of perceptual grouping.
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Chapter 1

Introduction

The goal of this thesis is to understand the neural mechanisms of perceptual grouping through
computational modeling of the visual cortex. Perceptual grouping can happen at many levels,
and to establish a solid link between perceptual events and neural mechanisms, it is necessary to
define the model at an appropriate level. Low-level phenomena such as contour integration are
well-suited for this purpose because the necessary anatomical and neurophysiological data is well
established. In this chapter, the problem of perceptual grouping in general and contour integration
in particular are introduced. Psychophysical results are reviewed, and possible neural mechanisms
will be outlined. Based on these facts, I will motivate the approach and conclude with an overview
of the the dissertation.

1.1 The Perceptual Grouping Task

Perceptual grouping is the process of identifying the constituents in the visual scene that together
form a coherent object. Examples of perceptual grouping are shown in figure 1.1. The complexity
of such tasks varies widely, and they can take place at various levels of the visual processing
hierarchy. The human visual system employs a large number of grouping rules at multiple levels,
based on spatial, temporal, and chromatic relationships (Geisler and Super 2000). Understanding
the neural mechanisms of perceptual grouping of such a broad range is a daunting task, but by
focusing our attention on the low-level phenomena first, it may be possible to make progress. At
that level, we have a large body of rich neurophysiological data that correspond to equally rich
psychophysical data that can be used to constrain, validate, and test the models.

For this reason, in this thesis, I will focus on the low-level perceptual grouping task of
contour integration. The next section defines the task, explains why it is important and appropriate
for the current study, and reviews the known psychophysical results.

1



(a) Proximity (b) Good Continuation (c) World Knowledge

Figure 1.1:The Examples of Perceptual Grouping. Perceptual grouping is the process of identifying
constituents in the visual scene that together form a coherent object. Perceptual grouping can take place at
many different levels, from the very low level (a), to the very high level (c). (a) Grouping by proximity. We
tend to group the two black disks that are close to each other to form a unit. Thus we perceive two groups,
one on the left and one on the right. (b) Grouping by good continuation. In the random background of
oriented edges (or contour elements), we can easily notice the long, straight series of contour elements that
runs from the mid-left of the frame to the bottom right corner. The task is known ascontour integration.
(c) Grouping requiring world knowledge. In this seemingly unintelligible image lurks a Dalmatian dog
sniffing on the pavement (a photo by R. C. James; the dog is in the top right the image, facing left). Without
knowledge of the world, especially that of the dog, it would be impossible to group together the dots that
form the Dalmatian.

1.2 Special Case: Contour Integration

A typical visual input for the contour integration task is shown in figure 1.1b. The input consists
of a series of short oriented edge segments (orcontour elements) aligned along a continuous path,
embedded in a background of randomly oriented contour elements. The task is to identify the
longest continuous contour in this scene. Contour integration is an interesting problem because
the relationships between constituents of the image are neither too simple (as in figure 1.1a where
the distance between the centers of the disks is the only grouping criteria), nor too complex (as in
figure 1.1c where complex world knowledge is required). Most importantly, contour integration
is believed to occur relatively early in the visual system. The response properties and connection
patterns found in the primary visual cortex seem to have exactly the right properties for explaining
contour integration performance in terms of neural mechanisms.

Psychophysical experiments (Field et al. 1993a; Pettet et al. 1998; Geisler et al. 1999, 2001;
McIlhagga and Mullen 1996) and computational theories and models (Geisler et al. 1999, 2001; Li
1998; Yen and Finkel 1997, 1998) suggest that there exists a highly specific pattern of interactions
among the contour elements. Such interactions allow contour elements in certain orientation and
position configurations to be more visible than in others.

2



(b)

(a)

Figure 1.2:Association Fields for Contour Integration. The interaction patterns postulated by Field
et al. (1993a) are shown. The circular disks with black and white oriented bars represent Gabor wavelets,
which is the typical contour element used in the study of Field et al. (a) The contour element in the center
interacts with the elements on smooth curves radiating out from the center. This plot shows thespatial
positionswhere another contour element can appear relative to the orientation of the reference contour
element in the center. (b) Specific rules of alignment. Theorientationsof contour elements are as important
as their positions in determining if any two contour elements should enhance each other. The orientation
has to be parallel (or collinear) to the smooth contour. The solid lines are where integration occurs, and the
dashed lines are where it does not. Adapted from Field et al. (1993a).

Field et al. (1993a) conducted a series of experiments where each subject was told to find a
contour of similarly-oriented Gabor patterns embedded among randomly-oriented Gabor patterns.
Several factors affected the performance of the subjects. One important factor was the relative ori-
entation of successive contour elements (ororientation jitter) along the longest contour (the path).
When the orientation of successive contour elements differed more, the performance degraded.
There were other factors such as inter-element distance and difference in phase of the successive
Gabor patterns, but the most important factor was relative orientation along the path.

Based upon these results, Field et al. suggested that local interactions between contour ele-
ments follow specific rules and form the basis for contour integration in humans. In other words,
these constraints form a localassociation fieldthat governs how differently-oriented contour ele-
ments should interact to form a coherent group (figure 1.2). An association field can be described
with two rules: (1) contour elements positioned on a smooth path (figure 1.2a), and (2) contour el-

3



ements aligned parallel (or collinearly) along the path (figure 1.2b) are more likely to be perceived
as belonging to the same contour.

Pettet et al. (1998) further confirmed that lateral interactions between neighboring contour
elements follow well-defined constraints similar to those suggested by Field et al. They extended
the work by Field et al. and compared the performance of human subjects to their computational
model based on fixed lateral interaction constraints similar to the association field. The perfor-
mance of the model matched psychophysical data very well. In particular, it was consistent with
earlier results with closed vs. open-ended contours by Kovacs and Julesz (1993) in that closed
contours were easier to detect than open-ended contours. They reasoned that the lack of lateral
interaction between the two ends of the open-ended contour degraded the perceptibility of the
contour, while reverberating lateral interaction along the closed loop enhanced its perceptibility.

Geisler et al. (1999, 2001) took a different approach in identifying the conditions that gov-
ern contour integration (orlocal grouping function, according to the authors). Instead of propos-
ing lateral interaction rules by observing human performance, they extracted the rules from edge
co-occurrence statistics measured in natural images (see Chapter 6, figures 6.4 and 6.5b). Edge-
detected natural images were decomposed into outline figures, consisting of short oriented edges.
The co-occurrence probability of each pair of edges belonging to the same physical contour in nat-
ural images was then calculated. A striking discovery was that such edge co-occurrence statistics
in fact are very similar to the lateral interaction rules proposed earlier by Field et al. and Pettet et
al. Furthermore, Geisler et al. devised a method of extracting contours using these co-occurrence
statistics. They definedgrouping criterion, where two edges were grouped together if the probabil-
ity of the edges occurring in the given configuration exceeds the binding criterion� (a threshold).
They then applied thetransitive grouping rule, where edgesa andc are grouped together ifa and
b can be grouped together andb andc can be grouped together. Geisler et al. showed that together,
these grouping rules accurately predict human performance.

Thus, Geisler et al. showed that the statistical structure in the environment closely cor-
responds to human perceptual grouping rules. Sigman et al. (2001) also reported similar edge
co-occurrence statistics, but they did not apply their results in predicting human performance.
However, since the results are similar, the statistics gathered in the work of Sigman et al. can
predict human performance if used in the same manner as Geisler et al did.

The above psychophysical results suggest that lateral interaction between neurons repre-
senting contour elements is crucial for contour integration in humans, and that the interaction
patterns are highly specific (i.e. constitute a smooth path). If that is true, then what is the neural
mechanism of such lateral interactions? In the next section, the possible answers will be briefly
reviewed.
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1.3 Neural Mechanisms of Perceptual Grouping

One major question in perceptual grouping is how coherent percepts are represented in the cortex.
The task consists of two parts:bindingis the process of grouping together separate constituent rep-
resentations in the visual scene into a coherent object, andsegmentationis the process of segregat-
ing such coherently bound representations into different objects. von der Malsburg and Schneider
(1986) showed that with static activity, it is hard to dynamically represent binding and segmenta-
tion in a constantly changing sensory environment. They proposed thattemporal codingthrough
synchronization, spike timing, phase differences, and other temporal information, could solve the
problem. Indeed, experiments with cats have shown that presentation of coherent objects gives
rise to synchronized firing of neurons in the visual cortex, and presenting separate object causes no
synchronization (Eckhorn et al. 1988; Gray and Singer 1987; Gray et al. 1989; Singer 1993). Such
a coherent firing of neurons may be a possible representation for grouping.

Experiments with cats, monkeys, ferrets and tree shrews have shown that the visual cortex
has an orderly structure where stimulus dimensions such as position(retinotopy), orientation (Blas-
del and Salama 1986; Blasdel 1992a,b; Bosking et al. 1997; Grinvald et al. 1994; Sincich and Blas-
del 2001; Ts’o et al. 1990; Weliky et al. 1995), spatial frequency (Issa et al. 2001), ocularity (Blas-
del 1992a; Crowley and Katz 2000; L¨owel 1994), and direction (Weliky et al. 1996; Shmuel and
Grinvald 1996), are represented in a continuously-changing fashion. Another important feature
of the visual cortex is that long-range lateral connections and they project to areas with similar
sensory tuning, such as similar orientation preference (Bosking et al. 1997; Dalva and Katz 1994;
Gilbert 1992; Katz and Callaway 1992; L¨owel and Singer 1992; McGuire et al. 1991; Weliky et al.
1995). Such specific patterns of connectivity suggest that the lateral connections are the anatomical
basis of lateral interaction for perceptual grouping tasks such as contour integration.

The second important question then is, how do these specific connections and sensory maps
come about? Strong evidence suggests that these structures are self-organized, driven by external
input (Hirsch and Spinelli 1970; Blakemore and Cooper 1970; Blakemore and van Sluyters 1975;
Hubel and Wiesel 1962; Hubel et al. 1977; Hubel and Wiesel 1974; White et al. 2000, 2001). Even
though there is a genetic component as well, the input environment plays a critical role: changing
the environment changes the final structure that emerges in the cortex.

Computational models have primarily been developed to account for (1) synchronization in
a connected network of spiking neurons (reviewed in section 2.1) (2) self-organization of cortical
structures (section 2.2), and (3) perceptual grouping in neural networks (section 2.3). However,
each of the components were modeled separately, and their interaction was not taken into account.

In this thesis, I intend to bring these important components together into an integrated
computational model of the visual cortex. It is expected to account for the neural basis of contour
integration in particular, and provide insights into perceptual grouping in general.
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1.4 Approach

Motivated by the results reviewed above, I developed a model of the visual cortex called PGLIS-
SOM ( Perceptual Grouping Laterally Interconnected Synergetically Self-Organizing Maps; 2000).
The model is based on the following two hypotheses: (1)synchronized neural activityrepresents
perceptual grouping, and (2)self-organized lateral connectionsmediate the synchrony.

In the PGLISSOM model, three important components of the visual perceptual phenom-
ena are integrated into a coherent computational framework: (1) statistical structure in the vi-
sual environment (2) structure of the visual cortex, and (3) functional performance of the visual
cortex. Close interrelationships between these components are revealed by a series of computa-
tional experiments. The model demonstrates that visual input shapes the structure of the visual
cortex through the input-driven self-organization and the structure determines performance in psy-
chophysical tasks measured as the degree of synchrony among neural populations. The model
therefore provides a computational account of the possible neural mechanisms of contour integra-
tion.

1.5 Outline of the Dissertation

This dissertation is organized into four parts: Introduction and Background (Chapters 1and2),
Model (Chapter 3), Results (Chapters 4 through8), and Discussion, Future Work, and Conclu-
sion (Chapters 9through11).

In Chapter 2, I will review the functional and structural organization of the visual cortex
that forms the neural basis for perceptual grouping. Previous computational models of contour
integration are also surveyed.

In Chapter 3, I will formally define the PGLISSOM model and describe the details of its
architecture.

In Chapter 4, I will analyze the synchronization and desynchronization properties of a
network of spiking neurons through computational simulations, and identify crucial parameters
that determine the overall behavior of the model.

In Chapter 5, the self-organized afferent and lateral connections of the PGLISSOM model
are described and the properties of these connections are analyzed. Through self-organization, an
orientation map highly similar to those found in experiments emerges.

Focusing on the self-organized structure, inChapter 6, I will test the contour integra-
tion and contour segmentation performance on inputs with varying degrees of orientation jitter.
The contour integration performance is shown to be consistent with psychophysical data. Lat-
eral connection statistics are gathered to show the relationship between anatomy and perceptual
performance.

In Chapter 7, I will test the effect of changes in the input distribution on the structure and
performance of the model, and find out the possible cause of hemifield differences in visual per-
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ceptual performance. The results suggest that differences in the input distribution cause the cortex
to self-organize differently, and the structural divergence in turn causes perceptual performance to
differ.

In Chapter 8, the patchy long-range lateral connections that develop in the PGLISSOM
model are shown to assist in contour completion, a basic task that may be the foundation for a
number of illusory contour percepts. The conditions under which contour completion occurs are
systematically tested.

In Chapter 9 the role and extent of temporal coding, how to interpret the temporal firing
patterns, implications of the PGLISSOM architecture in understanding the laminar layer struc-
ture in the visual cortex, and the possible role of higher-level influence on lower level percep-
tion are discussed. Finally, predictions made by PGLISSOM on the role of synchronization and
self-organization in perceptual grouping and specific experiments to verify these predictions are
presented.

In Chapter 10, the most promising future directions of this research in psychophysics,
neuroscience, computational sciences, and artificial vision are discussed.

Chapter 11summarizes and evaluates the contributions of the thesis.
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Chapter 2

Background

In this chapter, the anatomy and physiology of the visual system that forms the neural basis for
perceptual grouping will be reviewed, and previous work on modeling the neural mechanisms
of perceptual grouping phenomena will be discussed. First, possible neural representations of
perceptual grouping will be described. Next, anatomical structures found in the visual cortex will
be overviewed, and experimental results suggesting how these structures come to exist will be
outlined. I will also describe how these structures can contribute to perceptual grouping. A review
of previous work on perceptual grouping based on these observations concludes the chapter.

2.1 Temporal Coding

Neural representations employing temporal information such as spike timing, synchrony in spikes
or population activities, and spiking events locked to background oscillations are generally known
astemporal coding. An important question in research into the neural mechanisms of binding and
segmentation for perceptual grouping is how such grouping relations are represented in the cortex.
In this section, the possibility of representing grouping through temporal coding and experimental
evidence for it will be described. Next, computational models derived from these observations will
be described and compared.

2.1.1 Why Temporal Coding?

Traditional neural network theories hypothesized that the level of activation, or the firing rate
of neurons, forms the representation for perceptual events. However, von der Malsburg (1981)
pointed out that such static representations suffer fromsuperposition catastrophe(figure 2.1). This
problem arises when distributed neural representations of two (or more) separate objects are over-
lapped. In such a case, it is no longer clear which neuron represents which object (figure 2.1a).
In contrast, if the representations for the individual objects are interleaved in time, binding and
segmentation can occur naturally through temporal coding (figure 2.1b). von der Malsburg et al.
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Figure 2.1:Superposition Catastrophe and its Solution. If firing rates of neurons alone are used to
represent objects, multiple objects in the scene can cause a confusion. In (a), a square and a triangle is
presented in the retina, and the neurons representing the two objects are identified and colored the same.
When both populations of neurons are active, it is impossible to know which neuron is representing which
object. This problem is known as thesuperposition catastrophe(von der Malsburg 1981; von der Malsburg
and Schneider 1986). One solution is temporal coding, where temporal information is used to separate the
two populations. Neurons representing one object activate at one time step, and neurons representing the
other object activate at another time step, as shown in (b).

hypothesized that binding and segmentation are achieved in a similar manner through synchro-
nized and desynchronized firing of neurons through time (von der Malsburg and Schneider 1986;
von der Malsburg 1987). In the following, experimental evidence and related work on such tem-
poral representation of grouping will be presented.

2.1.2 Experimental Evidence for Temporal Coding

To test whether such temporal representations are used in the visual system to represent perceptual
grouping events, two approaches can be taken. One way is to present inputs to the visual system
and measure the temporal properties of neural activation in the cortex. The other is to alter the
temporal properties in the input and measure the effect on perceptual performance.

Experimental results showed that coherent oscillations (synchronized high-frequency waves
near the 40Hz-band) arise within populations of neurons and the activity between two popula-
tions with similar properties such as the same orientation preference is synchronized when stim-
ulated with an input (Eckhorn et al. 1988; Gray and Singer 1987; Gray et al. 1989; Singer 1993).
The most convincing evidence was found when electrical recordings were made on two sites in
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Figure 2.2: Synchronization Signaling Global Stimulus Configuration. (a) A single bar moving
across two receptive fields results in strong synchronization between the two neuronal populations with
these receptive fields. (b) Two separate bars moving in opposite directions results in no synchronization. (c)
Two separate bars moving in the same direction results in weak synchronization. (Adapted from Gray et al.
1989).

the cat visual cortex with non-overlapping receptive fields while moving light bar(s) were swept
across these receptive fields (figure 2.2). When a single long bar was used as the input, the two
populations representing distant sections of the long bar fired synchronously. However, when two
short bars were swept in the same location as before in the opposite direction of each other, the
firing of the two populations was no longer synchronized. Interestingly, when two separate short
bars were swept in the same direction, the two populations showed a weak but synchronized activ-
ity (Gray et al. 1989; Engel et al. 1991a,b; Singer 1993). These results suggest that synchronized
firing of distant populations of neurons may represent the percept of a single coherent object, and
desynchronized firing that of separate objects.

Another piece of evidence for synchronization in perception was obtained by manipulat-
ing the temporal properties in the visual input. Usher and Donnelly (1998) hypothesized that if
neuronal synchrony plays a major role in binding, altering the timing properties of objects in the
visual input stream relative to the background would result in differences in perceived grouping
of the objects. They presented inputs where the object to be detected and the background were
either flashed in synchrony (both object and background blink at the same time) or flashed asyn-
chronously (object and background blink at different phase) over a period of time. The time-scale
of the flashing was made shorter than the integration time of the visual system so that such flashing
could not be consciously perceived. Given such input, the subjects were asked to identify where
the object appeared among one of four areas in the background. They found that the percentage of
correct responses was consistently higher when the object and background wereasynchronously
flashing. They also found that the percentage of correct responses increased as the phase differ-
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ence between the flashing of object and background was increased. The explanation was that the
timing of the inputs caused the temporal properties of neuronal firing to change and in turn caused
the detection performance to differ. Flashing the object and background at different times would
cause a slight phase shift between the neurons representing the object and background, and such
a shift helped distinguish the object from the background. Increasing the interval between the
flashes would cause the phase shift to become larger, therefore allowing better separation of neural
representations of the object and the background. Similar results have been reported by Fahle,
Leonards, and Singer (Fahle 1993; Leonards et al. 1996; Leonards and Singer 1998) and Lee and
Blake (1999).

Motivated by these results, several neural network models with temporal dynamics have
been developed. Next, the major categories of such computational models will be overviewed.

2.1.3 Modes of Synchronization for Temporal Coding

There are two ways in which synchrony can occur: (1) synchronized (i.e. simultaneous) firing of
individual neurons, and (2) synchronized oscillations of population activity (i.e. number of neu-
rons in the population firing per unit time). Population oscillations are more general and include
synchronized firing as a special case. They are also more biologically plausible for several reasons.
Due to the stochastic nature of neuronal firing, it seems unlikely that individual neurons could syn-
chronize their actual firing events. However, they could fire within a short time window so that
the spikes are approximately aligned, and the whole group could exhibit synchrony (Lisman 1998;
Menon 1990). Theoretical results also suggest that the oscillations found in the cortex result from
a collective behavior of neurons (Wilson and Cowan 1972). Such population oscillations should be
more robust and tolerant of random fluctuations (Menon 1990). For example, Eckhorn et al. (1988)
discovered that synchrony in individual neurons is hard to find even when the multi-unit activity
(MUA) and local field potential shows coherent oscillation, suggesting that population oscillation
is the major mode of operation for binding of percepts. There is also indirect experimental evi-
dence to support this hypothesis. When two almost simultaneous clicks are presented to a subject,
they are initially heard as a single click, but as the interval between the two clicks increases, the
subject starts hearing two clicks instead of one. Interestingly, this transition from one click to two
clicks occurs exactly at the frequency of population oscillations (Joliot et al. 1994), suggesting
that neuronal firing events within a single cycle of population oscillation are bound together even
though the exact timing does not match, whereas the firings that occur in different cycles are per-
ceived as separate. For these reasons, most of the synchronizing models, including the model in
this thesis, adopt the definition of synchrony in terms of population oscillations rather than that of
individual neurons.
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2.1.4 Computational Models of Temporal Coding

Biological neurons consist of (1) dendrites where contact with the input neurons (or pre-synaptic
neurons) are made, (2) the cell body (or soma) where the integration of incoming currents is carried
out, (3) the axon hillock where the accumulated charge triggers a spike, and (4) the axon that
transmits the generated spike to other neurons (Kandel et al. 1991). A neuron is a cell enclosed in
a fatty (or lipid) membrane with various ion channels that conduct electric current into and out of
the cell body. The voltage across the membrane (membrane potential) changes as these ions come
in and go out of the neuron through the ion channel, and it is this voltage that determines whether
the neuron generates a spike or not. Such dynamic change in state over time together with the
generation of spikes gives the neuron rich temporal dynamics.

Several computational models have been developed based on such temporal dynamics.
There are two major classes distinguishable by how the dynamics are formulated; (1) coupled
oscillators and (2) integrate and fire neurons. Thesetemporal neuronmodels have been used to
explore the idea that binding and segmentation in the cortex can be expressed in the form of syn-
chronized or desynchronized firing of neuronal populations.

2.1.4.1 Coupled Oscillators

In the first class, the temporal dynamics of each neuron are described by two variables that rep-
resent coupled oscillators consisting of an excitatory unit and an inhibitory unit (Horn and Opher
1998; Terman and Wang 1995; von der Malsburg 1987; von der Malsburg and Buhmann 1992;
Wang 1996, 1995; Wilson and Cowan 1972): some models use a single complex variable to de-
scribe the state of the neuron, resulting in a similar model (Chakravarthy and Ghosh 1996). The
two units can represent states of a single neuron, two different neurons, or two separate populations
of neurons.

These models originate from the Hodgkin-Huxley (HH) model of excitable membrane (Hodgkin
and Huxley 1952), which can be written as:

C
dV

dt
= �Iion(V;W1; :::;Wn) + I(t) (2.1)

dWi

dt
= �

[Wi;inf(V )�Wi]

�i(V )
; (2.2)

whereV is the membrane potential,C is the membrane capacity, andIion is the sum ofV andt-
dependent currents through each ion channel type,I(t) is the input current,Wi for each ion channel
type quantify the fraction of ion channels open,�i are the time constants ofWi, � is time scale
factor for the ion channels, andWi;inf(V ) is the steady-state value ofWi. Such a detailed model
allowed a close match with experimental data, but the formulation involves multiple variables
which made it hard to analyze. Subsequently, FitzHugh (1961) and Nagumo et al. (1962) reduced
the model into a two-variable model, convenient for analysis and visualization in a 2D phase-
plane. For a historical account of these models, see Rinzel and Ermentrout (1999). The two units
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are coupled with an excitatory connection from the excitatory unit to the inhibitory unit, and with
an inhibitory connection from the inhibitory unit to the excitatory unit. A typical behavior in such
a dynamical system is limit-cycle oscillation, and such an oscillation can be easily visualized and
analyzed in a 2D phase portrait of the activities of the two units.

In a typical implementation, the coupled oscillators are arranged in a 2D topology with lo-
cal excitatory connections and global inhibition (Terman and Wang 1995; von der Malsburg and
Buhmann 1992; Wang 1996, 1995). The excitatory units receive excitatory input from neighbor-
ing oscillators and inhibitory influence from a global inhibitor. These local excitatory connections
drive the phases of the neighboring oscillators closer to each other. The global inhibitor pools the
activity of all excitatory units and gives feedback inhibition to all excitatory units, thus implement-
ing segmentation among distant oscillating populations. The peaks and valleys of the activity are
compared to see if they are synchronized or not. These types of networks have been applied to
texture segmentation (von der Malsburg and Buhmann 1992), aerial photo and brain scan image
segmentation (Wang 1996, 1995), and cluster analysis (Horn and Opher 1998) with impressive
results. However, the lateral connections in these models were limited in spatial extent and could
not learn input correlations, thus grouping was only based on proximity or similarity.

2.1.4.2 Integrate-and-Fire Neurons

In the other class of temporal neurons, a single variable corresponding to the membrane potential
of a neuron is used to describe the state. A common form of the dynamics of this class of neurons
involve, (1) accumulation of voltage from incoming signals, (2) comparison of the membrane po-
tential with a threshold to generate a spike, and (3) resetting the membrane potential after spiking.
A typical formulation is:

C
dV

dt
= I(t)�

V

R
(2.3)

whereC is the capacity,V is the membrane potential,R is the resistance (leak term), andI(t) is
the input current (Lapicque 1907; see Gabbini and Koch 1999 for a review). The incoming activity
I(t) accumulates over time until the membrane potential reaches a fixed threshold. The neuron is
allowed to spike, and is reset to 0. These types of neuron models are generally called integrate-
and-fire neurons. Many different subclasses of such models exist, including leaky integrate-and-
fire neurons (Campbell et al. 1999; Nischwitz and Gl¨under 1995), and leaky synapse with dynamic
threshold models (Eckhorn et al. 1990; Reitboeck et al. 1993; I will refer to these as LSDT).
Gerstner (1998b) showed that these subclasses are equivalent under his general framework of Spike
Response Model (SRM).

The LSDT model of Eckhorn et al. (1990) and Reitboeck et al. (1993) is biologically the
most detailed, including explicit dendritic integration (leaky synapses). For this reason, this model
is extended and used in the current thesis. In LSDT, each synapse is a leaky integrator where
pre-synaptic action potentials accumulate in the post-synaptic dendritic membrane and decay over
time. The membrane potential, accumulated over space across the dendritic arbor and over time by
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the decayed sum of past activity, is compared to a dynamic threshold and the neuron is allowed to
fire when the cumulative sum of activity crosses the threshold. The threshold is dynamic in that it
is increased acutely after the neuron fires, and the amount of increase is decayed over time. Such
an increase models the refractory period of the neuron. Both the leaky synapse and the dynamic
threshold are formulated using the same leaky-integration mechanism based on convolution(�):

X(t) = Z(t) � I(V; �; t); (2.4)

whereX(t) is the leaked sum at timet, Z(t) is the input, andI(�) is defined as:

I(V; �; t) =

(
V � exp(�t=�) if t � 0

0 otherwise;
(2.5)

whereV is the amplification factor and� is the time constant of the leak kernel. The convolution
is calculated using the digital filter equation:

X[t] = X[t� 1] � exp(�1=�) + V � Z[t]; (2.6)

wheret increases in discrete time steps of duration 1.
The integrate-and-fire neurons have also been arranged in a 2D topology with local ex-

citatory connections and global inhibition for static object segmentation (Eckhorn et al. 1990;
Campbell et al. 1999), moving object segmentation (Reitboeck et al. 1993), and aerial photo and
brain scan image segmentation (Campbell et al. 1999) with good results. However, as in coupled
oscillator models, the lateral connections were limited in extent and could not self-organize to map
complex input correlations, thus grouping was only based on proximity or similarity.

2.1.5 Conditions of Synchronization

The temporal neurons described above are usually connected with excitatory and inhibitory con-
nections to elicit synchrony and desynchrony. Analytical and computational studies have been
conducted to find out the conditions under which such connected neurons synchronize and desyn-
chronize. Synchronization properties have been studied in terms of excitatory vs. inhibitory con-
nections, axonal conduction delay, and noise.

The main results are: (1) excitatory connections with no delay cause synchrony (Campbell
et al. 1999; Gerstner and van Hemmen 1992; Han et al. 1998; Horn and Opher 1998; Mirollo
and Strogatz 1990; Terman and Wang 1995; Wang 1995, 1996), (2) excitatory connections with
delay cause desynchrony (Nischwitz and Gl¨under 1995), (3) inhibitory connections without delay
cause desynchrony (Han et al. 1998; Horn and Opher 1998; Nischwitz and Gl¨under 1995), and (4)
inhibitory connections with delay cause synchrony (Horn and Opher 1998; Kirillov and Woodward
1993; Lytton and Sejnowski 1991; Nischwitz and Gl¨under 1995; van Vreeswijk and Abbott 1994),
and (5) noise helps desynchronization of separate populations (Han et al. 1998; Horn and Opher
1998; Terman and Wang 1995; Wang 1995). However, the effect of varying synaptic decay on
synchronization has not been analyzed: this effect will be tested in this thesis.

14



2.1.6 Summary and Discussion

In this section, I reviewed experimental results suggesting that perceptual grouping in the visual
cortex is based on temporal representations, and computational models that describe the temporal
dynamics of neurons. I also surveyed studies on the conditions of synchrony in networks of such
model neurons. As these results show, lateral connections are essential in mediating synchrony and
desynchrony in populations of neurons. However, due to spatially symmetric and/or fixed lateral
connection patterns in the previous models, binding was based on proximity or similarity only, and
as a result, more complex Gestalt grouping task such as integration could not be performed. For
such tasks, the connection patterns need to be more functionally specific and anisotropic, and they
need to encode the correlational structure found in the input distribution. In the next section, the
neural substrate of such specific lateral interactions will be reviewed and computational accounts
of how such a structure emerges during development will be given.

2.2 Self-Organization in the Visual Cortex

In this section, the structure of the visual cortex relevant to perceptual grouping will be reviewed
and evidence of input-driven self-organization of these structures will be presented. Then, the
computational models of self-organization of such structures will be reviewed.

2.2.1 Structure of the Visual Cortex

The visual cortex, like any other part of the neocortex, is primarily a two-dimensional sheet of
neurons and connections. The sheet is arranged into six layers with different types of neurons
occupying each layer (Henry 1989). The layers are numbered 1 to 6 from the surface (figure 2.3).
At any location on the cortical sheet, the neurons within a vertical cylindrical column have similar
feature preferences, and such vertical groups of neurons are termedcolumns(Gilbert and Wiesel
1989). Lateral connections exist between neighboring columns, and they tend to connect columns
with similar feature preferences (figure 2.3).

Each column receives input from a limited area in the visual field called a receptive field,
and prefers specific values for different feature dimensions such as orientation, spatial frequency
(size), and ocular dominance (left, right, or both eyes). Optical imaging and voltage sensitive dyes
have been used to measure orientation preference in mammals, and an intricate pattern of orien-
tation maps has been observed (Blasdel and Salama 1986; Blasdel 1992a,b; Grinvald et al. 1994;
O’Keefe et al. 1998; Ts’o et al. 1990; Weliky et al. 1995). Figure 2.4 shows such an orientation
map. Orientation preference smoothly changes over the map and cycles through all orientations
at regular, repeating intervals. Extensive lateral (or horizontal) connections exist between neigh-
boring orientation columns, and generally, these connections are clustered at regular intervals and
target columns possessing similar orientation preference (figure 2.4; Bosking et al. 1997). Such
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Figure 2.3:Layered Structure and Long-Range Lateral Connections in the Visual Cortex. Lateral
connections, also sometimes called intrinsic horizontal or horizontal connections, run tangential to the cor-
tical surface. In the visual cortex they reach distances corresponding to several degrees of the visual field,
and sprout synaptic boutons at regular intervals (marked by arrows). The synaptic bouton clusters are highly
concentrated on areas where the target neurons have similar feature tuning as the source neuron. Source:
Miikkulainen and Sirosh (1996), adapted from (Gilbert and Wiesel 1989).

specific lateral connections can implement, e.g. the Gestalt law of good continuation, and percep-
tual grouping in general.

2.2.2 Evidence of Input-Driven Self-Organization

How these complicated yet orderly structures come about in the cortex was a big question until the
1960s. At that time, Hubel, Wiesel and their colleagues conducted a number of classic experiments
where they showed that altering the visual environment drastically changes the organization of the
visual cortex (Hubel and Wiesel 1962; Hubel et al. 1977; Hubel and Wiesel 1974). For example, if
a kitten’s vision is impaired by suturing the eyes shut, the visual cortex does not develop a normal
organization, and orientation maps and ocular dominance columns do not appear. Such an effect is
most dramatic during the critical period, typically within a few weeks after birth (Hubel and Wiesel
1962). Keeping the eyes shut until after the critical period caused the animal to become blind. This
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Figure 2.4:Orientation Map and Lateral Connections in Tree Shrews (color figure). The cells are
colored according to the orientation of the lines to which they are most sensitive. Two characteristics are
immediately noticeable: (1) orientation preference changes smoothly across the cortex, and (2) a full cycle
of orientation preferences repeats at regular intervals. The black dots mark the axon terminals projecting out
from the area marked with white dots. InA, the source neurons are sensitive to the 90 degree orientation
(cyan color). Near the source, the connections are found on all orientations, but as the connections reach out
further, they are more likely to end up on similarly orientation-tuned areas. This connectivity pattern can
also be found inB, where the source area is tuned to 0 degree (red color). Such specific lateral connections
are believed to implement perceptual grouping rules. Source: Bosking et al. (1997).

result shows how important normal visual stimuli are during the critical period for normal devel-
opment of the visual system. In another experiment, kittens were raised in an environment with
only vertical or horizontal features. As a result, the kittens were unable to respond well to other
orientations (Hirsch and Spinelli 1970; Blakemore and Cooper 1970; Blakemore and van Sluyters
1975). Recent experiments reported similar results in dark-reared and eye-sutured animals with
stronger disruption found for abnormal visual experience than for deprivation (White et al. 2000,
2001). Similar results were also reported for ocular dominance columns in ferrets (Issa et al. 1999).
The auditory cortex was shown to become sensitive to visual inputs when the projections from the
retina or visual area of the thalamus (lateral geniculate nucleus or LGN) were surgically connected
to the auditory cortex, suggesting that input strongly influences cortical development (Sur et al.
1988; Sharma et al. 2000).

Similar mechanisms are believed to be involved in the development of lateral connections.
They were found to form gradually during early development based on visual input (Callaway and
Katz 1990, 1991; L¨owel and Singer 1992), and around the same time as the orientation maps and
ocular dominance (Burkhalter et al. 1993; Dalva and Katz 1994; Katz and Callaway 1992). Lateral
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Figure 2.5:The RF-LISSOM Architecture. The Receptive-Field Laterally Interconnected Synergetically
Self-Organizing Maps(RF-LISSOM) is a model of the visual cortex with self-organizing afferent and lateral
connections. Each cortical neuron has a small receptive field on the retina where visual input enters the
visual system. Connections are adapted according to the normalized Hebbian learning rule (Hebb 1949).

connections are also believed to play an important role in cortical development and recovery in the
mature cortex (Gilbert and Wiesel 1992; Kapadia et al. 1994; Pettet and Gilbert 1992).

These experimental results convincingly show that the connections in the cortex are shaped
by the environmental input, which in turn implies that any statistical regularities found in nature
will be reflected in the structure of the visual cortex.

2.2.3 Computational Models of Self-Organization

von der Malsburg (1973) discovered that simple computational rules can drive the development of
an ordered map of oriented receptive fields based on visual input. Kohonen (1981, 1982a,b) also
showed how a topographically ordered map can arise in the sensory system through unsupervised
learning (the Self-Organizing Map, or SOM model). These discoveries sparked the interest in self-
organization as a basis of the development of cortical structures. Several computational models
have since shown how receptive fields and their global organization in the cortical network can de-
velop through self-organization of afferent synapses (Erwin et al. 1995; Goodhill 1993; Kohonen
1982b; Miller 1994; Miller et al. 1989; Obermayer et al. 1990; Piepenbrock et al. 1997; Shouval
and Cooper 1996; Shouval et al. 1997). However, these models have not taken the lateral interac-
tions between cells explicitly into account, or have assumed that they are preset and fixed and have
a regular symmetric (or isotropic) profile. Only recently have laterally-connected models started
to emerge (Bartsch and van Hemmen 2001; Kalarickal and Marshall 1997; Sirosh 1995). These
models can potentially account for a wider set of developmental and functional phenomena than
self-organizing map models without explicit lateral connections.
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Figure 2.6:Orientation map and lateral connections in RF-LISSOM (color figure). The orientation
preference (the orientation that gives maximal response) of each neuron is color-coded such that the tran-
sitions red! magenta! blue! green! orange represents 0 to 180 degrees. Saturation of each color
represents orientation selectivity (how well it responds to the optimal orientation compared to other orien-
tations). The white dots along the 60 degree axis represent long-range lateral inhibitory connections from
the central neuron. The central neuron is tuned to inputs with 60 degree angle, and the lateral connection
profile is oriented roughly along that axis, connecting to neurons with similar orientation preference. Such
connection patterns could form the basis for Gestalt principles in perceptual grouping. From Sirosh et al.
(1996b).

In the early stages of visual cortex development, lateral connections are believed to self-
organize in synergy with the afferent connections to form a topological map of the input space (Burkhal-
ter et al. 1993; Dalva and Katz 1994; Katz and Shatz 1996). This process can be modeled com-
putationally, showing how structures such as oriented receptive fields, orientation columns, and
patterned lateral connections form based on input-driven Hebbian learning process, where neurons
that activate simultaneously gradually develop a stronger connection (Hebb 1949). The first such a
comprehensive model was RF-LISSOM (the Receptive Field - Laterally Interconnected Synergeti-
cally Self-Organizing Map; Miikkulainen et al. 1997; Sirosh 1995; Sirosh and Miikkulainen 1996,
1997; Sirosh et al. 1996a; figure 2.5). Figure 2.6 shows the orientation map and patchy lateral
connections that emerged in RF-LISSOM.

RF-LISSOM showed that the lateral connections are not only important in the development
of delicate structures in the cortex, but that they also have a functionally significant role. The
inhibitory lateral connections encode the correlation of activity in the map and perform redun-
dancy reduction. Kurtosis measures of the activities before and after lateral interaction showed
that the settled activity after lateral interaction is more sparse than before the lateral interaction.
RF-LISSOM was also applied to hand-written digit recognition task, where the lateral connections
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were shown to help form a better representation of the input space than a regular SOM, resulting
in improved performance, and suggesting that lateral connections provide immediate functional
advantage in high-level tasks (Choe 1995; Choe et al. 1996). Lateral connections were also shown
to have a major influence in the response properties of the neurons after retinal and cortical lesions,
thus playing a significant role in cortical reorganization as well.

Lateral connections may also play a direct role in forming visual representations. They can
mediate synchronization and desynchronization of spiking activity, thus facilitating feature bind-
ing and segmentation. Such binding and segmentation can in turn serve as a basis for perceptual
grouping by Gestalt principles. During self-organization, lateral connections learn correlations be-
tween activities in distant areas, and thereby provide a natural way for encoding Gestalt principles.
For example, particularly strong lateral connection patterns form between neurons with similar
orientation tuning, aligned along the preferred orientation axis, because these areas are often ac-
tive together (figure 2.6). These connections could then be used for contour integration, in effect
implementing the Gestalt law of good continuation.

2.2.4 Summary and Discussion

In this section, the input-driven self-organizing nature of development in the visual cortex was
reviewed. The properties of self-organized lateral connections are suitable for complex percep-
tual grouping tasks, and can provide a physical substrate for synchrony. A computational model
of grouping can be constructed by combining self-organizing map models with explicit lateral
connections such as RF-LISSOM and the spiking neuron models. By studying the relationship
between the lateral connections and the performance in perceptual grouping tasks in such a model,
it will be possible to ground psychophysical phenomena to neurophysiology.

2.3 Computational Models of Contour Integration

In the previous section, the developmental and functional role of lateral connections was discussed.
Adaptive lateral connections capture the Gestalt principles embedded in the input and thereby
could form a basis for perceptual grouping. One concrete example of such perceptual grouping
with ample psychophysical data is contour integration, as introduced in Chapter 1. In this sec-
tion, computational models of contour integration will be reviewed, and the limitations of existing
approaches will be discussed.

Several neural network models of contour integration have been developed, showing that
specific lateral interactions are sufficient for contour integration (Li 1998, 1999; Yen and Finkel
1997, 1998). The models were able to detect and enhance smooth contours of oriented Gabor
patterns embedded in a background of randomly-oriented Gabor patterns (as in figure 1.1b).

However, these models used fixed formulas in determining the interactions. For example,
Yen and Finkel (1997, 1998) connected the units with long-range lateral excitatory connections.
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(a) Yen and Finkel (1998) (b) Li (1998)

Figure 2.7:Lateral Connection Profiles. The lateral connection profiles of two computational models
of contour integration are shown. (a) The model of Yen and Finkel (1998). The measures defining the
relationship between edges are shown on the top. In the bottom figure, the co-axial (bow-tie shaped gray
region) and the trans-axial (two oval shaped gray regions) excitatory connection schemes are shown. The
length of the edges signifies the connection strength. Inhibitory connections were broad and isotropic, and
are not shown here. (b) The model of Li (1998). The excitatory (top) and inhibitory (bottom) connections
are shown. Excitatory connections go to co-linear and co-circular targets, while inhibitory connections go to
areas on the flank on the top and bottom of the edge in the center. The general form of excitatory connections
preferring co-circular arrangements can be seen in both connection schemes. These models, however, do
not address how such connections could come about during cortical development. Adapted from Yen and
Finkel (1998) and Li (1998), respectively.

21



The magnitude and time course of the synaptic interactions depended upon the position and ori-
entation of the connected units. Excitatory connections were confined within two regions. One
extended out to the axis of preferred orientation of the central unit, where co-circular connection
scheme was used (co-axial). The other extended out to the flanks orthogonal to the preferred axis
(trans-axial), and the area was smaller than in the co-axial case (figure 2.7a, bottom). Given the
location of two units and the orientation preference of one unit, the preferred orientation of the
second unit was calculated as2���, where� is the slope of the straight line connecting the center
of the two units, and� is the orientation preference of the first unit (figure 2.7a, top). Inhibitory
connections went to the rest of the surrounding neurons that did not receive excitatory connections.
The connection strengths were gradually decreased by distance to have a Gaussian profile, with the
highest at the center. The model was able to predict human contour integration performance, and
showed that specific lateral interactions are necessary for contour integration.

Li (1998, 1999) took a different approach. Fixed rules derived from specific constraints
defined the excitatory and inhibitory interactions as follows; (1) the system should not generate ac-
tivity patterns spontaneously, (2) neurons at a region border should give relatively high responses,
and (3) the same neural circuit should perform contour enhancement. Coupled oscillators were
used to describe the dynamics of the orientation-selective cells, and mean-field techniques and dy-
namic stability analysis were used to calculate the lateral connection strengths and the connectivity
pattern according to these three constraints. The resulting lateral connection strengths were very
similar to that of Yen et al., except that there were no trans-axial excitation, and the inhibition had a
specific shape instead of a broad profile (figure 2.7b). The model also predicted contour integration
performance well, and again, the model showed that specific lateral connections are necessary to
accurately predict human contour integration performance.

2.4 Open Issues in Contour Integration

Although the models described in the previous section have been successfully applied to explain
experimental data, several questions remain: why do the seemingly different approaches result in
similar connectivity patterns, how do these kinds of constraints develop in the brain in the first
place, and what is their anatomical basis? It is possible that statistical regularities in the visual
environment have properties similar to the connections in these models, and the brain may be en-
coding such properties. The computational approaches may have discovered the same properties
while trying to accurately mimic human performance. Given such statistical properties in the input,
an adaptive neural network that detects and encodes such properties may be able to explain why
such patterns of connectivity emerge naturally. In such a network, statistical properties are imple-
mented in the connections between neurons, and these could be the anatomical basis of perceptual
grouping. Demonstrating these ideas computationally is the main goal of this thesis.

Moreover, the fixed lateral interaction approach cannot account for the differences in human
contour integration performance across different parts of the visual field (Hess and Dakin 1997;
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Rubin et al. 1996). Such a difference may be caused by difference in lateral interaction rules in
the cortical areas, depending on the parts of the visual field they are mapping. Because the models
described above are bound on fixed constraints, they result in uniform interaction patterns across
the whole network and cannot explain such location-specific performance differences. However,
if lateral connections that modulate contour integration could adapt according to the input, such
results could be explained. If the input distribution differs in the different parts of the visual field,
the lateral connections will develop different patterns to accommodate such differences in input.
Such differences in anatomy can lead to differences in perceptual performance. This process can
easily be modeled by the adaptive lateral connections in RF-LISSOM, as will be done in this thesis.

2.5 Conclusion

In this chapter, I have reviewed experimental evidence and computational model studies suggesting
a possible neural mechanism of perceptual grouping: (1) temporal neurons represent binding and
segmentation, and (2) self-organized connections encode activity correlation and input statistics.
I also showed that existing models have limitations in explaining important experimental obser-
vations, and provided the motivation for an integrative model encompassing the known biological
evidence and computational theories. In the next chapter, a model motivated by these previous
work will be presented and described in detail.
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Chapter 3

The PGLISSOM Model

The PGLISSOM (Perceptual Grouping LISSOM) is a two-layer model of the visual cortex inte-
grating the functions of self-organization and grouping. The first layer is similar to RF-LISSOM,
and it performs self-organization. The second layer performs grouping through long-range excita-
tory lateral connections that adapt to encode input correlations. Each layer is a two-dimensional
map of spiking neurons, and temporal synchronization of spiking activity forms the representation
for grouping. In this chapter, I will describe the architecture of PGLISSOM and its components in
detail, and show how the network is initialized, activated, and trained.

3.1 Motivation

I will (1) review the previous work that led to the development of the PGLISSOM model, (2)
discuss the shortcomings of the previous models, (3) propose a new architecture, and (4) provide
biological justifications for the concepts and architectural components introduced in PGLISSOM.

PGLISSOM is based on RF-LISSOM, a laterally-connected self-organizing map model of
the visual cortex (Sirosh 1995; Sirosh and Miikkulainen 1997; section 2.2.3). RF-LISSOM con-
sists of firing-rate neurons represented as real-numbered units. As we saw in Chapter 2, superpo-
sition catastrophe can occur when activities of firing rate neurons representing separate objects are
combined.

To overcome this limitation, the RF-SLISSOM model was developed (Choe and Miikku-
lainen 1997, 1998). The overall structure of RF-SLISSOM is similar to RF-LISSOM, but the
firing-rate neurons are replaced with spiking neurons. RF-SLISSOM model showed how self-
organization and segmentation of simple objects could be achieved in a unified model of self-
organization and temporal coding. The long-range inhibitory lateral interactions play a crucial
role in both behaviors: they establish competition that drives self-organization, and they establish
desynchronization that drives segmentation. The model did not include any long-range excita-
tory connections because they were not found necessary to model self-organization and simple
segmentation of objects.
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However, to perform grouping on more complex features such as long contours, long-range
excitatory lateral connections are necessary. Excitation is necessary for synchronization, and con-
nections need to be long to group together several contour elements. Making the short-range ex-
citatory lateral connections longer in a single RF-SLISSOM map does not work, because it results
simply in a large active area in the map. The neurons would respond to any input through lateral
excitation, resulting in a map where the afferent receptive field of the neurons look almost the same
due to averaging over the inputs. The two functions of perceptual grouping and self-organization
therefore have conflicting requirements (long vs. short excitatory lateral connections).

In order to model both functions simultaneously, the PGLISSOM model described in this
thesis was developed. PGLISSOM includes both short-range and long-range excitatory lateral
connections. To prevent the long-range excitatory connections from interfering with the self-
organizing process, PGLISSOM includes two layers (or maps). In the first map (MAP1), excitatory
lateral connections are short range to allow self-organization and in the second map (MAP2), they
are long range and implement perceptual grouping.

The two-layered design of PGLISSOM is biologically motivated. The two layers model
the known connectivity in the visual cortex. As shown in figure 2.3, the visual cortex consists of
six distinct layers. In the deeper layers, afferent inputs reaching layer 6 in turn innervate layer
4 in an on-center off-surround fashion (Ferster and Lindstr¨om 1985; Grieve and Sillito 1995b).
MAP1 in PGLISSOM abstracts the center-surround connectivity into short-range excitatory and
long-range inhibitory lateral connections in a single map. In layer 2/3 of the visual cortex, two
types of long-range lateral connections are found: direct excitatory connections and disynaptic
inhibitory connections (Hirsch and Gilbert 1991; McGuire et al. 1991). MAP2 models these long-
range connections. In the cortex, connections are also found along the vertical section between
layers 2 through 6. These are termed intra-columnar connections because they are concentrated in
cortical columns. Such connections are included in PGLISSOM as well, and they allow MAP2 to
self-organize properly in the presence of long-range excitation.

In sum, PGLISSOM extends RF-LISSOM in two important ways: spiking neurons for
representing grouping through temporal coding, and long-range excitatory lateral connections to
coordinate synchronization for temporal coding. The design models the layered architecture found
in the visual cortex. In the following sections, I will present the overall organization of the PGLIS-
SOM model and describe the components of the model in detail.

3.2 Network Organization

The overall organization of the PGLISSOM model is shown in figure 3.1. The model consists
of two layers (or maps), one overlaid (or stacked) on top of the other. Both maps are based on
RF-SLISSOM, but the extent of lateral connections in the two maps differ.

The two maps receive afferent input from the retinal neurons. In the brain, inputs received
in the retina first project to the lateral geniculate nucleus (LGN; the vision relay cluster in the
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Figure 3.1:The Overall Organization of the PGLISSOM Network. The cortical network consists of
two layers (or maps): the lower map (MAP1) has short-range excitation and long-range lateral inhibition,
and drives the self-organization of the model. In the upper map (MAP2), both excitation and inhibition
have a long range, establishing segmentation and binding. The two maps receive input from a model retina,
and neurons in the vertically corresponding locations on the two maps are connected via intra-columnar
connections, tying such neurons together into a functional unit (i.e. a cortical column).

thalamus), and then to the visual cortex, but in PGLISSOM, LGN is bypassed for simplicity. The
lower map, MAP1, has short-range excitatory lateral connections and long-range inhibitory lat-
eral connections. The excitatory connections establish a local neighborhood that enforces local
correlation, while the inhibitory connections decorrelate distant activities and thus perform redun-
dancy reduction (Barlow 1985, 1994; Sirosh 1995). Through these connections, MAP1 drives self-
organization in the model. The upper map, MAP2, has both long-range excitatory and long-range
inhibitory connections. The excitatory connections in this map form the basis for perceptual group-
ing: through the self-organizing process, they learn to encode correlations in the input distribution,
and the strength of the connections controls the degree of synchronization across the neurons. The
inhibitory connections are broad and long-range, causing two or more synchronized populations
of neurons to desynchronize, thus establishing background inhibition for segmentation.
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Neurons in the vertically corresponding locations in the two maps form a functional unit
(cortical column), and they are connected to each other through vertically projecting intra-columnar
connections. These connections influence the activity on the opposite map so that both self-
organization and grouping behaviors are shared by both maps.

Next, the details of the spiking neuron model in PGLISSOM will be presented.

3.3 Neuron Model

A schematic diagram of the spiking neuron is shown in figure 3.2. The model is based on that
of Eckhorn et al. (1990) and Reitboeck et al. (1993). Each neuron has three components: leaky
synapses, weighted summation, and a spike generator. The synapses continuously calculate the
decayed sum of incoming spikes over time. Four different kinds of input connections contribute
to the weighted sum: afferent, excitatory lateral, inhibitory lateral, and intra-columnar connections
(figure 3.1; both excitatory and inhibitory connections are just shown aslateral connections). The
activations of the different kinds of inputs are summed and compared to the dynamic threshold
in the spike generator. A spike is generated if the activations exceed a dynamic threshold. When
the neuron is silent, the threshold remains at the base level. As the neuron fires, the threshold
increases, modeling the refractory period in biological neurons. In addition, the neuron is forced
to be silent for several time steps immediately following a spike. Details of each component will
be discussed next.

3.3.1 Leaky Synapse

Each connection is a leaky integrator that continuously calculates an exponentially decayed sum
of incoming spikes:

s(t) =
tX

n=0

x(t� n)e��n; (3.1)

wheres(t) is the current decayed sum at time stept, x(t � n) is the input spike (either 0 or 1)n
time steps in the past, and� is the decay rate. Different types of connections have separate decay
rates: afferent connections (�a), excitatory lateral connections (�e), inhibitory lateral connections
(�i), and intra-columnar connections (�c). The most recent input has the most influence on the
activity, but inputs from past also have some effect. This sum can be defined recursively as:

s(t) = x(t) + s(t� 1)e��; (3.2)

wheres(t) ands(t� 1) are the current and previous decayed sums,x(t) is the current input spike
and� is the decay rate1. Such a formulation allows for a computationally efficient implementation

1This equation has the same form as the one derived from convolution equations in Eckhorn et al. (1990; see
equation 2.4).
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Figure 3.2: The Neuron Model. Leaky integrators at each synapse perform decayed summation of
incoming spikes, and the outgoing spikes are generated by comparing the weighted sum to the dynamic
spiking threshold. Four types of inputs contribute to the activity: afferent, excitatory lateral, inhibitory
lateral, and intra-columnar connections. The dynamic threshold consists of the base threshold�base, the
absolute refractory contribution�abs, and the relative refractory contribution�rel. The base threshold has a
fixed baseline value, and the absolute refractory term has a value of1 for a short time period immediately
following an output spike. The relative refractory contribution is increased as output spikes are generated,
and it decays to 0 if the neuron stays silent.
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of the model, since the past spike valuesx(�) do not need to be stored, nor do they have to be
decayed repeatedly.

Such a leaky integrator models the Post-Synaptic Potential (PSP) that decays exponentially
over time in biological neurons. The formulation is equivalent to the finite difference approxima-
tion of the widely used leaky integrate-and-fire neurons (equation 2.3). By adjusting the decay rate
�, the synapse can function as either a coincidence detector or as a temporal integrator. When the
synaptic decay rate is high, the neuron can only activate when there is a sufficient number of inputs
coming in from many synapses simultaneously. On the other hand, when the decay rate is low,
the neuron accumulates the input. Thus pre-synaptic neurons can have a lingering influence on the
post-synaptic neuron. By varying the decay rates for different types of connections, the relative
time scales of the different connection types can be controlled to obtain desirable synchronization
behavior (see Chapter 4).

The neuron receives incoming spikes through many input connections, and the decayed
sums of the synapses are calculated according to equation 3.2. These sums are then multiplied
by the connection weights and summed to obtain the input activity. Next, I will explain how the
weighted sums of different connection types are combined.

3.3.2 Calculating the Input Activation

The input activation�i;j(t) to the spike generator of the cortical neuron at location (i; j) at time
t consists of (1) the input from a fixed-size receptive field in the retina, centered at the location
corresponding to the neuron’s location in the cortical network (i.e. afferent input), (2) from neurons
in the same column in the other map (i.e. intra-columnar input), (3) excitation from neurons around
it in the same map (excitatory lateral input), and (4) inhibition from neurons around it in the same
map (inhibitory lateral input):

�i;j(t) = g(a
X
r1;r2

�r1;r2�ij;r1r2 + c
X
p1;p2

�p1;p2�ij;p1p2

+ e
X
k;l

�kl(t� 1)Eij;kl � i
X
k;l

�kl(t� 1)Iij;kl); (3.3)

wherea,c, e, andi are the relative strengths of the afferent, intra-columnar, excitatory, and
inhibitory contributions,�r1;r2 is the activity at the retinal neuron (r1; r2), �ij;r1r2 is the afferent
connection weight from retinal neuron (r1; r2) to cortical neuron (i; j), �p1;p2 is the decayed sum
of spikes from neuron (p1; p2) in the other map in the same vertical column,�ij;p1p2 is the intra-
columnar connection weight from neuron (p1; p2) to neuron (i; j), �kl(t � 1) is the decayed sum
of spikes from the map neuron (k; l) at timet � 1, Eij;kl is the excitatory andIij;kl the inhibitory
lateral connection weight between neuron (i; j) and (k; l). The functiong(�) is a bounded linear
function

g(x) =

8>><
>>:

0 if x < Æ

1 if x > �
x�Æ
���

otherwise;
(3.4)
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whereÆ is the threshold and� is the ceiling. This function is used to keep the input activity to the
spike generator between0:0 and1:0.

The input activity is then passed on to the spike generator, where comparison with the
dynamic threshold is made, and a spike is fired if the input activity exceeds the threshold. Next, I
will describe the components of the dynamic threshold mechanism in the spike generator.

3.3.3 Threshold Mechanism

Biological neurons cannot generate a spike during a short period of time immediately after they
have spiked. This short interval is called therefractory periodand it consists of two parts: (1)
during theabsoluterefractory period, the neurons cannot fire no matter how large the input is, and
(2) during therelative refractory period, neurons normally cannot spike, but if sufficient input is
received. they can generate spikes

The dynamic threshold in the spike generator implements a refractory period by providing
a base threshold and raising the threshold dynamically, depending on the neuron’s spike activity.
The spike generator compares the input activity to the dynamic threshold and decides whether to
fire a spike (figure 3.2). The threshold�(t) is a sum of three terms:

�(t) = �base + �abs(t) + ��rel(t); (3.5)

where�base is the base threshold,�abs(t) represents the contribution of the absolute refractory
period, �rel(t) is contribution of the current relative refractory period, and� balances the two
contributions.

The relative refractory contribution is an exponentially decayed sum of the output spikes
(figure 3.2), which is a leaky integrator similar to the leaky synapses. It can be defined recursively
as follows:

�rel(t) = y(t) + �rel(t� 1)e��rel; (3.6)

where�rel(t) is the current relative refractory contribution,y(t) is the current output spike (1 if the
neuron spikes at this time, 0 otherwise),�rel(t � 1) is the relative refractory contribution from the
previous time step, and�rel is the decay rate. The absolute refractory contribution�abs(t) is defined
as:

�abs(t) =

(
1 if y(t� i) = 1 for i � �abs

0 otherwise;
(3.7)

where�abs determines the length of the absolute refractory period.
The threshold is compared to the weighted sum of inputs and a spike is generated if the

input exceeds the threshold:
y(t) = H(�(t)� �(t� 1)); (3.8)

wherey(t) is the output spike at timet, �(t) is the current input activity,�(t � 1) is the previous
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dynamic threshold, andH(�) is the Heaviside step function:

H(x) =

(
1 if x > 0

0 otherwise.
(3.9)

The spikes generated this way are propagated through the connections and the average
firing rates of the neurons in a small time window are gathered. Based on these firing rates, the
connection weights are adapted. Next, the details on activating and training the model will be
explained.

3.4 Self-Organization

All connection weights in the network are initialized to uniformly random values within 0.0 and
1.0. The network is trained by presenting visual input, and adapting the connection weights ac-
cording to the Hebbian learning rule. In the experiments reported in this thesis, synthetic visual
inputs are used to have tight control over stimulus configurations. It is also possible to train the
network with natural images as has been done with RF-LISSOM (Bednar and Miikkulainen 2000;
this possibility will be discussed in detail in section 10.1).

The input to the network consists of oriented Gaussian bars, defined as:

�r1;r2 = exp( �
((r1 � x)cos(�)� (r2 � y)sin(�))2

a2

�
((r1 � x)sin(�) + (r2 � y)cos(�))2

b2
); (3.10)

where�r1;r2 is the desired activity of the retinal neuron at location (r1; r2), a2 andb2 specify the
length along the major and minor axes of the Gaussian, and� specifies its orientation. To generate
a Gaussian bar, the input neurons spike at different frequencies. In the center of the Gaussian,
the spike rate is maximal, and the spike rate would decreases gradually for neurons farther away
from the center. However, since the inputs are always precisely specified and such a generation
of a Gaussian is computationally expensive in the current simulations, the spiking input neurons
were replaced with real-valued neurons whose values represent the leaky sums at the afferent input
synapses.

An input with a random orientation is placed at a random location in the retina, and the ac-
tivity levels of the retinal neurons are transmitted through the afferent connections of the network.
The cortical neurons of MAP1 and MAP2 then allowed to generate spikes and propagate spikes,
according to equations 3.1 through 3.8.

The connection weights in the network are adaptable, modified according to the short-term
firing rates of the neurons. In the standard RF-LISSOM model, the input is kept constant while
the cortical response settles through the lateral connections, forming a concentrated, redundancy-
reduced activation pattern (as measured by the kurtosis of the map activity; Field et al. 1993a;
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Sirosh 1995). PGLISSOM goes through a similar settling process. The retinal neurons generate
graded activity constantly at each iteration and the cortical neurons generate and propagate spikes.
After a while, the neurons reach a stable rate of firing, and this rate is used to modify the weights.
The average spiking rateV (t) of neurons was calculated as a running average of spikes as follows:

V (t) = �avgV (t� 1) + (1� �avg)y(t); (3.11)

where�avg is the retention rate,V (t� 1) is the previous average firing rate, andy(t) is the output
spike at timet (either 0 or 1). With this method, a short-term firing rate in a limited time window
is calculated. The averaging window size is proportional to the parameter�avg.

For each input presentation, the average spiking rate of each neuron is calculated through
several iterations. Then the afferent, lateral, and intra-columnar weights are modified according to
the normalized Hebbian learning rule:

wij;mn(t) =
wij;mn(t� 1) + �Vij(t)Vmn(t)P

mn [wij;mn(t� 1) + �Vij(t)Vmn(t)]
; (3.12)

wherewij;mn(t) is the connection weight from neuron(m;n) to (i; j),wij;mn(t�1) is the previous
weight, � is the learning rate (�a for afferent,�c for intra-columnar,�e for excitatory, and�i

for inhibitory connections), andVij(t) andVmn(t) are the current average spiking rates of the
neurons (i; j) and (m;n). The adapted weights are normalized (i.e. divided) by the sum of outgoing
connection weights. Those connections that become near zero in this process are deleted, modeling
death of unused connections during early development in animals (Dalva and Katz 1994; Gilbert
1992; Katz and Callaway 1992; L¨owel and Singer 1992). The radius of the lateral excitation in
MAP1 is gradually reduced following a preset schedule, resulting in fine tuning of the map (for a
theoretical motivation for this process, see Kohonen 1982b, 1989, 1993; Obermayer et al. 1992;
Sirosh and Miikkulainen 1997; for neurophysiological evidence, see Dalva and Katz 1994; Hata
et al. 1993).

Weight normalization is necessary in Hebbian learning to keep the weights from growing
into infinity (Miller and MacKay 1994), but it can also be viewed as a process of redistributing
the synaptic resources of each neuron (Choe et al. 2000). Another possible normalization process
is neuronal regulation (Horn et al. 1998). In recent experiments, Turrigiano et al. (1998) showed
that a change in a single synapse can cause the whole cell’s efficacy to change in the opposite
direction. This result suggests that local change in the synaptic strength scales the strength of the
other synapses of the same neuron. Normalization in PGLISSOM is done this way by keeping the
sum of connections weights constant, effectively redistributing limited synaptic resource.

This process of input presentation, activation, and weight adaptation is repeated for a large
number of input patterns, and the neurons become gradually sensitive to particular orientations at
particular locations.This way, the network forms a global retinotopic orientation map similar to that
in the visual cortex (Blasdel 1992b; Blasdel and Salama 1986). The orientation preferences in the
map arise as a result of Hebbian adaptation on oriented Gaussian inputs. The self-organized map
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with its patchy lateral connections will then synchronize and desynchronize the firing of neurons
to indicate binding and segmentation of visual input into different objects.

3.5 Summary

The PGLISSOM model is a biologically inspired model of the visual cortex based on the RF-
LISSOM architecture. PGLISSOM has two functionally distinct maps, one for self-organization
(MAP1), and another for binding and segmentation (MAP2). The firing rate neurons in RF-
LISSOM are replaced with spiking neurons to represent grouping through temporal coding, and
long-range excitatory connections are added in MAP2 to coordinate synchrony in populations of
neurons. In the following chapters, the results from PGLISSOM experiments will be reported.
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Chapter 4

Temporal Coding

Experimental evidence suggests that temporally correlated activity may be the basis for binding
and segmentation in perceptual grouping (Eckhorn et al. 1988; Engel et al. 1991b; Gray and Singer
1987; Gray et al. 1989). In PGLISSOM, the neurons are modeled as spiking neurons so that the
temporal firing sequence can encode such grouping information. It is important to understand
what each component of the model contributes to synchrony and desynchrony so that the model
as a whole can be tuned to function properly, and also to gain crucial insights to guide further
experimental work. In this chapter, the neuron model of PGLISSOM will be tested to find the con-
ditions under which synchronization and desynchronization occurs under different (1) connection
types (excitatory or inhibitory), (2) synaptic decay rates, (3) spatial extent of connections, (4) noise
levels, (5) population sizes, and (6) the durations of the absolute refractory period.

4.1 Synchronization

Synchronization is important for binding together populations of neurons that represent input fea-
tures of the same coherent object. Lateral connections are necessary to coordinate the firing of
neurons since without any exchange of information, isolated neurons cannot achieve synchrony.
Computational experiments were conducted to find out the conditions under which synchroniza-
tion occurs. Only one-dimensional networks were considered in this analysis. They are sufficient
for testing the various factors governing synchronization, and they are also easier to visualize them
in 2-D because the activities can be plotted against time in two dimensions.

4.1.1 Synaptic Decay Rate

Previous models of spiking neurons have either adapted or selected the axonal delays to regulate
synchronization behavior (Eurich et al. 2000; Gerstner 1998a; Horn and Opher 1998; Nischwitz
and Glünder 1995; Tversky and Miikkulainen 2002). Although delay can be adapted by changing
the axonal morphology (length, thickness, and myelination; Eurich et al. 1999), the fine degree of
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delay tuning needed in the above models may not be easy to achieve in such a macro structure of
the biological neuron.

An alternative to delay adaptation is changing the decay rate of the post-synaptic potential.
Decay may be easier to alter in biological neurons since ion channels can be added or removed
to tune the leakage of currents through the cell membrane. The number and distribution of ion
channels can change through various mechanisms including activity-dependent gene expression
and activity-dependent modulation of assembled ion channels (see Abbott and Marder 1995 for
a comprehensive review). Nowak and Bullier (1997) studied various mechanisms of decay (or
integration time), and further investigations of these mechanisms may well reveal how decay rate
can be controlled. Some models already utilize synaptic decay (Eckhorn et al. 1990; Reitboeck
et al. 1993), but the influence of different levels of decay on synchronization has not been fully
tested.

In PGLISSOM, the neurons have decaying synaptic potentials, and the decay rate was found
to strongly influence synchronization. The values of the synaptic decay rate� (equation 3.1) can
differ for different types of connections (excitatory or inhibitory), and the same magnitude of�

results in different behavior depending on whether the connection is excitatory or inhibitory.
For the synaptic decay rate experiments, as well as for the other experiments in this chapter,

the following five conditions were assumed unless otherwise noted: (1) one-to-one connectivity
between input and output neurons, (2) all input neurons activated to 1.0 at every time step, (3) fixed
weights, (4) random initialization of membrane potential, and (5) the parameter valuesÆ = 0:0,
� = 3:0, � = 0:65, and�base = 0:1 (see Chapter 3 for the definitions of the parameters).

Four separate experiments were conducted: A one-dimensional network of 30 neurons with
full lateral connections was simulated for 500 iterations. (1) excitatory lateral connections with
slow decay (�e = 0:1), (2) inhibitory lateral connections with slow decay (�i = 0:1), (3) excitatory
lateral connections with fast decay (�e = 1:0), and (4) inhibitory lateral connections with fast
decay (�i = 1:0). Except for the decay rate� and the connection type, all other parameters were
the same in the four experiments:a = 0:8, i = e = 0:01, and�rel = 0:05.

The results are shown in figure 4.1. Two conditions, excitatory connections with fast decay
and inhibitory connections with slow decay, result in synchrony. In contrast, excitatory connec-
tions with slow decay and inhibitory connections with fast decay result in desynchrony. This is
an interesting result since excitation does not always guarantee synchronization, and inhibition
does not always guarantee desynchronization. Nischwitz and Gl¨under (1995) showed that a sim-
ilar result is obtained by varying the degree of delay among integrate-and-fire neurons connected
via excitatory or inhibitory connections, where short delay with excitatory connections and long
delay with inhibitory connections caused the neurons to synchronize, and in the opposite case, to
desynchronize. The current result indicates that instead of depending on delay for controlling syn-
chronization behavior, synaptic decay can be utilized. Although synchronization can be achieved
through slowly decaying inhibitory connections, excitatory connections are more likely to be re-
sponsible for coherent oscillation in the cortex since the faster firing rate in the excitatory case more
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(a) Excitation with Slow Decay

(b) Excitation with Fast Decay

(c) Inhibition with Slow Decay

(d) Inhibition with Fast Decay

Figure 4.1:Effect of Connection Type and Decay Rate on Synchronization.Thirty neurons with full
lateral connections were simulated for 500 iterations. Four experiments were conducted where the type of
the lateral connections (excitatory or inhibitory), and the synaptic decay rates (�) were altered. All other
parameters were the same for all four cases. (a) Excitatory connections with slow decay (�e = 0:1) result
in desynchronized activity. (b) Excitatory connections with fast decay (�e = 1:0) result in synchronized
activity. (c) Inhibitory connections with slow decay (�i = 0:1) result in synchronized activity. (d) Inhibitory
connections with fast decay (�i = 1:0) result in synchronized activity. Note that in the two synchronized
casesb andc, the firing rate is higher inb because approach to threshold is faster due to higher levels of
input through excitation. The results show that synchronization behavior can greatly vary even for the same
connection type if the synaptic decay rate differs.

closely matches the fast gamma-frequency oscillation (around 40Hz) observed in the experiments.
The rate is faster because the input activity level is higher due to the excitation.

In sum, synaptic decay plays an important role in regulating synchronization, and it is an
attractive alternative to models with delay modulation since adapting the decay rate appears to be
more biologically plausible.

4.1.2 Effect of the Connection Range

The network was tested to see if local excitatory connections can synchronize a global population.
Inhibitory lateral connections were excluded to simplify the experiment. Thirty neurons with vary-
ing degrees of excitatory lateral connection radii were simulated for 500 iterations. Five separate
experiments were conducted with excitatory connection radii of 30, 10, 5, 2, and 0. Other sim-
ulation conditions were the same as in section 4.1.1, except fore = 0:01 and�e = 5:0, so that
the network would synchronize under the smaller radii. As we will see below, this change did not
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(a) Full connection (connection radius = 30)

(b) Connection radius = 10

(c) Connection radius = 5

(d) Connection radius = 2

(e) No excitatory connections

Figure 4.2:Effect of Connection Extent on Synchronization. A network of 30 neurons with varying
extent of lateral excitatory connections was simulated for 500 iterations. Synchronization occurs through the
excitatory connections even though the connections did not cover the whole network. From (a) to (e), the
lateral excitatory connection radius was reduced from full connectivity (radius = 30) down to no connections
at all (radius = 0). All other parameters were the same as before. Synchronization starts to break once the
radius reaches 2, but for a fairly local connection radius (down to 5), global synchronization is maintained.
As expected, with no connections at all (e), the initial random order of spikes is maintained throughout the
simulation.

affect synchrony in the globally connected case.
The results are shown in figure 4.2. Global synchronization is achieved not only in the

fully connected network (radius 30), but also in locally connected networks, down to a radius of 5.
These results demonstrate that synchronization can propagate through locally connected neurons,
which is consistent with other coherent oscillation models with local connections (Terman and
Wang 1995; Wang 1995, 1996; Campbell et al. 1999). It shows that synchronization may work as
a basis for transitive grouping (Geisler et al. 1999; Geisler and Super 2000; Geisler et al. 2001);
if A and B are grouped together and B and C are grouped together, then A and C are perceptually
grouped together.

In sum, fully connected networks synchronize well, but it is not necessary to have full
connectivity to achieve global synchrony. Global synchronization through local connections in the
PGLISSOM model may be a possible mechanism for transitive perceptual grouping.
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4.2 Desynchronization

Desynchronization is as important as synchronization since it is the basis for segmentation. While
synchronized firing binds together features that belong to a coherent object, desynchronized fir-
ing indicates that features belong to different objects. In this section, I will show that inhibitory
connections are necessary for segmentation, and that a small amount of noise is necessary for
symmetry breaking.

4.2.1 Connection Types

In the previous section, I showed how excitatory connections can facilitate synchronization while
inhibitory connections can facilitate desynchronization under high decay rate conditions. For per-
ceptual grouping through temporal coding, both synchronization and desynchronization are neces-
sary, thus a network may require both excitatory and inhibitory lateral connections. In this section,
I tested this hypothesis in a one-dimensional network to see if indeed both excitatory and inhibitory
connections are necessary, and also to verify that including both types of connections results in a
desirable temporal representation for binding and segmentation.

A one-dimensional network of 90 neurons divided into two groups was simulated for 500
iterations. Neurons with indices in the range (1::22) and (43::64) formed the first group, and
those indexed (21::42) and (65::90) the second group. Lateral excitatory connections were only
allowed to connect neurons within the same group, while inhibitory connections connected the
whole population.

Four separate experiments were conducted: one with both excitatory and inhibitory con-
nections, another with excitatory connections only, the third with inhibitory connections only, and
the fourth with no lateral connections at all. Other simulation conditions were the same as in sec-
tion 4.1.1, except fore = 0:36 and�e = 5:0, to compensate for the larger size of the network and
the addition of inhibitory connections, valuesi = 0:42 and�i = 5:0 were used for the inhibitory
connections.

The results are shown in figure 4.3. With both excitatory and inhibitory connections, neu-
rons within the same group are synchronized, but across the groups where only inhibitory con-
nections exist, desynchronization occurs (a). Such temporal representation is well-suited for per-
ceptual grouping, since binding is signaled by synchrony and segmentation is signaled by desyn-
chrony. Next, I checked if indeed both excitatory and inhibitory connections are necessary to obtain
such a behavior. When only the excitatory connections are present, segmentation does not occur
(b), and when only the inhibitory connections are present, binding does not occur (c). Needless to
say, without any lateral connections, the neurons fire in random phases (d).

In sum, binding and segmentation can be established in a network with both excitatory and
inhibitory lateral connections. Omitting either kind of the lateral connections results in losing the
ability to bind, segment, or both.
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(a) Both excitatory and inhibitory connections.

(b) Excitatory connections only

(c) Inhibitory connections only.

(d) No lateral connection.

Figure 4.3:Binding and Segmentation with Different Connection Types. A one-dimensional network
of 90 neurons was divided into two groups and simulated for 500 iterations. The neurons indexed (1::22) and
(43::64) formed the first group (rows marked gray on the left), and those indexed (21::42) and (65::90) the
second group (rows marked black). Excitatory lateral connections only connected neurons within the same
group, and inhibitory connections were global. The neurons are indexed from 1 to 90 from bottom to top. (a)
With both excitatory and inhibitory connections, the neurons within the same group are synchronized, while
those in different groups are desynchronized. (b) With only the excitatory connections present, the neurons
cannot desynchronize. (c) When only the inhibitory connections are present, no coherently synchronized
groups emerge. (d) When there are no lateral connections, neurons spike in random phases.
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4.2.2 Effect of Noise

In previous sections, the initial membrane potential of each neuron was uniformly randomly ini-
tialized. However, whether such an initial perturbation is necessary or not was not explicitly tested.
In this section, the role of such initial noise, and also that of continual noise, will be tested. The
results are compared to the control case where the simulation was carried out without noise.

A network of 180 neurons with both excitatory and inhibitory lateral connections was sim-
ulated for 500 iterations. The network was divided into two groups as in the previous experiment
(section 4.3). The neurons indexed (1::22), (43::64), (91::112), and (134::155) formed the first
group, and those indexed (23::42), (65::90),
(113::133), and (156::180) the second group. Excitatory lateral connections only connected neu-
rons within the same group, and their radius was limited to 90. The inhibitory connections were
global.

Three separate experiments were conducted: with initial noise only, continual noise only,
and without noise. The rest of the parameters were the same in all three experiments:e = 0:48,
i = 0:42, and�e = 5:0, �i = 1:0. As before, all other simulation conditions were the same as in
section 4.1.1.

The results are shown in figure 4.4. With initial noise (i.e. random initial voltage), the
neurons within the same group are synchronized while the two groups are desynchronized (a).
Also, even if the neurons are initialized uniformly, when a small amount of noise (0.1%) is added to
the membrane potential at each time step, the two groups will desynchronize (b). However, without
noise of any kind, symmetry is not broken and the two groups stay synchronized (c). So, inhibitory
connections alone are not sufficient for desynchronization. Cortical neurons actually operate in
a noisy cellular environment, so including such noise in the model is realistic. It also makes the
model more robust, as has been shown in other models as well (Horn and Opher 1998; Terman and
Wang 1995; Wang 1995). So, a small amount of noise is essential in perceptual grouping, and will
be used in the following computational experiments to assist in desynchronization.

In sum, I showed that noise is needed for desynchronization, by testing two different kinds
of noise, (1) initial noise, and (2) continual background noise, and the (3) control case without
noise. Next, how to make binding and segmentation robust in the network of spiking neurons will
be investigated.

4.3 Robustness of Binding and Segmentation

In previous sections, I have shown how the synaptic decay rate, the type of lateral connections, and
the degree of noise can be controlled in the model to achieve synchronization and desynchroniza-
tion for binding and segmentation. However, there are several factors that can possibly interfere
with this process. For example, if the network is presented with different-size inputs simultane-
ously, the larger input could dominate the smaller input. If the level of noise is raised above a
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(a) Random initial voltage.

(b) With 0.1% noise added.

(c) No noise, non-random initial voltage.

Figure 4.4: Effect of Noise on Desynchronization. A network of 180 neurons with both excitatory
and inhibitory lateral connections were simulated for 500 iterations. The network was divided into two
groups as in the previous experiment (section 4.3). The neurons indexed (1::22), (43::64), (91::112), and
(134::155) formed the first group (rows marked by gray), and those indexed (23::42), (65::90), (113::134),
and (156::180) the second group (rows marked black). Excitatory lateral connections only connected neu-
rons within the same group, within a radius of 90, and inhibitory connections were global. (a) The membrane
potential of each neuron was uniformly randomly initialized, and no noise was added afterward. The sym-
metry is broken and the two groups are separated as expected. (b) The membrane potentials initially were
the same, but perturbed throughout the simulation by adding 0.1% of uniformly random noise. The neurons
within the same group are synchronized, while the two groups are desynchronized. (c) When there was no
noise (initial or on-going), the symmetry was not broken, and the group remained synchronized.

threshold, noise could dominate and no coherent behavior may be obtained. Some parts of the
neuron model can be tuned to overcome such problems, such as increasing the duration of absolute
refractory period to overcome high levels of noise. In this section, I will further test the model to
see how robust it is against such external factors, and show which components contribute to the
robustness.
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(a) Two equal-sized inputs.

(b) One input was twice the size of the other.

(c) One input was three times the size of the other.

Figure 4.5: Effect of Relative Input Size on Synchronization. A network of 90 neurons with both
excitatory and inhibitory lateral connections were simulated for 250 iterations. The excitatory connection
radius was 14, and inhibitory connections were global. The network was presented with two spatially
separated inputs, and the size of the second input was varied. The rows (neurons) that received input are
marked by black solid bars on the left. (a) The two inputs were the same size: neurons indexed (19::36)
and (65::82). (b) One input was twice as long as the other input: neurons indexed (16::45) and (61::75). (c)
One input was three times as long as the other input: neurons indexed (1::45) and (61::75). In all cases, the
inputs are robustly bound and segmented.

4.3.1 Effect of Relative Input Size on Synchronization

One requirement for perceptual grouping is that input features should not be suppressed or pro-
moted on the basis of size only, since smaller but complex input features in the scene can be equally
important as large but simple features. Thus, a network of spiking neurons modeling such behavior
should tolerate differences in input size.

To test if the PGLISSOM model is robust against such variation, a network of 90 neurons
with both excitatory and inhibitory lateral connections was simulated for 250 iterations. The exci-
tatory connection radius was 14 so that neurons representing different inputs were not connected,
and inhibitory connections were global. Three separate experiments were conducted by presenting
two inputs of relative sizes 1:1, 1:2, and 1:3 (figure 4.5a,b, andc). The parameter values were the
same in the three experiments:e = 0:7, i = 0:6, and�e = 5:0, �i = 1:0, to compensate for the
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(a) e = 0:06

(b) e = 0:12

(c) e = 0:24

(d) e = 0:48

Figure 4.6:Overcoming Noise with Strong Excitation. A network of 30 neurons with excitatory lateral
connections were simulated for 500 iterations. The excitatory lateral connections were global. A higher-
level of noise (1%, i.e. 10 times the noise in section 4.2.2) was added to the membrane potential at each
iteration. When the excitatory contribution is low, as in (a) and (b), noise overwhelms and causes the
activities to desynchronize. However, if the excitatory contribution gets higher as in (c) and (d), it overcomes
noise and achieves synchrony.

larger number of excitatory connections compared to the previous experiments. Other simulation
conditions were the same as in section 4.1.1.

The results are shown in figure 4.5. The two areas of the map representing the two objects
are synchronized and desynchronized within and across the group, regardless of the input size.
This behavior occurs under identical parameter conditions, and thus demonstrates that the model
behavior is not affected by the size of the inputs alone.

4.3.2 Overcoming Noise with Strong Excitation

Cortical neurons operate in an inherently noisy environment. Noise can arise due to several causes,
such as unreliable synaptic transmission or fluctuations in membrane potential.

In section 4.2.2, I showed that small amount of noise is necessary for desynchronization of
group activity to occur. The amount of noise can possibly be much larger, and a model should be
robust against such high levels of noise as well.

A network of 30 neurons with global excitatory lateral connections was simulated for 500
iterations. Four separate experiments were conducted where the strength of the excitatory contri-
bution was increased in four stages under high-noise (1%, i.e. 10 times the noise in section 4.2.2).
The simulation conditions were the same as in section 4.1.1, except for�e = 5:0.
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(a) No absolute refractory period.

(b) Absolute refractory period for 3 iterations.

(c) Absolute refractory period for 5 iterations.

Figure 4.7:Overcoming Noise with a Longer Refractory Period. A network of 30 neurons with exci-
tatory lateral connections were simulated for 500 iterations. The excitatory lateral connections were global.
A high level of noise (7%, 70 times the noise in section 4.2.2) was added to the membrane potential at each
iteration. Such high noise cannot be tolerated by just increasing the lateral excitatory contributione. How-
ever, enforcing the absolute refractory period can greatly enhance the robustness of the model. (a) When
absolute refractory contribution is 0, the activities are random. (b) When the absolute refractory contribution
is 3, the activities start to show loose synchronization. (c) When the absolute refractory contribution is 5,
the activities show strong synchronization: with longer periods between firing, the noise is washed out.

The results are shown in figure 4.6. With high noise, weak excitatory connections cannot
keep the neurons synchronized (a andb), but as the excitatory contributione is increased, the
neurons start to synchronize. This result shows how a network of spiking neurons can robustly
synchronize even in high noise conditions. Strong excitation can be used to overcome noise in
such cases.

4.3.3 Overcoming Noise with a Longer Refractory Period

Although increasing the excitatory contribution helps, there is a certain threshold where noise can-
not be overcome this way. For example, 7% noise would break the synchronization behavior even
with extremely strong excitatory connections because noise will dominate the spiking behavior of
the network.

A network of 30 neurons with global excitatory lateral connections was simulated for 500
iterations. Three separate experiments were conducted where the length of absolute refractory
period was increased. The simulation conditions were the same as in section 4.1.1, except for
�e = 5:0, to make synchronization more robust.

The results are shown in figure 4.7. Under very high noise (7%), the excitatory connections
cannot keep the neurons synchronized (a), but as the absolute refractory period is increased, the
neurons start to synchronize (b andc). This result suggests that absolute refractory periods may
have come to exist in biological neurons in part to overcome high levels of noise in the cortical
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environment. The time interval during which the neuron can fire is made much smaller than the
forced silent period, thus the noise gets washed out.

Together with stronge, the neuron can be made highly robust against noise, suggesting
that synchronization can scale up to in real environments.

4.4 Conclusion

In this chapter, I have systematically tested a 1-D network of spiking neurons to find out how the
different components of the PGLISSOM model contribute to synchronization and desynchroniza-
tion of activity. I have shown that (1) synaptic decay rate can induce opposite synchronization
behavior in excitatory and inhibitory connections, (2) local excitatory connections can achieve
global synchrony, and (3) inhibitory connections and noise are necessary for desynchronization. I
also showed that the model is robust to changes in input size, and against very high levels of noise
through strong excitation and long absolute refractory periods.

Understanding such qualitative and quantitative factors that affect synchronization is im-
portant so that we can predict how a network of spiking neurons behave in a specific configuration
and identify why certain mechanisms exist in biological neurons. We will now turn to the second
major component of the PGLISSOM model, showing how these connections are self-organized.
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Chapter 5

Self-Organization

The visual cortex of mammals has an orderly organization where orientation, spatial frequency,
ocular dominance, direction of motion, and other visual features are laid out in a two-dimensional
map structure. Horizontally across the map, lateral connections connect areas with similar func-
tionality. Such structures are known to emerge during the early stages of development in animals,
but the exact mechanisms are not fully understood. In PGLISSOM, they emerge as a result of
input-driven self-organization. In this chapter, I will show how PGLISSOM self-organizes to form
(1) orientation maps and (2) functionally specific lateral connection patterns. The properties of the
map and the connections will be analyzed and compared to experimental data.

5.1 Simulation Setup

As was described in Chapter 3, the PGLISSOM model consists of two stacked layers receiving
input from the retina through afferent connections. The lower layer (MAP1) has short-range exci-
tatory lateral connections and long-range inhibitory lateral connections. The purpose of this layer
is to develop a smooth mapping of the input space. In the upper layer (MAP2), the excitatory
lateral connections as well as the inhibitory lateral connections have a long range. This layer per-
forms perceptual grouping through the excitatory connections. The intra-columnar connections
that connect vertically corresponding locations on the two maps ensure that MAP2 self-organize a
smooth feature map similar to MAP1, and MAP1 perform perceptual grouping like MAP2.

In the simulations reported in this chapter, MAP1 consisted of136 � 136 neurons, and
MAP2 of 54 � 54 neurons. MAP2 was made smaller to make the simulation run faster and to fit
the model within the physical memory limit. However, the intra-columnar connections between
MAP1 and MAP2 were proportional to scale, so that the relative locations of connected neurons
in the two maps were the same. This connectivity scheme ensures that the global order of the two
maps matches as they develop. The excitatory lateral connection radius in MAP1 was initially
7 and was gradually reduced to 3, and inhibitory lateral connections had a fixed radius of 10.
Initially, large areas have correlated activity so that global order can be formed, and later on, the
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reduced lateral excitatory connections help fine-tune the local order in the map (Kohonen 1982b,
1989, 1993; Sirosh and Miikkulainen 1997). In MAP2, excitatory lateral connections had a radius
of 40 and the inhibitory connections were global. Afferent connections from the retina had a radius
of 6 in both maps, and intra-columnar connections a radius of 2. The retina consisted of72 � 72

receptors. As long as the relative sizes of the map, the retina, and the lateral connection radii are
similar to these values, the maps would self-organized well (see Bednar et al. (2002) for a precise
equation that allow scaling to maps with different sizes).

The input consisted of oriented Gaussians with major and minor axis lengths ofa2 = 15:0

andb2 = 1:3, and gradually elongated to 50.0 and 0.8 to help make the orientation tuning sharper.
All weights were initialized uniformly randomly distributed values between 0.0 and 1.0. The rela-
tive contribution of afferent (a), lateral excitatory (e), lateral inhibitory (i), and intra-columnar
(c) connections were 1.1, 0.8 0.9, and 0.5 for MAP1. The valuec was lower than the others
so that activity caused by high excitation in MAP2 would not interfere with self-organization in
MAP1. For MAP2, these values were 1.1, 0.2, 2.5, and 0.9. The valuee was lower andi higher
than in MAP1 to prevent the map from becoming too active, andc was higher than in MAP1 to
allow the self-organized global order of MAP1 to be transferred to MAP2.

The learning rates of afferent (�a), lateral excitatory (�e), lateral inhibitory (�i), and intra-
columnar (�c) connections were 0.012, 0.008, 0.008, and 0.012 for MAP1 and 0.012, 0.008, 0.0,
and 0.012 for MAP2. The inhibitory connections in MAP2 did not adapt (� i = 0) so that the
initial broad connectivity remains to provide background inhibition, as explained in Chapter 3. At
5,000 iterations,�a and�c in both maps were decreased to 0.008, so that the order in the map
can start stabilizing. Initial base threshold�base for both maps was 0.05. At the beginning of each
settling iteration, the�base value was adjusted to 50% ofmaxi;j(�i;j(t)) so that the network would
not become too active or totally silent. Later, the percentile was gradually increased to 57.5%
by 15,000 iterations for MAP1, and 65% by 5,000 iteration for MAP2, so that the activities can
become sparser. This method has a similar effect as the slope adaptation of sigmoid activation
function of Sirosh and Miikkulainen (1994).

The synaptic decay rates were different for the different types of connections. They were
3.0, 0.5, and 1.0 for the lateral excitatory (�e), inhibitory (�i), and intra-columnar connections (�c)
in both maps. The decay rate in the spike generator’s relative refractory period (�rel) was 0.5 in
both maps. The contribution of the relative refractory period in dynamic threshold calculation (� )
was 0.4 in both maps. The threshold (Æ) and ceiling (�) of the activation functiong(�) were 0.01
and 1.3 in both maps. For the average spiking rate of neurons, a running average with the rate
�avg = 0:92 was calculated. These parameter values were found to be effective by running several
experiments, and small changes in the parameter values did not affect the global behavior of the
model.

The network configured in this way was trained for 40,000 iterations following the pro-
cedure described in chapter 3. The training took about 30 wall-clock hours utilizing 178MB of
memory on a 1GHz AMD Athlon PC running Linux. The resulting global order was very simi-
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(a) MAP 1 (b) MAP 2

Figure 5.1:Retinotopic Organization. For each cortical neuron, the coordinate of the receptive field
center was found by calculating the center of gravity of the afferent weight matrix. These coordinates in
retinal space are plotted as nodes. To visualize the location of the receptive field of each cortical neuron
relative to neighboring neurons, edges were drawn between the centers of immediately neighboring neurons
(a) and (b) show the retinotopic organization of MAP1 and MAP2, respectively. Although the maps are
different in size, the overall organization closely matches, and thus neurons in the same cortical column
receive input from the same locations in the retinal space. The overall organization of the map does not
form a regular, square grid. Instead, there are areas with densely packed receptive fields, while in other
areas, receptive fields are sparser, as is the case in experimental data (Das and Gilbert 1997).

lar in the two maps, with the retinotopic organization and the orientation map properties closely
matching (figure 5.1–5.4). The long-range excitatory lateral connections in MAP2 formed a func-
tionally specific patchy pattern where similarly orientation-tuned neurons were more likely to be
connected (figure 5.11). These results, which closely match experimental data, will be discussed
in detail in the following sections.

5.2 Retinotopic Organization

After training, the properties of the resulting maps were measured. The first measure was to
plot the receptive field centers, to reveal the retinotopic organization of the PGLISSOM maps.
The receptive field centers were found by calculating the center-of-gravity of the afferent weight
matrices of each neuron.

The results are shown in figure 5.1. The retinotopic organization in the two maps, MAP1
and MAP2, closely matches because the intra-columnar connections were proportionally scaled.
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As seen in the plots, the receptive field centers do not form a square grid. Rather, some areas of
the cortex have more densely packed receptive fields, while in other areas they are more sparsely
distributed, seen as valleys and hills in the figure. A similar distortion in retinotopic organization
was found in cats (Das and Gilbert 1997). Such distortions are believed to be due to differently-
distributed lateral connections across the surface of the cortex in these distorted regions. The
distortions originate from MAP2, where the long-range excitatory connections have a strong influ-
ence. In a separate experiment where the intra-columnar connections between MAP1 and MAP2
were severed, the retinotopic organization of MAP1 showed fewer distortions than in figure 5.1.

In sum, the intra-columnar connections made it possible for the two maps to have similar
retinotopic organization. The lateral connections were shown to influence receptive field proper-
ties as simple as position (retinotopy), thus providing a possible explanation for small retinotopy
distortions found in the brain.

5.3 Orientation Map

In this section, the orientation tuning of the map neurons and the global orientation maps in MAP1
and MAP2 will be analyzed and compared with experimental data.

5.3.1 Receptive Fields, Global Order and Map Features

During self-organization, the input distribution is determined by three variables: thex andy coor-
dinates of the input bar on the retina and its orientation. Since the coordinate information is roughly
encoded in the initial receptive field centers already, the feature that most affects the development
of the map is orientation.

Circular receptive fields that are randomly initialized in the beginning start to become elon-
gated and smoother as the training proceeds, and this way, the neurons develop orientation pref-
erences. The resulting receptive fields of MAP1 and MAP2 are shown in figure 5.2. A majority
of neurons are orientation selective, and the orientation preferences change smoothly across the
map. Also, the neurons in MAP1 and MAP2 belonging to the same column have highly similar
orientation preferences.

To examine the global order of the orientation maps, the orientation preferences of each
neuron were measured using the vector sum method (Bednar 1997; Bosking et al. 1997). For
each neuron, the afferent weight matrix was scanned with elongated Gaussian bars at six different
orientations. For each orientation, the bar was swiped from one end of the weight matrix to the
other and the maximum vector dot product of the weight matrix and the input bar was recorded.
Repeating this procedure for six orientations, six (angle,dot-product) pairs of polar vectors were
gathered. The vectors were added to obtain avector sum. This sum represents two measures: (1)
the angle of the vector represents theorientation preferenceof the neuron (i.e. the orientation to
which the neuron responds maximally), and (2) the length of the vector represents theorientation
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(a) MAP 1 (b) MAP 2

Figure 5.2:Oriented Receptive Fields. The receptive fields of the cortical neurons in the central21� 21

area in (a) MAP1 and (b) MAP2 are shown. Each cell in the grid represents the afferent weight matrix of
the cortical neuron at that location. Strength of the afferent connection is color coded: from minimum to
maximum, black! red! yellow! white. We can see the smoothly changing orientation preferences
in both maps. Some neurons have almost circular receptive fields, i.e. they are not tuned to any particular
orientation. Since MAP1 and MAP2 differ in size, we have to compare the whole21 � 21 area in (a) to
the central9� 9 area in (b), marked with the white bounding box. These two areas in the two maps receive
projections from exactly the same central area in the retina. Thus, the input distribution they were exposed to
during training was identical. As a result, these two areas developed highly similar orientation preferences.
As in the retinotopic maps, such a close match in functionality is due to the intra-columnar connections.

selectivityof the neuron (i.e. how well the neuron responds to the preferred orientation compared
to other orientations). The orientation preferences resulting from this procedure are shown in
figure 5.3. As we saw in figure 5.2, the preferences change smoothly across the map, and MAP1
and MAP2 show highly similar global order. Such order is called an orientation map. The maps
have features (highlighted in figure 5.4b) commonly found in mammalian visual cortex such as (1)
pinwheel centers (areas with a radial representation of the full 180 degrees;A–D), (2) linear zones
(a full range of orientations repeating over regular intervals on the cortex;E), and (3) fractures
(long stretches of cortical areas where orientation preference changes abruptly;F) 1. These results
show that the architecture and the learning rules in PGLISSOM can develop realistic orientation
maps as seen in the visual cortex.

Even though the intertwined organization of the orientation map looks complex, there are
1Only features of MAP1 are shown in the figure; MAP2 had very similar patterns. MAP2 afferent weight properties

closely resemble MAP1 as we saw in the previous figures 5.2-5.3, thus, in the rest of the thesis, afferent weight
properties will be shown only for MAP1 unless otherwise necessary.
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(a) MAP 1 (b) MAP 2

Figure 5.3:Orientation Maps (color figure). The orientation preference of each cortical neuron was
calculated by the vector sum method (Bednar 1997; Bosking et al. 1997), for (a) MAP1 and (b) MAP2. The
orientation preference at each location on the cortex is coded in color from red! yellow! green! cyan!
magenta! red representing 0 to 180 degrees. MAP1 and MAP2 have closely matching orientation maps,
due to the intra-columnar connections. Both orientation maps show features regularly found in mammalian
visual cortex such as fractures, pinwheel centers, and linear zones (see figure 5.4). These properties of the
orientation map closely match experimental data.

certain quantitative properties that can be calculated to describe it. Several such measures have
been developed in the past to gain insight into the global properties of orientation maps and also
to make it easy to objectively compare models and experimental results. The most widely used
measures of orientation map properties are: (1) orientation preference histogram, (2) 2-D Fourier
power spectrum, and (3) orientation gradient. These measures will be used in the next three sub-
sections to compare PGLISSOM maps with experimental data.

5.3.2 Orientation Preference Histogram

A histogram of 18 bins was obtained by counting the number of neurons in MAP1 and MAP2
that have orientation preferences falling within the 10 degree intervals (figure 5.5). As in the
mammalian visual cortex, the histograms are fairly flat, i.e. all orientation angles are equally well
represented. Although this is a very simple measure, it is important to ensure that the resulting
orientation map in the model does not have artifacts. In some previous computational models,
the receptive fields were square-shaped, so the diagonal orientations (45 degrees and 135 degrees)
were more likely to occur in the orientation map, resulting in peaks in the histogram near these to
angles (Sirosh 1995). Such an artifact was avoided in the current model by making the receptive
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Figure 5.4:Characteristic Features of the Orientation Map (color figure). The orientation preference
at each location on the cortex is coded in color as in figure 5.3. (a) Orientation map in MAP1 is shown.
(b) The features in MAP1 are shown: from left to right, pinwheel centers (A–D), a linear zone (E), and a
fracture (F). In the pinwheel center, a full 180-degree of orientation preference is represented in a radial
cycle. In the linear zone, the full 180 degrees of orientation cycles through along a linear stretch of the
cortex. At fractures, the orientation preferences abruptly change from green (50 degrees) to (150 degrees)
along a long stretch of the cortex. These features match those found in the visual cortex well.

fields circular.
Since the orientation maps in MAP1 and MAP2 have a close correspondence, even though

their sizes differ, their orientation preference histograms are comparable. In MAP2, there are some
uneven intervals, which is due to the relatively smaller size of the map, and would be likely to
disappear if a larger map were used.

5.3.3 2-D Fourier Power Spectrum

The global organization of the orientation map shows a repeating structure in all angular directions.
The 2-D Fourier power spectrum of such a map can reveal the characteristics of the repeating struc-
ture quantitatively. This technique is a widely used to verify if orientation maps in computational
models have properties similar to the maps in experimental observations. To compare PGLISSOM
with biological maps, 2-D Fourier spectra were calculated for both MAP1 and MAP2. The results
are plotted in figure 5.7.

A prominent feature of the Fourier spectra in both maps is the ring-shaped high-energy
band, which is also observed in experimentally measured orientation maps in mammals (fig-
ure 5.6). The regions with same orientation preference in the cortex (and in the model) can be
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Figure 5.5:Orientation Preference Histograms. A histogram of 18 bins was calculated for (a) MAP1
and (b) MAP2. Each bin covered a 10-degree increment from 0 to 180 degrees. The histogram for MAP1
and MAP2 are both fairly flat, meaning that all orientations are equally well represented.

Figure 5.6: Fourier Power Spectrum of a Cortical Orientation Map. A prominent feature of the
Fourier spectra in orientation maps in the visual cortex is the ring-shaped high-energy band. Such a shape
shows that the areas with same orientation preference can be found around the full 360 degrees, at spatial
distance corresponding to the radius of the ring. The image was generated by the author from the monkey
data in Blasdel (1992b) using methods described in Erwin et al. (1995).
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(a) MAP 1 (b) MAP 2

Figure 5.7:2-D Fourier Power Spectra of PGLISSOM Orientation Maps. The spectra for MAP1 is
shown in (a), and for MAP2 in (b). The power is represented in gray-scale, where white is 0 and black is the
maximum. In both maps, the Fourier spectra show characteristic ring-shape seen in figure 5.6.

found in the full 360 degrees at intervals of the length equal to the radius of the ring (Erwin et al.
1995; Sirosh 1995). Such a repetition ensures that at any location in the visual cortex, the full 180
degrees of orientation are fully represented.

5.3.4 Orientation Gradient and Orientation Selectivity

Another quantitative measure of the orientation map is the orientation gradient, which is the lo-
cal rate of change in orientation preference. Orientation gradient plots are useful for identifying
features such as fractures and pinwheel centers, since at these places, the orientation preference
abruptly changes. With the orientation gradient plot, it is easier to see and compare the global
organization of such features, and compare with experimental results and data from other compu-
tational models. Figure 5.8a shows the orientation gradient of MAP1. The gradient is very similar
in MAP2, and is not repeated here as mentioned earlier. The plot is comparable to experimental
data where such features as fractures and pinwheel centers are highlighted by dark, high-gradient
regions (Blasdel 1992b; Koulakov and Chklovskii 2001; Sirosh 1995): figure 5.9.

In optical imaging data, fractures and pinwheels generally have low orientation selectivity,
i.e. the degree of tuning for the preferred orientation. High selectivity means that it is hard to elicit
response from that neuron when a suboptimally oriented stimulus is presented (section 5.3.1).
Thus, the receptive fields with high orientation selectivity tend to be longer and narrower. Fig-
ure 5.8b shows the orientation selectivity of neurons in MAP1. As in experimental data, low-
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(a) Orientation Gradient (b) Orientation Selectivity

Figure 5.8: Relationship between Orientation Gradient and Orientation Selectivity. (a) The ori-
entation gradient of MAP1 is shown. White areas indicate low gradient, where the change in orientation
preference is slow, and black areas indicate high gradient, where the orientation preference of nearby neu-
rons abruptly changes. (b) The orientation selectivity of MAP1. White signifies high selectivity and black
indicates low selectivity. Notice that the scale is the reverse of that in (a) for easier comparison. High-
gradient areas correspond to low-selectivity areas as can be seen by comparing the black ridges in (a) and
(b). Such an orientation gradients plot and selectivity is commonly seen in mammalian visual cortex, and
also in computational models (figure 5.9; Blasdel 1992b; Sirosh 1995).

selectivity areas correspond to high-gradient areas. Such a pattern seems to be due to the cor-
tex trying to smoothly map the orientation dimension, suppressing activities arising from abrupt
changes in orientation.

In sum, the orientation maps that develop in PGLISSOM have qualitative and quantitative
properties that closely approximate experimental data in terms of (1) retinotopy, (2) oriented re-
ceptive fields, (3) orientation maps and features, (4) 2-D Fourier power spectrum, (5) orientation
gradient, and (6) orientation selectivity. In the next section, the lateral connection patterns will be
analyzed and compared to biological data.

5.4 Lateral Connections

As was discussed in Chapter 2, the lateral connections in the visual cortex have two general proper-
ties: (1) strong connections exist between neurons with similar orientation preferences (figure 2.4),
and (2) the connections extend in the direction along the axis of the source neuron’s orientation
preference (figure 5.10). Such connections are believed to represent correlational structures in
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Figure 5.9:Gradient of a Cortical Orientation Map. The orientation gradient in the monkey visual
cortex is plotted in gray-scale from low to high (gray! black). The high-gradient areas (dark ridges)
correspond to fractures and at the end of the fractures are pinwheel centers. The gradient map highlights
such discontinuities in orientation maps and allows us to compare the global arrangement of these features
to those of computational models. Adapted from (Blasdel 1992b).

the input and implement alocal grouping function(or association field; Chapter 1) for perceptual
grouping tasks such as contour integration.

The long-range lateral connections in PGLISSOM also self-organize into intricate patterns
that reflect the correlations in the input, and these patterns have the same two properties found
in the visual cortex. Examples of these connections in MAP2 are shown in figure 5.112 From b

throughd, the lateral connections originating from the neurons marked ina were plotted. The hue
(or color) represents the orientation preferences of the target neurons, and the intensity (how vivid
the color is) indicates the strength of the connection. Inb, the source neuron has an orientation
preference of 85 degrees (color between cyan and green), and a majority of its strong connections
are found to be of the same color. The same is true forc, andd, where the preferred orientations
were 141 degrees and 174 degrees, and the corresponding color codes were magenta and red.
Thus, the figure shows qualitatively that property 1 above holds in the model (cf. figure 2.4).
Another feature that is noticeable is the anisotropic projection of connections, i.e. the connections

2Only MAP2 connections are shown because MAP1 only had short-range excitatory connections. For the same
reason, synchrony will be measured end illustrated in MAP2 only in the rest of the thesis.
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(a) 80 degrees (b) 40 degrees

Figure 5.10:Lateral Connections in Three Shrew. The slightly deformed oval area is the entire V1
(primary visual cortex) of the tree shrew (arboreal mammal of Southeast Asia). The synaptic boutons (con-
nection terminals) of the lateral projections are plotted as black dots. The gray bar in the background is
the axis of preferred orientation of the neuron from where the projections originate, mapped from the visual
space into the cortical space. The connections are dense and circular around the center but farther away from
the center they become patchy and align along the axis of preferred orientation of the center neuron. In (a),
the neuron in the center has orientation preference of 80 degrees and in (b), 40 degrees. See also figure 2.4
for similar data plotted against the orientation map. Adapted from Bosking et al. (1997).

are stretched along a straight axis of a certain angle, and patches of connections are found along the
axis at roughly equal intervals. Such connection patterns are consistent with property 2 exhibited
in biological data (figure 5.10).

Such patterns emerge in PGLISSOM because the afferent and lateral connections adapt
to encode the statistical structure in the training input. Since the training inputs are long, elon-
gated Gaussian bars, the afferent connections form oriented receptive fields. Neurons with similar
orientation preferences whose receptive fields are aligned along a straight axis will be activated
simultaneously when a long input happens to fall upon those receptive fields. Due to the Hebbian
learning process, such neuron pairs will develop strong lateral connections. Moreover, the con-
nections are not strictly aligned along the axis, but there is also a certain degree of flank in the
connections (or an angular deviation from the axis). This flank becomes more pronounced farther
from the source neuron in a bow-tie fashion. The same pattern can be seen in biological data as
well: see e.g. figure 5.10b.

This is an important observation, since such flank allows grouping of not only straight con-
tours, but also co-circular ones. During training, the most prominent feature in the training input
was collinearity, since the inputs were straight, elongated Gaussian bars. Neurons with recep-
tive fields aligned exactly on a straight path had the greatest chance of being simultaneously active
(coactive), thus they developed strong lateral connections (figure 5.12a). However, the orientation-
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(a) Orientation Map (b) Neuron (26,31) (c) Neuron (26,17) (d) Neuron (27,27)

Figure 5.11:MAP2 Excitatory Lateral Connections (color figure). The long-range excitatory lateral
connections in MAP2 become patchy and connect neurons with similar orientation preference. (a) The
orientation map of MAP2 is shown for comparison. (b)–(d) The excitatory lateral connections of selected
neurons (marked in (a) with black arrows) are visualized in color, where the hue represents the orientation
preference as before, and the intensity represents the strength of each connection. White areas have very
weak or no connections, and vividly colored areas have very strong connections. The neurons are num-
bered in Cartesian coordinates, where the lower left corner is neuron (1,1) and the upper right corner is
neuron (54,54). (b) The excitatory lateral connections of neuron (26,17), which has orientation preference
of 85 degrees, are shown. (c) The excitatory lateral connections of neuron (26,31), which has orientation
preference of 141 degrees, are shown. (d) The excitatory lateral connections of neuron (27,27), which has
orientation preference of 174 degrees, are shown. The lateral connections link similarly orientation tuned
neurons (property 1), and the target zones are aligned along the axis extending in the direction of the orienta-
tion preference, as is the case in experimental observations (property 2). Specific connections like these are
crucial for perceptual grouping such as contour integration. Also see figures 5.10 and 2.4 for a comparison.

(a) Collinear Activation (b) Co-Circular Activation

Figure 5.12:Simultaneous Activation of Neurons. The plot shows two representative cases of coactiva-
tion, i.e. when two neurons become activated simultaneously, when a long input is presented across the two
receptive fields. (a) Collinear arrangement: the two receptive fields (black bars) are precisely aligned on a
straight path (dashed line). If a long input is presented on this path, the two neurons will respond maximally,
and the connection between them becomes stronger, according to the normalized Hebbian learning rule. (b)
Co-circular arrangement: even though the two receptive fields are mis-aligned on the path, they can still
weakly activate and the connection will become stronger, although not as strongly as in (a).
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tuned neurons not only respond to just the optimal orientation at the optimal position, they also
respond to slightly misoriented inputs (figure 5.12b). Thus, neurons with receptive fields not ex-
actly aligned on a straight path could also coactivate. Coactivation happens when the two receptive
fields can be connected with a straight path, but one or both are slightly misoriented from the axis
of the path. Coactivation in such a case gives the lateral connection the cocircular property.

So far, we have seen that the lateral connection patterns in PGLISSOM have similar qual-
itative properties as those in the visual cortex, and a possible mechanism that gives rise to such
patterns was suggested. Next, the connection patterns in the model will be quantitatively measured
and the result will be compared to biological data.

To quantitatively measure property 1, the number of MAP2 excitatory lateral connections
that connect receptive fields with orientation difference� was calculated. The result is shown in
figure 5.13a. The graph peaks at 0 degrees, and rapidly decreases to 0 as the orientation difference
increases. It shows that strong excitatory lateral connections in MAP2 are most likely to be found
between neurons that have similar orientation preference. Such a result is consistent with experi-
mental measurements (figure 5.13b), and conforms with property 1. This measure not only allows
us to compare the connectivity in the model and in the biological data, but also suggests a possi-
ble functional role for property 1. As we saw in Chapter 1, contours are believed to be grouped
through specific lateral interactions between contour elements (representing a local grouping func-
tion, or an association field). The measure presented above suggests that lateral connections could
be implementing such local grouping functions.

Next, to fully understand the role of property 2 in forming such local grouping functions, a
comprehensive quantitative measure of the spatial relationships between pairs of source and target
receptive fields were gathered. The results are not reported in this chapter, but instead, they will be
presented in Chapter 6 figure 6.5 to highlight the importance of this property in contour integration
tasks. The results showed striking similarity to edge co-occurrence statistics in natural images, and
the connections properties were well-suited for contour integration tasks.

In this section, we saw that the lateral connections that develop in PGLISSOM have close
match to biological data, and theanatomicalproperties of the lateral connections are also consistent
with those found in the visual cortex. Quantitative measures were used to precisely compare the
model and data a close match was found.

5.5 Conclusion

In this chapter, I explained how the PGLISSOM network self-organizes into orientation maps in
MAP1 and MAP2. The two maps form (1) retinotopic mapping of the visual space, (2) orientation
maps, and (3) functionally specific lateral connectivity. The self-organized orientation maps in
MAP1 and MAP2 correspond closely, forming functional columns, and these properties match
experimental data very well. The orientation preferences and the functional lateral connections
play an important role in perceptual grouping tasks such as contour integration, which is the subject

59



0

5

10

15

20

25

30

-80 -60 -40 -20 0 20 40 60 80

N
um

be
r 

of
 C

on
ne

ct
io

ns

Diffrence in Orientation Tuning (deg)

 

Median

0
2
4
6
8

10
12
14
16

-80 -60 -40 -20 0 20 40 60 80

%
 o

f T
ot

al
 B

ou
to

ns

Diffrence in Orientation Tuning (deg)

 

Median

(a) PGLISSOM (b) Bosking et al. (1997)

Figure 5.13:Difference in Orientation Preference vs. the Number of MAP2 Excitatory Lateral Con-
nections. The relations between the number of connections and difference in orientation preference in
the model and experimental data are shown. (a) The number of excitatory lateral connections in MAP2
that exceed a threshold value of 0.001 were counted, and averaged by the number of neurons. The median
of the normalized count is plotted against the angular difference in orientation preference between the two
connected neurons. (b) The same measurements in tree shrew visual cortex obtained by staining methods
are shown. Adapted from Bosking et al. (1997). Thex-axis is the difference in orientation preference of
the neurons in degrees. They-axis is the average number of connections. Both plots peak at 0 degrees, and
quickly fall off as the orientation differences become larger. This plot shows that it is more likely to find
strong excitatory lateral connections between neurons with similar orientation tuning.

of the next chapter.
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Chapter 6

Contour Integration and Segmentation

As discussed in Chapter 1, contour integration means identifying a salient continuous contour
consisting of separate edges (or contour elements) embedded in a scene cluttered with randomly-
oriented background contour elements. Psychophysical evidence suggests that contour integration
requires lateral interaction, and neurophysiological studies have revealed specific lateral connec-
tion patterns that might be implementing such functionality. In PGLISSOM, such lateral connec-
tions develop through a self-organizing process, as was shown in Chapter 5. In this chapter, I
will show how such specific lateral connections combined with synchronized activities represent-
ing grouping can account for human contour integration performance, and also show how equally
salient contours can be segmented via desynchronized activity.

6.1 Simulation Setup

As was discussed in section 1.2, contour integration accuracy in humans is maximal when orienta-
tion jitter in the global contour is 0 degree, and the accuracy decreases as a function of increasing
orientation jitter. To verify that the PGLISSOM model exhibits a similar behavior, four contour
integration experiments were carried out with varying degrees of orientation jitter.

The PGLISSOM network was trained as described in Chapter 5, with three differences in
the setup. The size of the retina was46 � 46 receptors so that the cortical magnification factor
would be large enough to represent more orientations at the same retinal location. The intra-
columnar connection radius from MAP2 to MAP1 was reduced to 1 to make the intra-columnar
receptive field size proportional to the map. The size of the training input was scaled down to
account for the reduced size of the retina: the length of the Gaussian bara2 was set to 45.0, and
the widthb2 started out from 0.6, gradually reducing to 0.45. After self-organizing for 40,000
iterations, well ordered orientation maps and patchy lateral connections emerged, similar to those
reported in Chapter 5. Lateral excitatory connections in MAP2 with weight� 0:001 were killed
afterward to model connection death as discussed in section 3.4.

With the trained network, four contour integration experiments were performed with 0, 30,
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(a) 0 degree (b) 30 degrees (c) 50 degrees (d) 70 degrees

Figure 6.1: Inputs for the Contour Integration Experiments. Each contour element is an oriented
Gaussian of lengtha2 = 3:5 and widthb2 = 1:5. The activity levels of the retinal units for the inputs are
plotted in color from 0 to maximum (black! red! yellow! white). (a) The contour runs in the middle
from left to right (0 degrees of orientation jitter). (b) The contour runs from mid-left to top-right (30 degrees
of orientation jitter). (c) The contour runs in the middle from left to right (50 degrees of orientation jitter).
(d) The contour runs in the middle from left to right (70 degrees of orientation jitter). It gets harder to
identify the contour as the orientation jitter increases.

50 and 70 degrees of orientation jitter (figure 6.1). Each contour element was an oriented Gaussian
of lengtha2 = 3:5 and widthb2 = 1:5. For the training, a long Gaussian was necessary, but for
the contour integration experiments, they were made short to fit into a single receptive field. The
network configuration and parameters were the same as above except for the following changes.
The excitatory learning rate�e in MAP2 was set to 1.0, so that lateral connections could quickly
adapt to assist the formation of synchronized populations (von der Malsburg 1981; Wang 1996).
Fast adaptation of lateral excitatory connections allow the network to quickly adjust the weights
remaining after connection death to a level that allows robust synchronization. As discussed in sec-
tion 4.3.2, higher excitation results in more robust synchronization, and increasing the excitatory
weights had the same effect. To help desynchronization and model synaptic noise, 2% noise was
added (section 4.2.2). Previously, for self-organization, the absolute refractory period (�abs) was
set to 0. The firing rates of the neurons were high as a result and the simulation proceeded in a fast
time-scale. With a larger�abs, many more iterations would have been necessary to collect an equal
number of spikes to compute an average, causing the simulation to run much longer. However, for
the contour integration experiments, a finer degree of temporal resolution was necessary, i.e. we
want to stretch time over many simulation iterations so that we can observe the synchronization
behavior with more temporal precision. For this purpose,�abs increased to 1.5. In addition, larger
�abs also helps make synchronization robust, as discussed in subsection 4.3.3. In all experiments
in this Chapter, the setup described above was used.
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6.2 Contour Integration Performance

Four different sets of inputs (figure 6.1) were presented to the trained network for 600 iterations
each, which took about 14 minutes of wall-clock time. The average number of spikes during the
600 iterations was about 60. Assuming that the firing rate is 40Hz (the-frequency band; sec-
tion 2.1.2), the 600 iterations roughly correspond to 1.5 seconds in real-time. The performance
of the network was measured in MAP2, since it has the long-range patchy excitatory lateral con-
nections for grouping, and synchronization was most robustly found in MAP2. For each contour
element, a distinct area on the map became activated (or spiked). To measure the performance
of the model, the degree of synchrony between these active areas needs to be calculated. First,
the number of spikes generated in the area of the cortex that responded to each contour element
was counted at each time step. As briefly mentioned in section 2.1.3, this quantity is called the
Multi-Unit Activity of the response, or MUA, and it corresponds to the collective activity of a
population of neurons representing a single feature in the input (Eckhorn et al. 1988, 1990). The
MUAs gathered over 600 iterations formed MUA sequences.

Figure 6.2 shows such MUA sequences for each contour element. There are nine rows in
each plot, corresponding to nine MUA sequences. The bottom three rows in each figure represent
the three contour elements constituting the salient contour. By looking at how these three bottom
rows are synchronized, we can determine the performance of the network on that particular set of
inputs. For 0-degree orientation jitter, the three bottom MUA sequences are mostly synchronized
(figure 6.2a), but as the orientation jitter increases (figure 6.2b throughd), the synchronized state
does not hold and the phases tend to shift back and forth.

In order to quantitatively measure the degree of synchronization between two areas, the
linear correlation coefficientr between their MUA sequences was calculated as follows:

r =

P
i(xi � �x)(yi � �y)qP

i(xi � �x)2
qP

i(yi � �y)2
; (6.1)

wherexi andyi, i = 1; :::; N are the MUA values at timei for the two areas representing the two
different objects in the scene, and�x and�y are the mean MUA values of each sequence.

Using r as the measure, the contour integration performance of the network in the four
different input configurations was calculated. The network was presented with each input for 600
iterations and the MUAs of MAP2 areas corresponding to the nine input contour elements were
obtained. Then, the correlation coefficients between all possible pairs of MUAs were calculated.
These coefficients represent the perceptual salience of such pairs. The higher these values are, the
more synchronized the areas are, thus representing a strong percept of a contour. The average of
the within-contour correlations was used as a measure of overall performance of the model (the
variation was low). The results are summarized in figure 6.3, together with the human performance
data from Geisler et al. (1999, 2001). The plot shows that at low orientation jitter, the model and
human performance are both high, but as orientation jitter becomes larger, they both decrease in
a similar manner. Correlation coefficients between MUA pairs corresponding to two background
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(a) 0 Degrees of Orientation Jitter

(b) 30 Degrees of Orientation Jitter

(c) 50 Degrees of Orientation Jitter

(d) 70 Degrees of Orientation Jitter

Figure 6.2:Multi-Unit Activities in the Contour Integration Experiments. The Multi-Unit Activities
(MUAs) of the active areas are shown in color scale from low to high (black! red! yellow! white).
Thex-axis is the simulation iteration and they-axis, consisting of nine rows, is the index of the MUA area
for the corresponding input. The bottom three rows represent the MUAs of the salient contour, and the top
six rows represent MUAs of the random background contour elements. In all cases (a to d), the background
MUAs are unsynchronized. The MUAs corresponding to the continuous contour are highly synchronized
for 0 degrees of orientation jitter, but gradually become less synchronized as the orientation jitter increases.
A quantitative measure reveals this tendency more clearly (figure 6.3).

contour elements, or pairs between a background and a contour element in the salient contour
remained low, usually around 0 (not shown), thus they were not perceptually salient.

The neural mechanism for such a fall-off in perceptual performance with increasing ori-
entation jitter is believed to be linked to the specific lateral connection patterns. Next, the lateral
connection statistics of the model will be calculated to examine the connection properties and
establish a link to perceptual performance.
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Figure 6.3:Contour Integration Performance. The contour integration performance of the model was
measured as the average correlation coefficient between MUA sequences constituting the salient contour.
The model performance is compared to human contour integration accuracy (Geisler et al. 1999, 2001;
RMS amplitude 12.5, fractal exponent 1.5, which is the closest match to their data given our limited input
configuration). Thex-axis is the orientation jitter in degrees. They-axis on the left is the correlation
coefficient of MUA sequences in the model experiments, and they-axis on the right is the human contour
integration accuracy (percent correct). In both model and human experiments, the performance quickly
drops as orientation jitter increases.

6.3 The Role of Lateral Connections

As we saw in Chapter 5, the lateral connections in PGLISSOM have two specific anatomical prop-
erties: (1) strong connections exist between neurons with similar orientation preferences, and (2)
the connections extend in the direction along the axis of the source neuron’s orientation preference.
These properties are believed to allow the connections to encode specific local grouping functions
(or association fields) for perceptual grouping tasks such as contour integration.

However, to understand the functional role of these connections in visual space (not in
cortical space), the relationships between thereceptive fieldsof the connected neurons need to be
examined. By looking at the receptive fields and the lateral connections of the neurons, we can
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Figure 6.4:Spatial Relationship between Receptive Fields.For each excitatory lateral connection in
MAP2 remaining after connection death, the spatial relationship between the two receptive fields (thick
bars) is defined by three quantities: the difference in relative orientation preference (�), the direction of
target receptive field center relative to the preferred orientation of the reference neuron (�), and the distance
between the two receptive field centers (Æ). The receptive field center was calculated as the center-of-gravity
of the afferent weight matrix. Notice that these values measure the spatial relationship between the two
neurons in the retinal (or visual) space, not in the cortical space. These measures were adopted from Geisler
et al. (2001) for comparison with experimental data.

see which input features in a scene activate neurons that have strong lateral connections between
them. In other words, we can estimate how strongly a pair of input features is bound together in
the cortex through lateral connections. In reverse, for each lateral connection, we can see what
the input features are that the connection binds together. By comparing the input features that are
bound together by lateral connections to the perceptual performance of humans on these features,
we can relate perceptual performance to neural structures.

To reveal the precise functional role of the patchy lateral connections, the spatial relation-
ships between receptive fields of connected neurons were gathered from the lateral excitatory con-
nections in MAP2 that remained after connection death. Figure 6.4 defines the quantities that
summarize the spatial relationship between a pair of receptive fields. The results are summarized
in figure 6.5a.

In figure 6.5a, the reference (or source) receptive field is positioned in the center, aligned
along the horizontal axis. The relationship between the source receptive field and the target re-
ceptive fields are plotted in two ways: (1) the most probable orientation of the target receptive
field (�) at location (�; Æ) is plotted as a black oriented bar, and (2) the relative log-probability (or
normalized log-probability) of finding a target receptive field at location (�; Æ) in polar coordinates
is shown in color scale. Two properties are evident in the plot: (1) the most probable receptive
field orientation� (black oriented bars) of the target neurons are aligned along co-circular paths
(not shown) emanating from the center and (2) the locations (�; Æ) with high relative probability
(the red, yellow, and green areas) form a bow-tie shaped flank along the horizontal axis. In other
words, for the neurons connected with strong lateral connections, most target receptive fields are
(1) aligned on an arc passing through the source receptive field, (2) they are mostly concentrated
on arcs with small curvatures, and (3) they are within a limited spatial extent (i.e. establish local
interaction).
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(a) Model: Lateral Connections (b) Edge Co-Occurrence in Nature

Figure 6.5: Lateral Connection Statistics and Edge Co-Occurrence Statistics (color figure). The
lateral connection statistics in the model and the edge co-occurrence statistics in nature are compared to see
how they relate to perceptual requirements. (a) The�, �, andÆ values for the target receptive fields of lateral
excitatory connection in MAP2 are shown (see figure 6.4 for the definitions). The plot at any location (�; Æ)
consists of two components: (1) the black oriented bars representing the most probable orientation of target
receptive field�, and (2) the color scale polar plot in the background showing the relative log-probability
of finding a receptive field at each location (�; Æ). The color scale represents the interval [0.01,1.0] (purple
! blue! cyan! green! yellow! red). For weak connections, the oriented bar representing� was not
plotted. Two properties are evident in the plot: (1) the most probable target receptive field orientations�

(black oriented bars) are aligned along co-circular paths (not shown) emanating from the center and (2) the
positions (�; Æ) with high relative probability (the red, yellow, and green areas) form a bow-tie shaped flank
along the horizontal axis. Such an arrangement is very similar to the local grouping functions (or association
fields) suggested by psychophysical research. (b) The Bayesian edge co-occurrence statistics. Adapted
from Geisler et al. (2001). The plot shows the likelihood ratio of the conditional probability of a pair of
edge elements in a given configuration (�; �; Æ) belonging to asame physical contourvs.different physical
contoursin natural images. A high likelihood ratio indicates that a pair of edges in that configuration is more
likely to occur on acommon natural contourthan onseparate contours. The conditional probabilities were
determined through manual labeling of contours in real world images. There is a strong correspondence
between this data and the connection statistics in the model, suggesting that the connections encode the
statistical regularities in the environment through self-organization.
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These statistics show that neurons with receptive fields falling upon a common smooth con-
tour are most likely to be connected with lateral excitatory connections. Such a pattern closely
matches theassociation fieldproposed by Field et al. (1993a; figure 1.2), thus suggesting that per-
ceptual grouping rules can actually be implemented in the intricate patterns of lateral connections
in the brain.

In fact, such connection patterns actually predict the contour integration performance shown
in section 6.2. Since receptive fields aligned on an arc with smaller curvatures prefer to connect
laterally, inputs with smaller orientation jitter would be more strongly bound together than those
with large orientation jitter. Such a comparison between anatomy and performance helps us gain
insights into how specific neural structures account for perceptual performance.

Furthermore, these functional statistics in the model are similar to the local Bayesian edge
co-occurrence statistics in natural images (Geisler et al. 2001; figure 6.5b) 1. The edge co-occurrence
statistics shown in the figure summarize the probability of a pair of edges under configuration
(�; �; Æ) falling upon a common physical contour, such as the contours of tree trunks, large boul-
ders, etc. The properties found in the PGLISSOM connection statistics are also found in the edge
co-occurrence statistics. In fact, Geisler et al. (2001) showed that these edge co-occurrence statis-
tics accurately predict human contour integration performance.

The above comparison suggests that the oriented edge features bound together by lateral
connections in PGLISSOM are also most likely to be found on a common natural contour. How-
ever, it is surprising that connections with such grouping rules arise in a network that was trained
with only straight Gaussian inputs. This result suggests that self-organizing the visual cortex with
inputs as simple as elongated Gaussian bars prepares an animal for the visual environment even
before birth.

In sum, by comparing the statistics, we can establish a link between the statistical struc-
tures in nature and the anatomical structures in the brain. Thus, together with the comparison of
perceptual performance and connection statistics, we can bring together (1) the statistical regular-
ities in the natural environment, (2) the anatomical structures in the cortex, and (3) the perceptual
performance into an integrated model, where one aspect can be inferred from the other.

6.4 Contour Segmentation Performance

Importantly, the synchronization process that establishes the contour percept can also separate
different contours to different percepts. The same self-organized network with the same simulation
parameters as listed in section 6.1 were used for the contour segmentation experiment. Three nearly
collinear contours in a random background were presented as input (figure 6.6) and the correlations
between and across the MUAs representing the input contour elements were calculated.

Figure 6.7 shows the actual MUA sequences of the 9 areas in color code. The bottom three
rows correspond to the contour at the bottom, the middle three rows to the contour in the middle,

1Similar edge co-occurrence statistics were also reported by Sigman et al. (2001).
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Figure 6.6: Input for Contour Segmentation. The input for the contour segmentation experiment
consisted of three long horizontal contours, from the top row to the bottom row. The color code and the
input sizes are identical to that in figure 6.1.

Figure 6.7:Multi-Unit Activities for the Three Contours. The MUAs corresponding to the nine contour
elements in the input are shown. The plotting conventions are identical to those in in figure 6.2. The bottom
three rows correspond to the three contour elements in the bottom of the input, and likewise for the middle
three rows and top three rows (cf. figure 6.6). The MUA sequences of each group of three are synchronized,
and between groups, the activities are desynchronized. In other words, three areas representing the same
contour fire together, while other areas remain silent. Such an alternating activation of neuronal groups
ensures that a coherent object is represented and is not mixed with representations of other coherent objects.

and the top three rows to the contour at the top in figure 6.6. By comparing the rows in the plot,
we can see that in the beginning all areas are mostly synchronized, but as lateral interactions start
to take effect, the MUAs start to form three major groups firing in three alternating phases. The
correlation coefficients of areas in the same contour are consistently high while those in different
contours are very low (figure 6.8), signifying integration within each contour and segmentation
across the two contours. This result suggests that the same circuitry responsible for contour inte-
gration can also be responsible for segmentation between multiple salient contours.

In the segmentation experiment, PGLISSOM was used to segment three objects, i.e. the
three contours. The number of objects that can be segmented in PGLISSOM reaches up to about
6, but above that, representations for some objects will be synchronized instead of being desyn-
chronized. A similar limitation was reported in Horn and Opher (1998) and it was proposed that
such limitation may actually account for the limited number of short term memory slots of7 � 2

discovered by Miller in 1956 (Horn and Usher 1992). However, in a separate experiment with
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Figure 6.8:Contour Segmentation Performance. The average correlation coefficients between pairs
of MUA sequences (1) within the same contour and (2) across different contours are plotted. For MUA
sequence pairs in the same contour, the correlation is high, but for those belonging to different contours, the
correlation is low. This means that neurons within a group are synchronized, while neurons belonging to
different groups are desynchronized.

PGLISSOM (not presented in this thesis), it was shown that even when different representations
are synchronized, the synchronized state is not permanent. Synchrony eventually breaks, and
another pair of representations that was previously desynchronized become synchronized. There-
fore, theoretically, even with the small capacity for segmentation, any number of objects can be
segmented if the degree of synchrony is measured over a long period of time.

6.5 Conclusion

In this chapter, I have shown how synchronized representations, together with specific, self-organized
lateral connections, gives rise to contour integration performance similar to human performance.
This result is due to the lateral connectivity pattern that prefers co-circular grouping. The lat-
eral connection statistics were gathered and compared to Bayesian edge co-occurrence statistics
in natural images, and were found to be very similar. Correlation coefficients of MUA sequences
were used to measure the model performance. Such a measure can be used in neurophysiological
experiments to establish a solid link between perceptual experience and neuronal activity.
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Chapter 7

Hemifield Differences in Anatomy and
Performance

Psychophysical experiments have shown that performance differences exist in illusory contour
discrimination and contour integration tasks in different parts of the visual field. PGLISSOM can
provide a possible explanation for such differences. As we saw in Chapter 6, the lateral connection
patterns in PGLISSOM determine its contour integration performance. Since these patterns are
learned through input-driven self-organization, different input distributions in different parts of the
visual field will result in different patterns in the corresponding map areas. Such differences in
connectivity, in turn, will cause the contour integration performance to differ in different parts of
the visual field. In this chapter, I will show how altering the input distributions affects the self-
organized structure and contour integration performance of the PGLISSOM model, providing a
possible developmental explanation for the observed performance differences in different parts of
the visual field.

7.1 Motivation

Perceptual performance has been shown to differs in different parts of the visual field in two ways:
(1) lower visual hemifield is more accurate in illusory contour discrimination tasks than upper
visual hemifield (Rubin et al. 1996), and (2) contour integration is easier in fovea than periph-
ery (Hess and Dakin 1997). Studying these specific phenomena can provide us with insights into
how and why functional divisions occur in the brain in general. In this chapter, I will focus on the
lower vs. upper visual hemifield difference, but will also discuss the case of fovea vs. periphery in
Chapter 9.

Rubin et al. compared the performance of humans on discriminating the angle made by
illusory contours in the lower vs. upper hemifield (see figure 8.1a for an example stimulus). The
pacman-like disks were rotated by small amounts so that the perceived square in the middle would
look either thick (like a barrel) or thin (like an hour glass). Rubin et al. presented the inputs in
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either the lower or upper visual hemifields and measured the minimum amount of rotation (i.e.
threshold) needed for the subject to reliably tell whether the input was thick or thin. The results
showed that the threshold is much higher in the upper hemifield than in the lower hemifield, i.e.
the performance was higher in the lower hemifield than in the upper hemifield. Similar results are
expected for contour integration tasks, although such experiments have not been carried out so far.

The questions are then, (1) how and (2) why do such differences in performance occur?
A possible answer to the first question is that the structure may differ among the cortical areas
mapping the different parts of the visual field. The second question then becomes, why do the
structures differ? In a self-organizing map model such as PGLISSOM, structural differences are
caused by differences in the input distribution, which suggests that the answer may lie in the kinds
of inputs that different cortical areas receive.

The inputs can be differed in two ways: (1) due to passive environmental biases and (2) due
to active attentional biases. There is evidence for both cases. For example, in animals with high
dexterity such as monkeys, the lower hemifield would receive much more detailed input features
compared to the upper hemifield because the animal manipulates objects mostly in the lower hemi-
field, thus causing the input distribution to be different in the lower vs. upper hemifield (Gibson
1950; Nakayama and Shimojo 1992; Previc 1990). Second, there is evidence that human saccadde
and attention cause input distributions to be different in the fovea vs. periphery. Zador and Pearl-
mutter (1996) presented natural images to humans and gathered statistics about the locations in the
image to which the human attended, by tracking eye movements. They showed that the areas of
attention had higher than average luminance contrast. Since the attended areas mostly project to
the fovea, the statistical properties will differ in the fovea vs. the periphery. Such evidence suggest
that input statistics can differ in different parts of the cortex due to attentional bias, and provides a
possible cause for the differential development of areas.

In the following, the validity of the developmental explanation will be tested in computa-
tional experiments using PGLISSOM.

7.2 Simulation Setup

To test the effect of altered input distributions on the structure and function of the model, the
frequency of input presentation in the lower vs. upper hemifield was made different. For each
training iteration, a randomly oriented elongated Gaussian bar was presented to the visual field at
a random location. In the lower visual hemifield, the input was kept intact. In the upper visual
hemifield, the input was only allowed to appear 50% of the time, at uniformly random iterations.
In other words, the pixels in the upper visual field were turned off 50% of the time.

The PGLISSOM network was trained otherwise with the same configuration as in Chap-
ter 5.

To make it easy to interpret the results, the upper visual hemifield was projected to the upper
half of the PGLISSOM network, and the lower visual hemifield to the lower half.
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(a) MAP1 (b) MAP2

Figure 7.1:Orientation Maps in Lower vs. Upper Half of PGLISSOM ( color figure). The orientation
preference of each cortical neuron was calculated using the vector sum method (section 5.3) for (a) MAP1
and (b) MAP2. The plotting convention is the same as in figure 5.3 where the color represents orientation
preference. The orientation maps are comparable to the previous results. The red horizontal band in the
middle of each map is an artifact and will be excluded from the analysis in the rest of the chapter. Also,
the lower and upper portions of the map are very similar, thus the difference in input distribution affect the
orientation preference.

7.3 Differences in Afferent and Lateral Connections

After training the network for 40,000 iterations, orientation maps comparable to those in the previ-
ous self-organization experiments emerged (figure 7.1). However, there is a noticeable artifact. In
the middle of each map, there is a boundary between the lower and upper half. These neurons have
receptive fields that span both sides of the boundary. They receive more input in the lower half,
and as a result, their receptive fields become half-circles. Such receptive fields prefer horizontal
inputs, resulting in horizontal preference bands in the middle of each map. Because this band is
just an artifact, the area surrounding the band will not be used in the analysis in the rest of this
chapter.

As expected, two kinds of differences emerged in the lower vs. upper half of the cortex:
difference in (1) orientation selectivity and (2) lateral connection statistics.

Selectivities of neurons in MAP1 was calculated using the vector sum method described in
section 5.3, and the results are plotted in figure 7.2a. Orientation selectivity in MAP2 are similar
(not shown). We can see that the lower half is brighter than the upper half of the cortex, suggest-
ing that orientation selectivity is generally higher in the lower half of the map. The orientation
selectivity histogram demonstrates this tendency more clearly (figure 7.2b). The histogram for the
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Figure 7.2:Orientation Selectivity in Lower vs. Upper Half of MAP1. The orientation selectivity of
each MAP1 neuron was calculated using the vector sum method (section 5.3). (a) Orientation selectivity of
each neuron is plotted in gray-scale from low to high (black! white). The upper half is darker, suggesting
less selectivity for the upper visual hemifield. (b) Orientation selectivity histograms for lower (filled circles)
and upper (open circles) half of the cortex are plotted. The136 � 10 horizontal area in the middle was
excluded from the histogram calculation to avoid the band artifact from skewing the histogram. For neurons
in the upper half, the histogram peaks at around 0.27, while for the lower half neurons, the peak is around
0.24. The histograms show that the neurons in the lower half, exposed to more frequent inputs, develop
higher orientation selectivity than the upper half neurons. Thus, sharp edges in the visual field will draw
higher response from the lower half of the map than from the upper half.

lower half (filled circles) is skewed toward higher orientation selectivity, compared to the upper
half (open circles), confirming the above observation. Thus, sharply orientation-tuned edges will
generate higher response if placed in the lower visual hemifield than in the upper visual hemifield.

The difference in orientation selectivity can be explained in terms of Hebbian learning. In
the beginning of the training, the circular receptive fields are initialized to have random weights,
and these receptive fields have very low orientation selectivity. As they are trained with elongated
Gaussian bars, they start to take on an oriented shape. Early on, the receptive fields look like thick
Gaussians, but as they get trained by more thin Gaussians, they will become thinner. The upper
half of the map trained less, and the receptive fields tend to remain thicker than those in the lower
half of the map.

We have seen that the frequency of input presentation alone can cause the afferent connec-
tion properties to differ in the two areas of the cortex. The lateral connections in PGLISSOM also
self-organize according to the input, thus the difference in input distribution causes the final struc-
ture of lateral connections to differ as well. To compare the properties of the lateral connection
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(a) Lower Hemifield (b) Upper Hemifield

Figure 7.3:Excitatory Lateral Connection Statistics in Upper vs. Lower Half of MAP2 (color figure).
The excitatory lateral connection statistics in MAP2 were gathered and plotted as in Chapter 6, for the (a)
lower and (b) upper half of the map. Again, the136� 10 horizontal area in the middle was excluded. There
are two noticeable differences: (1) high probability areas (green,yellow, and red) along the horizontal axis
in (a) are longer than in (b), and (2) the most probable� (black oriented bars) are co-circular in the lower
half (a), but in the upper half (b) they are mostly collinear or aligned on separate parallel paths. Such results
predict that curved contours may be easier to detect in the lower visual hemifield than in the upper hemifield.

patterns in the lower vs. upper half of the map, the(�; �; Æ) statistics was calculated as in Chapter 6.
The results are shown in figure 7.3. There are two major differences in these statistics. First, the
high probability areas extend out longer on the horizontal axis for the lower half of the map than
the upper half. Thus, the lower half can group more distant inputs than the upper half. Second,
the most probable� for a given(�; Æ) location shows a more co-circular tendency in the lower half
of the map, while in the upper half, it is more collinear (the black edges are more parallel). Thus,
the difference suggests that in the lower half of the map (lower visual hemifield), (1) lateral con-
nections exert influence over longer distance in the visual field, and (2) curved contours are easier
to detect than in the upper half (upper visual hemifield). The only difference during training was
the frequency of input presentation, thus such a difference could be the only cause for the differing
lateral connections.

As we saw in section 5.4, collinearity is the most prominent feature learned by lateral con-
nections, but co-circularity can also be learned due to the co-activation of neurons with misaligned
receptive fields (figure 5.11). However, the upper half of the map could only learn the primary
property (collinearity) because of the scarce input presentations. Co-circularity develops slower
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(a) Lower: 0o (b) Lower: 40o (c) Upper:0o (d) Upper:40o

Figure 7.4: Inputs in the Lower and Upper Hemifields. The inputs for the four contour integration
experiments are shown, consisting of oriented Gaussians of size�x = 3:5 and�y = 1:5. The intensity
of the input is coded in color scale, from low to high (black! red! yellow! white). The location of
the contour (lower vs. upper hemifield) and the orientation jitter (0-degree and 40-degree) were varied: (a)
Lower hemifield, 0 degrees of orientation jitter. (b) Lower hemifield, 40 degrees of orientation jitter. (c)
Upper hemifield, 0 degrees of orientation jitter. (d) Upper hemifield, 40 degrees orientation jitter.

than collinearity because of the activities are lower in the co-circular arrangement. The lower half
of the map had enough input presentations and was able to learn the secondary (co-circularity)
property as well.

In sum, the areas of the map that receive less frequent input have lower orientation selectiv-
ity and the lateral connection statistics show more collinear than co-circular characteristics. Such
difference in structure predicts that contour integration performance will differ in the two areas,
which will be tested in the next section.

7.4 Differences in Contour Integration Performance

Four contour integration experiments were performed to see if there is a difference in performance
in the lower vs. upper half of the map trained with different input presentation frequencies. The
network trained in section 7.3 was used for these experiments, with the same setup as described in
section 6.1. The only difference was the input layout (figure 7.4).

For each experiment, the network was activated for 600 iterations and the MUA sequences
corresponding to the three contour elements were gathered. Figure 7.5 shows the complete MUA
sequences. The MUAs are more synchronized for the lower-hemifield inputs than for the upper-
hemifield inputs even when the orientation jitter is the same (compare figure 7.5a vs.c, andb vs.d).
The correlation coefficients of these MUA sequences confirm this observation (figure 7.6). From
this plot, we can see that the MUAs in the lower half of the map, are more synchronized (i.e. the
MUA values are vertically aligned in the plot) than the MUAs in the upper half of the map. The
results show that in both 0 degree and 40 degrees of orientation jitter, the lower half of the map
performed better than the upper half. Another noticeable feature in the plot is that the performance
gap is more pronounced in the 40-degree case than the 0-degree case.
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(a) Lower Hemifield: 0 degree

(b) Lower Hemifield: 40 degree

(c) Upper Hemifield: 0 degree

(d) Upper Hemifield: 40 degree

Figure 7.5: Multi-Unit Activities in the Lower vs. Upper Half of MAP2. The MUAs for the four
input conditions in figure 7.4 are shown. The magnitude of the MUA is coded in color scale, from low to
high (black! red! yellow! white). In each plot, the three rows correspond to the MUA sequences for
the three contour elements in the input. For the same orientation jitter range (0 or 40-degree), we can see
that the lower hemifield shows a higher degree of synchrony; for example, compare (a) vs. (c), and (b) vs.
(d). The correlation coefficients between the MUA sequences in each experiment confirm this observation
(figure 7.6).

Such a performance difference is predicted by the afferent and lateral connection patterns
presented in 7.3. For 0-degree orientation jitter, the difference is mostly due to the difference in
afferent connection properties, i.e. orientation selectivity. In both lower and upper half of the map,
lateral connections can group collinear contours. With 40-degrees of orientation jitter, the perfor-
mance gap is larger than in the 0-degree case. Since each neighboring pair of contour elements
can be aligned on a co-circular path and lateral connections in the lower half of the map can group
co-circular contours, contours of even high orientation jitter can be detected. In contrast, lateral
connections in the upper half can only group collinear contours. Thus, the larger performance gap
is due to the different lateral connection patterns.
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Figure 7.6:Contour Integration Performance in Lower vs. Upper Hemifield. For each input consisting
of 3 contour elements, the correlation coefficients between the MUA sequences in figure 6.3 were calculated,
and the average was used as the measure of performance, as in Chapter 6. For both 0-degree and 40-
degree orientation jitter, lower hemifield (filled circles) had higher correlation than the upper hemifield
(open circles). The performance gap in the lower vs. upper hemifield is more pronounced in the 40-degree
case, as predicted by the lateral connection patterns in figure 7.3.

7.5 Conclusion

In this chapter, I have shown that altering the input distribution as simple as frequency of presenta-
tion can change the structural organization of the maps, and this in turn affects contour integration
performance. Such differences in structure and function are due to the input-driven nature of self-
organization, and provide a possible developmental explanation for the hemifield differences in
contour integration found in psychophysical experiments.
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Chapter 8

Illusory Contours and Contour Completion

Illusory contours are clear borders that are perceived in images that do not have luminance contrast
corresponding to the borders. There is experimental evidence that such phenomena occur early on
in the visual system (V1 and V2, i.e. the primary and secondary visual cortex), the same level where
contour integration is believed to take place. Lateral interactions may be necessary in illusory
contour detection tasks as well as in contour integration tasks. In this chapter, I will show how the
same self-organized lateral connections in PGLISSOM used in contour integration can account for
certain illusory contour phenomena.

8.1 Motivation

Examples of illusory contours are shown in figure 8.1, where (a) the triangle, and (b) the circle at
the center are immediately visible, but there are no luminance borders around these objects. Fol-
lowing the initial discovery by Schumann (1904), illusory contours were made popular by Ehren-
stein (1941) and Kanizsa (1955), and they have become an important subject in visual perception
because of their relation to figure-ground separation, occluded object recognition, and perceptual
grouping in general (Lesher and Mingolla 1995).

Early on, those were the main theory about the cause of illusory contour perception: (1)
bottom-up brightness theory and (2) top-down cognitive factor theory. Brightness theory main-
tained that illusory contours arise from a low-level mechanism that gives illusory brightness to ar-
eas enclosed by illusory borders. On the other hand, cognitive theorist argued that illusory contours
are purely a high-level cognitive phenomenon. However, evidence has started to appear suggesting
that neither of these theories can account for the full range of illusory contour phenomena. Kanizsa
(1976), Parks (1980), and Prazdny (1983) discovered that illusory contours can arise from image
configurations without subjective brightness, providing a counterexample to the brightness theory
(see Hoffman 1998 for an overview). On the other hand, Peterhans et al. (1986) and von der Heydt
and Peterhans (1989) showed that V2 cells respond to illusory contours, and Redies et al. (1986)
and Sheth et al. (1996) showed that so do V1 cells. Such experimental results showed that illusory
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(a) Kanizsa Triangle (b) Ehrenstein Figure

Figure 8.1: Two Types of Illusory Contours. Illusory contours formed along two different stimulus
configurations are shown: (a) empty space between separate, but collinearly aligned edges (the three sides
of the bright triangle in the middle), or (b) line-ends (the border of the bright circle in the middle). The edges
belonging to the mouths of the three black pacmans in (a), and the line-ends around the illusory circle in (b)
are thought to be responsible for giving rise to (orinducing) the illusory percept. Such edges and line-ends
are commonly known asedge inducersand line-end inducersof illusory contours (Lesher and Mingolla
1995).

contour can be processed early on, unlike what the cognitive theories suggested.
Meanwhile, neural network models based on low-level neural architectures were intro-

duced. These models were based on the observation that illusory contours can be triggered by
two types of stimulus configurations:edge inducersand line-end inducers(see figure 8.1 for a
definition of these terms). The Kanizsa triangle in figure 8.1 is a representative of edge-induced
illusory contours, where the contour forms parallel (or collinear) along the inducing edges of the
pacmans. The Ehrenstein figure in figure 8.1 is a good example of line-end induced illusory con-
tours, where the border of the circle is orthogonal to the line ends near the center.

The first neural network model of illusory contour was based on edge inducers, and illusory
contours were processed through contour completion (Ullman 1976). Figure 8.2 shows an example
of how such an edge-induced contour can be formed by contour completion. However, subsequent
models were based on line-end inducers: they modeled illusory contours defined by edge inducers
as a special case. In these models, the corners where the edges meet (e.g. inside the mouths of the
pacmans in figure 8.1a) and the tip of convex angles (e.g. the tip of the mouths of the pacmans)
were processed as line-ends with good results (Peterhans et al. 1986; Finkel and Edelman 1989).
Shipley and Kellman (1992) later found that models strictly based on line-end inducers cannot
account for psychophysical results where increasing the length of the inducing edge causes the
illusory contour to become clearer. The line-end inducer models predicted that such an increase in
clarity would not happen. Thus, no single model could account for both inducer types.

In the model developed by Grossberg and Mingolla (1985), the two inducer types were
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Figure 8.2:Contour Completion across Edge-Inducers. Contour completion is a possible mechanism
for illusory contours arising from edge inducers. After the retinal and thalamic preprocessing, the inputs
received by the primary visual cortex cells become similar to edge-detected versions of the original images.
An example of the edge-detected image of figure 8.1a is shown above in solid lines. The three sides (one
side is marked with a dashed oval) of the edge-detected illusory triangle in the center have gaps (such as the
one pointed by an arrow) in the middle of each side. A triangle boundary can be generated by completing
the discontinuous contours on the three sides.

incorporated. In the first stage of their model, borders formed orthogonal to the line-end inducers,
and in the second stage, borders formed parallel (or collinear) to both line-end and edge inducers.
The model was based on known neurophysiological data and was able to predict and confirm
various illusory contour phenomena. In the second stage, neurons calledcooperative bipole cells,
with bow-tie shaped receptive fields were used (figure 8.3). These receptive fields were formed
by combining the responses of two first stage neurons. Such a neuron activated only when stimuli
were present on both lobes of receptive fields. This property is called thebipole propertyand the
neurons with such a property can be used in contour completion. Neurons with such properties
are found in V2 (von der Heydt and Peterhans 1989), but in V1, a conclusive evidence yet need to
be discovered. With such neurons, the model and its successors were able to successfully model
illusory contours where contour completion had an important role (Gove et al. 1993; Grossberg
et al. 1997; Grossberg and Williamson 2001; Grossberg 1999; Ross et al. 2000).

It is possible that the self-organized lateral connections in PGLISSOM shown in Chapter 6
can mediate contour completion as well. In this chapter, the PGLISSOM will be tested with contour
completion tasks, and various conditions under which completion occurs will be analyzed.

8.2 Contour Completion Performance

In PGLISSOM, the self-organized excitatory lateral connections have the appropriate structure to
perform contour completion. To test if the existing circuitry in PGLISSOM is able to fill in gaps in
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(a) Active (b) Inactive

Figure 8.3:Cooperative Bipole Cells. The (a) active and (b) inactive stimulus conditions are shown
for the cooperative bipole cells proposed by Grossberg and Mingolla (1985). The cell is active when both
lobes are stimulated with inputs roughly collinear to the horizontal axis. However, when only one lobe is
stimulated, the cell is silent. Such behavior is called thebipole property. Adapted from Ross et al. (2000).

(a) Contour Completion Input (b) Single Edge Input

Figure 8.4: Inputs for the Contour Completion Experiments. The inputs are oriented Gaussians of
lengtha2 = 3:5 and widthb2 = 1:5. The intensity of the input is coded in color scale, from low to high
(black! red! yellow! white). (a) The four contour elements with a gap in the middle are shown. This
input corresponds to one of the sides in the edge-detected Kanizsa triangle (figure 8.2; dashed oval). (b)
Two contour elements from only one side of the gap are shown. This input will be used to verify that such
one-sided input is not sufficient to activate the gap.

contours, a PGLISSOM network with the same configuration, training schedule, and testing setup
as in the contour integration experiments in section 6.1 was used. The network was presented
with a straight contour with a gap in the middle as shown in figure 8.4a. The contour with a gap
represented one side of the edge-detected Kanizsa triangle in figure 8.2.

Another crucial test is to see if contour elements on one side of the gap do not activate
the gap. An input consisting of only half the contour was presented to the network for this test
(figure 8.4b). The prediction is that for the first stimulus, the gap will befilled-in by the network,
but in the second case, it will not.

The network was activated for 600 iterations, and the MUA sequences for the five areas
of MAP2 representing the four input contour elements and the gap were gathered. The complete
MUA sequences are shown in figure 8.5. For the contour completion input (figure 8.4a), the MUA
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(a) Contour Completion

(b) Single Edge

Figure 8.5:Multi-Unit Activities for Contour Completion Experiments. (a) The MUA sequences for
the four contour elements (bottom four rows) and the gap (top row) are shown. Even though there were no
inputs in the middle, the cortical area representing the gap is activated, and the activations are synchronized
with the other four MUA sequences. This behavior indicates that contour completion occurred and the gap
is perceived as an illusory edge. (b) The MUA sequences for the two contour elements (bottom two rows)
and the gap (top row) are shown. The MUA sequence for the gap shows no activity, indicating that contour
completion did not occur. Thus, both sides of the gap need to be stimulated for the gap to be perceived as an
edge. This behavior is similar to the bipole property (figure 8.3).

sequence representing the gap (top row) indeed shows activity, and this activity is synchronized
with the rest of the MUA sequences (bottom four rows). This way, the gap is perceived as part of
a contour. However, for the single edge input (figure 8.4b), the MUA sequence representing the
gap (top row) shows no activity, while the rest of the MUA sequences (bottom two rows) are active
and synchronized. Thus, the same self-organized circuitry in PGLISSOM that is responsible for
contour integration can also account for contour completion, and can be the neural mechanism for
illusory contours arising from edge inducers.

To further test the ability of the model to support a more realistic illusory contour tasks,
a simplified illusory triangle was presented to the network (figure 8.6b). The triangle with gaps
in each of the three sides approximates the edge-detected Kanizsa triangle in figure 8.2. The
network was also tested with one vertex of the triangle removed (figure 8.6c) to see if both sides
of the gaps are necessary for contour completion. Figure 8.13 shows the actual Kanizsa triangles
corresponding to these inputs.

The simulation setup and data gathering methods were the same as described above in this
section. The inputs were numbered from 1 to 9 (figure 8.6a), where 2, 5, and 8 are the gaps.
The corresponding MUAs for the contour elements and the gaps were gathered and the results are
shown in figure 8.7.

The results show that for the full triangle (figure 8.6b), the gaps 2, 5, and 8 are all activated
and synchronized with the neighboring contour elements, indicating that the gaps are perceived as
part of the contours. However, for the broken triangle, the gaps 2 and 8 were no longer filled in,

83



1
2

3

4 5 6

7
8

9

(a) Input Numbers (b) Triangle (c) Broken Triangle

Figure 8.6: Illusory Triangle Inputs. The inputs for the illusory triangle experiments and the input
numbers are shown. The color code and the contour element sizes are the same as those in figure 8.4. (a)
The contour elements and the gaps are numbered from 1 to 9, with the gaps numbered 2, 5, and 8. (b) A
full triangle with gaps in the middle of each side is shown. This input is the central triangular part of the
edge-detected Kanizsa triangle in figure 8.2. (c) A broken triangle where one vertex (inputs 1 and 9) was
removed. This input was used to test if gaps 2 and 8 will be filled in when the two inducing edges are
removed. See also figure 8.13 for the corresponding Kanizsa triangles.

(a) Triangle

(b) Broken Triangle

Figure 8.7:Multi-Unit Activities for the Illusory Triangle Inputs. The MUA sequences for the nine
input regions are shown. The rows are numbered 1 to 9 from bottom to top, and they correspond to the
input numbers in figure 8.6a. (a) The MUA sequences for the triangle input in figure 8.6b are shown.
The rows corresponding to gaps 2, 5, and 8 are all active and synchronized with the neighboring inputs.
Overall, the three MUA sequences representing one side of the triangle are also synchronized with the
MUAs representing other sides of the triangle (see also figure 8.8). (b) The MUA sequences for the broken
triangle in figure 8.6c are shown. Without the inducing inputs 1 and 9, the gaps 2 and 8 are no longer active.
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Figure 8.8:Within and Across Contour Correlation. For the complete triangle input (figure 8.6b), each
side of the triangle is represented by a group of three MUA sequences, and constitutes a separate contour.
There is synchrony within each group, but there is also global synchrony across the groups. The average
correlation coefficients were calculated for (1) within the same group, (2) across different groups, and (3)
between all pairs of MUAs from the whole object. For the “within” contour case, the correlation is high
(0.66), but even in the “across” case, it is quite strong (0.38) This behavior indicates that the three sides are
not regarded as separate contours, and the triangle as a whole has a high degree of salience.

whereas gap 5 was filled in. These results are consistent with the experiments done earlier in this
section with a single contour.

The result is particularly interesting because the three sides of the triangle, which actually
constitute three independent contours, are synchronized. Figure 8.8 shows that the correlation co-
efficients for the MUA sequence pairs from within each group, across the groups, and among the
whole triangle have high values, suggesting that the MUAs are synchronized across the whole tri-
angle. Based on the analysis in section 6.4 however, the three separate contours would be expected
to be desynchronized.

There is an interesting and important reason why a global synchrony emerges in this case,
and not in section 6.4. The cause can be found at the three vertices of the triangle. At the ver-
tices, two contour elements with different orientation preference are overlapped to form an angle.
Since the afferent receptive fields in PGLISSOM are topologically organized, the two cortical ar-
eas responding to the two edges at the vertex are close by on the map. As shown in figure 5.11,
the excitatory connections not only connect to neurons with similar orientation preferences, but
at a close range also to those with fairly different orientation preferences. Thus, proximity of the
inputs, as well as the good continuation of contours, determines the degree of synchronization. At
the vertices, the two abutting inputs cause the corresponding cortical areas to synchronize (due to
proximity), and this in turn causes the three sides of the triangle to synchronize. As a result, the
network represents the whole triangle as a coherent object.
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These results show that PGLISSOM can do contour completion, and also form represen-
tations for whole objects such as a triangle through synchronization of close by inputs and inputs
aligned on a smooth path. Such mechanisms may form a basis for complex illusory contour tasks
in general.

8.3 Effects of Afferent and Excitatory Lateral Connections

Such filling-in of gaps in the PGLISSOM model is to be expected, given that specific excitatory
lateral connections project from the neighboring areas into the area representing the gap. However,
in principle, it is also possible that a small amount of afferent input may be causing the completion.
In animals and in the PGLISSOM model, receptive fields in neighboring areas in the cortex overlap.
Thus, it is possible that the cortical area representing the gap receives enough afferent input from
the two tips of the contour elements around the gap, and is thereby activated the rest of the contour
element representations.

To check the amount of afferent input received by the gap, the net afferent contribution in
MAP2 was measured (figure 8.9). A 2D intensity plot (a) and a cross-section plot (b) show that the
central area receives some amount of afferent input (the central area ina and the small peak in the
middle inb, both numbered 3). Such spurious afferent input may be responsible for the activation
of the area representing the gap.

The question is whether the afferent contribution alone, or whether the lateral excitatory
contribution alone, can cause the filling-in effect, or whether the phenomenon requires both kinds
of contributions. To answer this question, two additional experiments were performed with the
same setup as in section 8.3: (1) no afferent connections to the gap area, and (2) no excitatory
lateral connections to the gap area. The MUA sequences for the two experiments are shown in
figure 8.10. In both cases, the MUA sequence representing the gap in the contour (top row of
MUA plot) shows no activity at all, suggesting that contour completion did not occur in either
case.

To contrast with the contour completion experiment in the previous section, the correlation
coefficients between each MUA sequence from the four contour elements and the MUA sequence
from the gap area were calculated (figure 8.11). The figure summarizes the result that contour
completion in the PGLISSOM model occurs only when there are both a small amount of sub-
optimal afferent contribution and lateral excitatory contribution. Such condition can only occur
when the input contour elements are aligned along a smooth path, since only in such a case, the
central receptive field can look at the tip of input in neighboring areas of the visual field, and
the co-circular projection of lateral connections can help bring the sub-optimal afferent activation
above threshold.

The results show that contour completion in PGLISSOM is not simply driven by overlap-
ping receptive fields in the gap region, thus the specific excitatory lateral connections are necessary
to fill in the gap. The results also indicate that the model needs small amounts of afferent input to
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Figure 8.9:Afferent Contributions in MAP2. The afferent contributions to MAP2 neurons are shown.
(a) The contributions to the54 � 54 map are plotted in color. The four areas (numbered 1, 2, 4, and 5)
corresponding to the four contour elements in the input (figure 8.1a) show high level of afferent input. The
center area corresponding to the gap (numbered 3) also receive some afferent input due to slight overlap with
neighboring regions in the retina. The white box surrounding the middle area is where the calculations for
the plot in (b) are done. (b) The8� 54 map area in the middle of (a) marked by the white box was extracted
into a matrix, and column by column, the average of each column vector of size8 � 1 was calculated and
plotted. As observed in (a), there are four peaks corresponding to the four input segments (numbered 1, 2,
4, and 5), and a small peak in the middle where there is the gap in the input (numbered 3).

fill in the gap so that arbitrarily large gaps will not be filled in. Such conditions allow us to predict
the limits of contour completion performance in humans.

8.4 Salience of Closed vs. Open Contours

Further interpretation of the illusory triangle experiment in section 8.2 provides a possible expla-
nation for another contour detection result reported by Kovacs and Julesz (1993) and Pettet et al.
(1998): closed contours were found to be easier to detect than open contours.

The complete and broken triangles in figure 8.6 form closed and open contours. To measure
the salience of the two objects, the average correlation coefficients between the nine elements of
the full triangle (inputs 1 through 9) and five elements of the broken triangle (inputs 3 through 7)
were calculated. The results are shown in figure 8.12. The results indicate that the activities in the
network for the closed contour are significantly more synchronized than those of the open contour,
indicating that closed contours are more salient.
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(a) No Afferent Connections to the Gap Region

(b) No Excitatory Connections to the Gap Region

Figure 8.10:Multi-Unit Activities for Contour Completion with Removed Connections. The MUA
sequences for the (a) afferent-deprived vs. (b) lateral excitation-deprived networks are shown. The MUA
sequences for the four input contour elements (bottom four rows) and for the gap (top row) are shown in
each plot. In both cases, the MUA sequence for the gap in the contour shows no activity, suggesting that
filling-in did not occur.
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Figure 8.11:Contour Completion Performance with Removed Connections.The average correlation
coefficients for the four MUA sequences representing the four input contour elements vs. the MUA sequence
representing the gap are shown. From left to right, (1) both afferent and excitatory connections exist (Both),
(2) afferent connections are removed from the center and excitatory connections remain (Exc), and (3) the
excitatory connections are removed from the center and only afferent connections remain (Aff). The plot
shows that both afferent and excitatory contributions are necessary for contour completion.
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Figure 8.12:Salience of Closed vs. Open Contours.The average correlation coefficients between the
MUA sequences in the complete (Closed) and broken (Open) triangles (figure 8.6b andc) are shown. The
correlation is higher in the closed configuration, consistent with the results reported by Kovacs and Julesz
(1993) and Pettet et al. (1998), where closed contours were easier to detect than open contours.

This behavior is consistent with the psychophysical results. Such a behavior is believed to
occur through a recursive lateral facilitation around the contour when the contour is closed to form
a loop (Pettet et al. 1998). A similar argument applies in PGLISSOM. In a closed loop, every part
of the contour receives excitatory lateral contribution frombothneighboring areas, thus the overall
synchronization is reinforced along the whole loop. However, for open contours, at the two ends of
the contour, neurons only receive lateral excitation from one neighboring area instead of two, thus
the synchrony does not reach the same level of salience. Such mechanism may explain why the
perception of an illusory triangle breaks when one pacman is removed from the Kanizsa triangle
(figure 8.13).

These results suggest that the contour integration mechanism in PGLISSOM can also ac-
count for the enhanced salience of closed contours.

8.5 Conclusion

In this chapter, I have shown that the circuitry in PGLISSOM responsible for contour integration
and segmentation can perform contour completion as well. Such a behavior was due to two factors,
(1) small amount of afferent contribution and (2) lateral excitatory reinforcement. The results show
that lateral excitatory connections are necessary for contour completion, but not sufficient. I have
also shown that lateral excitation together with the topological organization of PGLISSOM can
explain the higher salience of closed contours over open contours. Understanding these conditions
allow us to know what to expect from low-level neural circuitry, and provides us with a foundation
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(a) Kanizsa Triangle (b) One Pacman Removed

Figure 8.13:Salience of Kanizsa Triangles. The perception of an illusory object is quite strong in the
original Kanizsa triangle (a). However, when a pacman is removed, the vivid perception suddenly disappears
(b).

for performing more complex visual tasks.
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Chapter 9

Discussion

In this thesis, I have shown that the degree of synchrony in neural populations can predict various
perceptual grouping phenomena. I have also shown that self-organized lateral connections that
capture the statistical regularities in the environment are essential for mediating synchrony and
predicting task performance. However, several open issues remain: (1) how can the temporal
coding hypothesis be further verified, and how can we interpret information carried by temporal
events, (2) how and why does functional divisions occur in the layered architecture and across
different areas in the cortex, and (3) do cognitive (or higher-level) processes influence perceptual
performance? In this chapter, these open issues will be described and possible solutions outlined.

9.1 Temporal Coding in Neural Systems

In this section, I will discuss how the link between perceptual performance and neural synchrony
can be verified, and how the temporal code can be interpreted by the later stages of visual process-
ing.

9.1.1 Synchrony as a Perceptual Representation

The hypothesis that synchronous neural activity predicts perceptual performance is based on ex-
periments where either (1) input properties and synchrony in the animal’s neural activity are com-
pared (Eckhorn et al. 1988; Gray and Singer 1987; Gray et al. 1989; Singer 1993), or (2) psy-
chophysical performance in humans and timing between input features are compared (Fahle 1993;
Leonards et al. 1996; Leonards and Singer 1998; Usher and Donnelly 1998). In case 1, we do not
know whether the animal really perceived the input as coherent or not, and in case 2, we do not
know whether the neurons actually fired in synchrony. Thus, to explicitly verify that synchronized
firing gives rise to perceptual experience, the degree of synchrony in neural activity and perceptual
performance need to be measured simultaneously and compared. In the following, I will discuss
how such a comparison can be established.
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9.1.1.1 Neural Activity and Behavior

The assumption in such experiments is that the perceptual experience of the animal is faithfully
represented in its behavior. For over a decade, Celebrini and Newsome (1994) and their colleagues
have been measuring neural activity and animal behavior simultaneously in the Middle Temporal
(MT) area of monkeys, i.e. the motion detection center in the brain (Bair et al. 2001; Britten et al.
1992; Salzman et al. 1990). Early studies showed that microstimulation of neurons in MT causes
a significant change in motion detection tasks (Salzman et al. 1990). Subsequent results showed
that the spike count of a single neuron in MT for a short duration accurately predicts the behavior
of the monkey in motion detection tasks (Britten et al. 1992; Celebrini and Newsome 1994).

Although Bair et al. (2001)did not find periodically modulated synchronization (or co-
herent oscillations) in MT neurons contrary to what was observed earlier in V1 and V2 of cats
(Eckhorn et al. 1988; Gray and Singer 1987; Gray et al. 1989; Singer 1993), the strong relation
they established between neural activity and psychophysical performance in animals greatly ad-
vanced our understanding in neural representations of perception. The methodologies used in MT
can be applied to areas where coherent oscillations have been found (e.g. areas V1 and V2 in cats).
Instead of just comparing the coherence in input and the neural activity as in the previous experi-
ments in cats, the animal can be trained to respond to the stimuli and act out the decision it made
about the stimuli. Then, all three measures, (1) coherence in input features, (2) synchrony in neu-
ral firing, and (3) perceptual experience (manifested as behavioral performance), can be measured
and compared to explicitly verify that correlated firing of neurons represents perceptually salient
events. Thus, interpretation of temporal sequences and the role of different types of temporal codes
in perceptual grouping are important open questions that should be further investigated.

9.1.1.2 Degree of Neural Synchrony and Perception

According to the temporal correlation hypothesis, to explain the graded response in behavior, a
graded degree of synchrony in the neural activity must be possible. How to measure the degree of
synchrony is a difficult problem (see also section 9.1.2). In PGLISSOM, the graded response in
perception can be measured by the correlation coefficients between two MUA sequences. Thus,
the two sequences can come into and go out of sync, but in the end, the overall correlation of the
two sequences is what determines the degree of synchrony. Such an assumption can be tested in
the experiments outlined above for comparing neural activity and behavior. If a different kind of
graded measure of synchrony is developed later, that measure can be performed on the model’s
behavior as well.

When degrees of synchrony are used as graded perceptual grouping representations, a com-
putational problem arises in relation to the transitive grouping rule proposed by Geisler et al. (1999;
2001; Geisler and Super 2000). If a grouping rule determines whether the two representations
group together or not (i.e. a binary decision), transitive grouping rule works well. The question
is, how would such a transitive relation apply to graded responses (or graded grouping rules). For
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example, if representations (A;B) are related by amountx, and (B;C) are related by amounty,
how related are (A;C)? Should it be max(x; y), min(x; y), or some other quantity? In neural terms,
given the degree of synchrony in (A;B) and (B;C), how synchronized should (A;C) be? Since
connections within a local area in the cortex (excluding the ones that go through white matter) are
limited in spatial extent, such a problem can arise when two populations within a local area without
a direct connection try to participate in forming a coherent perceptual representation through syn-
chrony. As was seen in this thesis (and also Terman and Wang 1995), synchrony can be achieved
in a locally connected network of temporal neurons, but how to represent thedegreeof synchrony
in such a locally connected network is still an open issue. Computational studies focusing on pos-
sible encoding schemes for such information will provide us with deeper insights into the role of
synchronization in perceptual grouping at a larger cortical scale.

9.1.2 Interpretation of Temporal Codes

How can the coherence of synchronized activity be measured in the cortex, and how can we apply
those understandings in designing models and also analyzing the behavior of a model? In PGLIS-
SOM, coherence is measured as the correlation coefficient between MUA sequences, but are there
other measures? In a broader sense, such questions fall under the general question of how the
information in the spike sequence (or spike train) can be interpreted?

Rieke et al. (1997) presented an extensive review of this topic. They discussed a wide range
of techniques including Bayesian inference, information theory, and statistical methods to read out
the information embedded in spike trains. These techniques can be equally valuable in interpreting
the activities in PGLISSOM. Applying such techniques on computational models can help verify
the robustness and accuracy of the model and the efficiency of the techniques. On the other hand,
techniques developed on the model can be applied to experimental settings.

So far, I have discussed synchrony as one of the most likely temporal codes employed by
the brain. However, there are other forms of temporal information that neural systems may uti-
lize as well. In the comprehensive review of temporal coding by Gerstner (1998b), the candidate
temporal codes were identified as: (1) time to first spike (Maass 1998), (2) phase difference rela-
tive to background oscillation (O’Keefe and Reece 1993), and (3) reverse correlation from spike
trains (i.e. stimulus reconstruction; Rieke et al. 1997). Whether such different types of temporal
codes already exists in PGLISSOM, and whether certain parameter values can give rise to behavior
relevant to such temporal codes are important questions. In computational models such as PGLIS-
SOM, the possible causes of such temporal codes, and their possible roles can be relatively easily
assessed because we can closely monitor and alter the state of the model.

Thus, existing methods of interpreting temporal sequences and the role of different types of
temporal codes in perceptual grouping should be further investigated.
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9.2 Functional Divisions in the Visual Cortex

There are functional differences across the vertical layers in the cortex, and also across different
areas in the cortical sheet. In this section, the question of how and why such functional divisions
in the visual cortex occur will be discussed. I will outline how the two layers of PGLISSOM
correspond to the layers in the visual cortex and suggest a possible reason for such a division.
Further, the asymmetry in contour integration performance reported in the fovea and periphery
will be discussed, and possible ways to explain it will be outlined.

9.2.1 Layers of the Visual Cortex

The two-layer organization of PGLISSOM was developed because long-range inhibitory connec-
tions were found necessary for ordered self-organization (MAP1) and long-range excitatory con-
nections for grouping (MAP2). However, such an organization was not an arbitrary design choice:
a similar arrangement is found in the layered architecture of the visual cortex (Chapter 2, fig-
ure 2.3). The short-range excitatory lateral connections and long-range inhibitory connections in
MAP1 are abstractions of the on-center off-surround projection from layer 6 to layer 4 in the visual
cortex (Ahmed et al. 1997; Grieve and Sillito 1995a). On the other hand, the long-range excitatory
and inhibitory lateral connections in MAP2 correspond to the long-range axonal projections in
layer 2/3 (Gilbert and Wiesel 1989). Their possible role in grouping was made more plausible by
the discovery of a group of fast-spiking cells known aschattering cellsin precisely the layers 2 and
3 (Gray and McCormick 1996). These cells were postulated to contribute to coherent oscillations
and perceptual grouping, and hits at the role of layer 2/3 in perceptual grouping. The third impor-
tant architectural component in PGLISSOM consists of the intra-columnar connections, modeling
such known connections between layers 2/3, 4, 5 and 6 in the cortex (Gilbert and Wiesel 1979).

Thus, the layered structure of the visual cortex motivates the architectural design of PGLIS-
SOM. Also, in reverse, the functionality of PGLISSOM suggests that the specific anatomical ar-
rangements of the visual cortex may be due to different functional requirements. A related com-
putational model of the six layer architecture proposed by Grossberg (1999) and Grossberg and
Williamson (2001) addressed the same issue. In their model, layers 4 and 6 help stabilize devel-
opment, and lateral connections in layer 2/3 perform perceptual grouping. Thus, both PGLISSOM
and the model of Grossberg and Williamson predict that different layers in the visual cortex per-
form organization and grouping. The question is, does the layered architecture originate from
different functional requirements? Is there a way to experimentally verify it? These questions will
be addressed in Chapter 10.

Computational models such as PGLISSOM can be used to model such different functions
found in the layered architecture of the visual cortex, and help gain insight into how the functional
divisions may occur and how they interact.
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9.2.2 Fovea vs. Periphery

Functional differences exist not only in the layered architecture of the cortex, but also across a
fairly uniform area of the cortex such as the visual cortex. I briefly mentioned in Chapter 7 the
results by Hess and Dakin (1997), showing that contour integration performance in the periphery is
significantly worse than in the fovea. The same developmental argument as advanced in Chapter 7
may apply in the case of fovea vs. periphery. Due to attentional bias, the input statistics may
differ in fovea vs. periphery, resulting in structural and functional division in the two areas. The
difference in the distribution may drive the two areas of the cortex to develop differently, resulting
in a difference in performance similar to that observed by Hess and Dakin (1997). To firmly verify
if there exists such a difference in the input distribution, we can collect statistics from different
parts of the visual field using eye-tracking devices, while human subjects are freely browsing
the environment. Such statistics will account for both environmental and attentional biases, thus
giving us an accurate portrayal of the input distributions in the different parts of the visual field.
This information will allow us to predict perceptual performance of the different cortical areas.

However, the comparison is more complicated in the fovea vs. periphery case than in the
lower vs. upper hemifield case because we have to account for the difference in optics (more
blurring in the periphery) and photo-receptor density (far smaller number of photo-receptors in
the periphery). Details of a small input that can easily be seen in the fovea may not be as visible
when presented to the periphery. It also means that larger details of larger objectsmaybe visible
in the periphery. Therefore, it is possible that when inputs are larger, contour integration in the
periphery can approximate that of the fovea1. Thus, these factors should also be fully considered
when gathering input statistics and reasoning about the possible causes of functional divisions in
areas such as the fovea vs. periphery.

9.3 High-Level Influence on Perceptual Grouping

This thesis has focused on the representation of perceptual events in the primary visual cortex. An
interesting question is whether synchronized activities exist in higher-level visual or cognitive areas
of the brain, and whether the higher levels have influence on lower-level perception and behavior.

In fact, precisely correlated spike events were found in the frontal cortex of awake mon-
keys (Abeles 1991; Abeles et al. 1993). These correlated spike events, which he namedsynfire
chains, are highly specific spatio-temporal patterns where a synchronized population of firing neu-
rons activates another population in a successive, feed-forward manner. Later, Abeles et al. (1995)
showed that the occurrence of synfire chains in monkey frontal cortex is highly correlated to the
behavior of the animal. Such synfire chains can have an effect on the degree of synchrony in the
lower-level areas. If synfire chains in the higher areas project back to the lower-level areas, it is
possible that the higher-level can influence perception through modulating the synchrony at lower

1This idea is due to personal communication with W. Geisler.
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levels. Such feedback modulation seems to be happening at least in the lower-level hierarchies
of the visual pathway. For example, Sillito et al. (1994) showed that to achieve synchrony, the
LGN needs feedback from V1. These results show that synchronized events indeed exist in the
higher-level cortical areas, and they can have influence on lower-level processing.

Illusory contour phenomena constitute further evidence of high-level influence on low-
level perceptual grouping. The approach to illusory contour detection in this thesis was funda-
mentally bottom-up, based on experimental observations of illusory contour sensitive cells in V1
and V2 (Peterhans et al. 1986; Sheth et al. 1996; von der Heydt and Peterhans 1989). However,
there exist illusory contour stimulus configurations that cannot be explained by lower-level mech-
anisms (Hoffman 1998). In fact, connections between lower and higher visual areas are not strictly
feedforward, they are reciprocal (Nelson 1995). Therefore, activity response to illusory contours
in V1 and V2 may not be purely due to low-level mechanisms, although mostly driven by affer-
ent inputs. For this reason, even though the most basic illusory contours can be processed by the
low-level mechanisms in V1 and V2 as shown in this thesis, higher-level influences should also be
included for a complete explanation of the illusory contour phenomena.

9.4 Predictions of the PGLISSOM Model

The PGLISSOM model makes several concrete predictions about the perceptual grouping and
structural organization in the visual cortex, and about how statistical regularities in the input shape
this structure. In this section, the predictions based on the results in PGLISSOM will be summa-
rized, and pointers to sections where these predictions are discussed in detail are provided.

1. Synchronized Activity and Representation of Perceptual Grouping.

� Degree of synchronization in populations of neurons (MUA) correlates to perception.
If MUA correlation is disturbed, perception will change.
Section 9.1

� Decay rate at synapses acts like delays. Adapting the decay rate may be easier than
adapting delay, and it is possible that such mechanisms exist in real neurons.
Section 4.1.1

� V1 mechanisms can account for edge-induced illusory contours through contour com-
pletion. Specific excitatory lateral connections that are responsible for contour inte-
gration are also crucial for such processes. Binding through proximity, together with
contour completion, can help form synchronized representations of coherent objects.
Chapter 8

2. Self-Organization and Structural Development in the Visual Cortex.
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� Layered architecture in the visual cortex may exist because of the different functional
requirements in the cortex: (1) self-organization (MAP1; layer 4 and 6 in V1) and (2)
perceptual grouping through synchronization (MAP2; layer 2/3 in V1).
Section 9.2

� Differences in structure and functional performance in different hemifields are due to
differences in input distributions and the input-driven nature of self-organization. En-
vironmental and attentional bias can alter input distributions. Detailed image statistics
of the environment that take into account attentional biases can predict inter-area dif-
ferences in the visual cortex.
Chapter 7 andSection 9.2.2

� Oriented Gaussian inputs give rise to a rich correlational structure in lateral connec-
tions, approximating co-circularity of edge co-occurrence in natural images. Hebbian
learning, based on suboptimal responses, is responsible for this effect.
Section 5.4

9.5 Summary

In this chapter, I discussed the issues of temporal coding, self-organization, and high-level influ-
ence on perception that were raised by observations of the structure and behavior of the PGLIS-
SOM model. Concrete predictions on perception, anatomy, and development made by the PGLIS-
SOM model were presented. How to experimentally verify the predictions and how to answer the
open issues presented in this chapter by extending PGLISSOM are the main theme of the next
chapter.
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Chapter 10

Future Work

The open issues discussed in the previous chapter can lead to further research in several areas. In
this chapter, such future directions are outlined by discipline: (1) psychophysics, (2) neuroscience,
(3) computational science, and (4) artificial vision.

10.1 Psychophysics

As the psychophysical experiments on contour integration tasks suggest, there are several stimulus
dimensions other than orientation that affect perceptual performance (Field et al. 1993a; Geisler
et al. 1999, 2001; McIlhagga and Mullen 1996; Pettet et al. 1998). These are, to name a few, inter-
element distance, background randomness, fractal exponent of the global contour (how jagged
the path is), spatial frequency (size), relative phase of successive Gabor contour elements on the
contour, color, and contrast. PGLISSOM can be trained with more complicated input patterns to
include such stimulus dimensions, and be used to predict human perceptual performance on such
stimuli. Trained with such inputs, PGLISSOM can be used to identify the input statistics that are
important for each stimulus dimension, by analysing the lateral connection patterns and receptive
field properties.

Instead of such artificial inputs, the network could be trained with natural images. In fact,
RF-LISSOM was trained with natural images and orientation maps similar to those reported in this
thesis were obtained (personal communication with J. Bednar; see also section 10.4). In PGLIS-
SOM, natural images cannot be used because of higher computational requirements of PGLIS-
SOM than RF-LISSOM. However, with scaling-up techniques suggested in section 10.3, it will
be able to train a larger network to handle natural images. Another possibility is to train with
multiple edges that are generated from known natural image statistics (suggested by W. Geisler).
The images need to be appropriately filtered based on known biological processes in the retina
and LGN, because PGLISSOM is a model of V1 and assumes that such processes have already
taken place. The network can then be trained as described in this thesis. Since stimulus dimen-
sions are mixed in natural images, PGLISSOM will attempt to encode all dimensions at once and
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unexpected structures could arise. For example, cells could become responsive to combinations of
stimulus dimensions or only to a single dimension and form segregated clusters in the map. Such
results can be verified against known biological data, such as the combined orientation and spatial
frequency map reported by Issa et al. (2001), and propose new structures and properties to look for
in the cortex. By analyzing the functional role of the novel structures it might even be possible to
predict yet unknown psychophysical phenomena involving multiple stimulus dimensions in tasks
such as contour integration.

10.2 Neuroscience

PGLISSOM predicts that different areas of the visual cortex can have different patterns of con-
nections, and such differences cause perceptual performance to differ in corresponding areas of
the visual field. Such predictions can be tested experimentally by measuring lateral connection
patterns. Finding such evidence is an important step in understanding the cause of functional
differences within the visual cortex.

Several specific predictions of the model can be verified this way. First, lateral connectivity
can be measured in upper vs. lower hemifield and fovea vs. periphery to see if there are any differ-
ences between these areas as the model suggests. Next, if such differences are found, the cause of
the differences can be experimentally tested. Animals can be reared in controlled visual environ-
ments where the input distributions as simple as frequency of input presentations in the lower and
upper visual hemifields are different. The model predicts that, in this case, the hemisphere with
more frequent input will have more co-circular lateral connections, while the other hemisphere will
show more collinear patterns.

The layered architecture in the visual cortex may arise due to multiple functional require-
ments as discussed in section 9.2. Such functional divisions can be tested in the cortical layers
experimentally. Each layer can be selectively disabled, or the intra-columnar connections between
the layers can be disrupted. Then, progress of development can be measured in the deep layers
(layers 6 to 4) and compared to the shallow layers (layers 2/3). The predictions in section 9.2 will
be verified if shallow layers do not properly self-organize. However, this experiment would require
new imaging techniques because the existing ones may not be able to selectively record activity
in the individual layers. New lesion techniques also need to be developed to selectively disable a
particular layer.

Another promising direction in neuroscience is investigating the possible role of synchrony
in multi-modal sensory integration. There are coherent oscillations in other sensory areas such
as the olfactory bulb and the auditory system. The question is whether synchronization can bind
these different sensory modalities together. There is evidence of multi-modal interaction, such as
auditory influence on visual perception (Churchland et al. 1994). The role of synchronization in
such interactions should be investigated in the areas of the cortex where these sensory modalities
converge.
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PGLISSOM also predicts that post-synaptic decay rate can change the synchronization be-
havior and possibly counteract the effects of various delays in the nervous system. Such predic-
tions may be experimentally verified. The work of Nowak and Bullier (1997) on measuring various
sources of delay in the nervous system can aid in identifying the locus in a neuron where decay
rate may be playing a crucial role in controlling synchrony. Experimental techniques should be
developed to measure and alter the decay property of the cell membrane. Such an investigation can
lead to a deeper understandings of how neural synchrony occurs and how a fine tuning of temporal
behavior is possible when there are various degrees of delay in the system.

10.3 Computational Sciences

Developing techniques to simulate large networks accurately is always a big issue in computational
neuroscience research. In PGLISSOM, lateral connections cause most of the overhead. With an
n�nmap, there areO(n4) lateral connections; as the map grows, the number of lateral connections
grows rapidly. For example, a127� 127 MAP2 can fit in 2 GB of memory when standard floating
point numbers (4 bytes) are used. A network of that size is slightly too small to process realistic
input, since smaller map means smaller retina. Thus, techniques for efficiently representing and
storing the connections, especially the lateral connections, need to be developed. Also, ways of
computationally approximating the lateral interactions in the model should be devised.

In the current model, initial lateral connections are long-reaching and dense, causing a huge
memory and computational overhead. However, after self-organization, most of these connections
become very weak and are pruned away. Only a small number of patchy connections remain in the
final map. Thus, the memory requirement for a fairly large network can be significantly reduced.
There are several ways to make use of this observation. The most promising direction is to grow the
map gradually (Bednar et al. 2002). In their extension of the RF-LISSOM model called GLISSOM,
precise scaling equations determine how the size of the network can be smoothly increased while
preserving global order and lateral connectivity. With the addition of spiking neurons and intra-
columnar connections, GLISSOM can be extended to run PGLISSOM faster and with much lower
memory requirements.

Another way of reducing memory overhead caused by lateral connections is to initialize the
connection weights based on known biological connectivity or connectivity derived from image
statistics. Since such connectivity is usually sparse, a larger map can be constructed. Although
learning cannot be modeled in such networks, large-scale simulations can be run to (1) test specific
functional effects of biological connectivity patterns, and (2) test the components of the network
in various realistic psychophysical tasks.

A third way to deal with large input space is by scanning the visual space with a small
PGLISSOM, one area at a time. How to collect and interpret the responses of the network at a
large number of locations in the visual is currently an open question. If a model has only afferent
connections, we can simply partition the input space into discrete grids and feed input from each
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grid into the network. The responses at each location can then be combined together to form a
global output of the network. However, in a model with lateral connections, the problem is how to
define lateral interactions between the outputs from successive scans. For example, if the network
generates outputp at input locationx and outputq at locationy, how should the two outputsp and
q interact? Such a problem arises because lateral connections at the borders do not extend outside
of the map. To solve this problem, the network could be connected as a torus, i.e. by joining the
top and bottom sides of the 2-D map, as well as the left and right sides. However, the question
of how to partition and scan the input space still remains. Since lateral interactions occur through
recurrent feedback, the time course of lateral interaction in relation to each scanned output needs to
be precisely determined. Although lateral interaction is possible in such an architecture, the order
of visiting the grids can affect the final output. Such specific algorithms should be developed to
approximate a 2-D map.

A question that arises with any computational study like the one presented in this thesis is
“what is the computational goal of the architecture?” There are three ways of approaching this
question: (1) devise a computational principle first, and then show that architecture satisfies it
(Lee et al. 2000b; Linsker 1986; Oja 1992; Rao and Ballard 1999; Wachtler et al. 2001) (2) test the
input and output relations of the model to infer the computational principles that describe it (Sirosh
1995), and (3) analyze the properties of the input directly to infer what kind of representations are
needed to efficiently encode them (Barlow 1985, 1994; Field et al. 1993b).

For example, Oja (1992) and Linsker (1986) showed that learning rules similar to Heb-
bian can be derived using principal components analysis and information maximization. Lee et al.
(2000b) and Wachtler et al. (2001), and Rao and Ballard (1999) showed that realistic receptive
fields arise from independent components analysis and predictive coding framework. Barlow
(1985, 1994), Field et al. (1993b), and Olshausen and Field (1996) showed that redundancy ex-
ists in the environmental input, and these inputs can be efficiently represented by sparse coding
of neural activity. Further investigation should be done to find out if these computational theories
apply to PGLISSOM. We can study if the computational principle describes the computations in
PGLISSOM, and if there are other computational goals implicit in it.

10.4 Artificial Vision

One reason for trying to understand the mechanisms of human perceptual grouping is to design a
vision system that can automatically process visual information the same way humans do. Such an
application would have many practical uses. The questions are then, (1) can PGLISSOM scale up
to process real-world images, and (2) what are the extra processing steps necessary for the model
to perform complex vision tasks? The first question was partially answered in section 10.3 (scaling
up). To answer the second question, the system needs to be extended and pre and postprocessing
components need to be added.

As suggested in section 10.1, natural images need to be preprocessed before presenting
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them to the network. One way is to use On-Off cells or filters such as oriented Gabor wavelets or
difference-of-Gaussians to perform preliminary edge-detection and spatial frequency normaliza-
tion (where the low-powered higher frequency bands are adjusted to have higher power).

Several postprocessing steps are also necessary. A most important one is to automatically
identify active areas in the maps and assign labels to neural populations that respond to a particular
stimulus features. This problem is highly related to the problem of interpreting the neural code,
and they should probably be investigated together (as discussed in section 9.1.2). Post-processing
modules employing such interpretation techniques can be implemented for robust contour detec-
tion performance.

Once we detect coherent contours, the next problem is to identify objects. Since PGLIS-
SOM covers a small visual area, and the lateral interaction range is limited, the current model
cannot interpret entire scenes. However, a hierarchy of PGLISSOM networks with increasing re-
ceptive field size at each level might be able to do it. At the lowest level, preliminary features such
as contours can be detected, and at each successively higher layer, the receptive fields will cover
more area in the visual space. Thus, continuous contours can be grouped into object representa-
tions, and so on. At each level, synchrony will effectively represent coherent objects in the scene
and desynchrony will segment different objects. It may then be possible to select between these
layers to get grouping information at different levels (Geisler and Super 2000).

Including pre and postprocessing for PGLISSOM and making the maps hierarchical will
enable us to build a robust visual perceptual grouping system that operates at multiple levels of
complexity. The resulting system would be likely to lead to insights into how high-level grouping
mechanisms are implemented in the brain.

10.5 Summary

In this chapter, I have discussed some of the most promising future directions of the research done
in this dissertation. Although they span several disciplines, it is possible to see that many of these
directions interact. PGLISSOM will make it possible to bring together various disciplines to gain
a deeper understanding about the mechanisms of perceptual phenomena.
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Chapter 11

Conclusion

The goal of this thesis was to understand the neural mechanisms of perceptual grouping through
computational modeling. I developed a model called PGLISSOM with carefully selected compu-
tational primitives inspired from biological neural networks: (1) spiking neurons for the represen-
tation of perceptual grouping events through temporal coding, (2) afferent connections for input
mapping, (3) lateral connections to encode activity correlations and mediate synchrony, (4) layered
architecture and intra-columnar connections for functional specialization into self-organization and
perceptual grouping, and (5) Hebbian learning mechanism for adapting the connection weights
based on visual input.

I showed that in the model, (1) synchronization can be robustly controlled in a network of
spiking neurons, (2) realistic orientation maps develop through input-driven self-organization, (3)
intricate lateral connection patterns that are similar to patterns found in experimental observations
emerge, (4) contour integration performance in the model predicts human performance, (5) contour
segmentation is also achieved in the same network, (6) the network also performs contour comple-
tion, and (7) differences in input distribution cause the network to develop different structure and
functionality.

With these experiments, I demonstrated that the degree of synchrony measured in the neural
populations accurately predicts psychophysical performance in contour integration tasks. Thus,
synchronized activity may form the neural representation of perceptual grouping. I also showed
that lateral connections are crucial in mediating synchrony, and that they learn to implement the
grouping rules in the cortex. Such lateral connections can self-organize to encode the correlational
structure in the input distribution, and altering the input distribution can cause the structure and
performance to change. Thus, the model provides computational evidence for the idea that self-
organized lateral connections form the structural foundation for perceptual grouping.

In the future, computational models like PGLISSOM will play a crucial role in understand-
ing perceptual phenomena, by providing a computational framework where ideas from multiple
disciplines can be integrated.

103



Bibliography

Abbott, L. F., and Marder, E. (1995). Activity-dependent regulation of neuronal conductances. In
(Arbib 1995), 63–65.

Abeles, M. (1991).Corticonics: Neuronal Circuits of the Cerebral Cortex. Cambridge, England:
Cambridge University Press. First edition.

Abeles, M., Bergman, H., Gat, I., Meilijson, I., Seidemann, E., Tishby, N., and Vaadia, E. (1995).
Cortical activity flips among quasi stationary states.Proceedings of the National Academy of
Sciences, USA, 92:8616–8620.

Abeles, M., Bergman, H., Margalit, E., and Vaadia, E. (1993). Spatiotemporal firing patterns in
the frontal cortex of behaving monkeys.Journal of Neurophysiology, 70:1629–38.

Ahmed, R., Anderson, J. C., Martin, K. A. C., and Charmaine, N. J. (1997). Map of the synapses
onto layer 4 basket cells of the primary visual cortex of the cat.Journal of Computational
Neuroscience, 380:230–242.

Anderson, J. A., and Rosenfeld, E., editors (1988).Neurocomputing: Foundations of Research.
Cambridge, MA: MIT Press.

Arbib, M. A., editor (1995).The Handbook of Brain Theory and Neural Networks. Cambridge,
MA: MIT Press.

Bair, W., Zohary, E., and Newsome, W. T. (2001). Correlated firing in macaque visual area MT:
Time scales and relationship to behavior.Journal of Neuroscience, 21:1676–1697.

Barlow, H. (1994). What is the computational goal of the neocortex? In (Koch and Davis 1994),
1–22.

Barlow, H. B. (1985). The twelfth Bartlett memorial lecture: The role of single neurons in the
psychology of perception.Quarterly Journal of Experimental Psychology, 37A:121–145.

Bartsch, A. P., and van Hemmen, J. L. (2001). Combined hebbian development of geniculocortical
and lateral connectivity in a model of primary visual cortex.Biological Cybernetics, 84:41–
55.

104



Bednar, J. A. (1997).Tilt Aftereffects in a Self-Organizing Model of the Primary Visual Cortex.
Master’s thesis, Department of Computer Sciences, The University of Texas at Austin. Tech-
nical Report AI97-259.

Bednar, J. A., Kelkar, A., and Miikkulainen, R. (2002). Modeling large cortical networks with
growing self-organizing maps. In (Bower 2002). To appear.

Bednar, J. A., and Miikkulainen, R. (2000). Self-organization of innate face preferences: Could
genetics be expressed through learning?. InProceedings of the 17th National Conference on
Artificial Intelligence, 117–122. Cambridge, MA: MIT Press.

Blakemore, C., and Cooper, G. F. (1970). Development of the brain depends on the visual envi-
ronment.Nature, 228:477–478.

Blakemore, C., and van Sluyters, R. C. (1975). Innate and environmental factors in the develop-
ment of the kitten’s visual cortex.Journal of Physiology (London), 248:663–716.

Blasdel, G. G. (1992a). Differential imaging of ocular dominance columns and orientation selec-
tivity in monkey striate cortex.Journal of Neuroscience, 12:3115–3138.

Blasdel, G. G. (1992b). Orientation selectivity, preference, and continuity in monkey striate cortex.
Journal of Neuroscience, 12:3139–3161.

Blasdel, G. G., and Salama, G. (1986). Voltage-sensitive dyes reveal a modular organization in
monkey striate cortex.Nature, 321:579–585.

Bosking, W. H., Zhang, Y., Schofield, B., and Fitzpatrick, D. (1997). Orientation selectivity and the
arrangement of horizontal connections in tree shrew striate cortex.Journal of Neuroscience,
17(6):2112–2127.

Bower, J. M., editor (2002).Computational Neuroscience: Trends in Research, 2002. New York:
Elsevier. To appear.

Britten, K. H., Shalden, M. N., Newsome, W. T., and Movshon, J. A. (1992). The analysis of
visual motion: A comparison of neuronal and psychophysical performance.Journal of Neu-
roscience, 12:4745–4765.

Burkhalter, A., Bernardo, K. L., and Charles, V. (1993). Development of local circuits in human
visual cortex.Journal of Neuroscience, 13:1916–1931.

Callaway, E. M., and Katz, L. C. (1990). Emergence and refinement of clustered horizontal con-
nections in cat striate cortex.Journal of Neuroscience, 10:1134–1153.

105



Callaway, E. M., and Katz, L. C. (1991). Effects of binocular deprivation on the development of
clustered horizontal connections in cat striate cortex.Proceedings of the National Academy
of Sciences, USA, 88:745–749.

Campbell, S. R., Wang, D. L., and Jayaprakash, C. (1999). Synchrony and desynchrony in
integrate-and-fire oscillators.Neural Computation, 11:1595–1619.

Celebrini, S., and Newsome, W. T. (1994). Neuronal and psychophysical sensitivity to motion
signals in extrastriate mst of the macaque monkey.Journal of Neuroscience, 14:4109–4124.

Chakravarthy, S. V., and Ghosh, J. (1996). A complex-valued associative memory for storing
patterns as oscillatory states.Biological Cybernetics, 75:229–238.

Choe, Y. (1995). Laterally Interconnected Self-Organizing Feature Map in Handwritten Digit
Recognition. Master’s thesis, Department of Computer Sciences, The University of Texas at
Austin. Technical Report AI95-236.

Choe, Y., and Miikkulainen, R. (1997). Self-organization and segmentation with laterally con-
nected spiking neurons. InProceedings of the 15th International Joint Conference on Artifi-
cial Intelligence, 1120–1125. San Francisco, CA: Morgan Kaufmann.

Choe, Y., and Miikkulainen, R. (1998). Self-organization and segmentation in a laterally connected
orientation map of spiking neurons.Neurocomputing, 21:139–157.

Choe, Y., and Miikkulainen, R. (2000). A self-organizing neural network for contour integration
through synchronized firing. InProceedings of the 17th National Conference on Artificial
Intelligence, 123–128. Cambridge, MA: MIT Press.

Choe, Y., Miikkulainen, R., and Cormack, L. K. (2000). Effects of presynaptic and postsynaptic
resource redistribution in Hebbian weight adaptation.Neurocomputing, 32–33:77–82.

Choe, Y., Sirosh, J., and Miikkulainen, R. (1996). Laterally interconnected self-organizing maps
in hand-written digit recognition. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E.,
editors,Advances in Neural Information Processing Systems 8, 736–742. Cambridge, MA:
MIT Press.

Churchland, P. S., Ramachandran, V. S., and Sejnowski, T. J. (1994). A critique of pure vision. In
Koch, C., and Davis, J. L., editors,Large Scale Neuronal Theories of the Brain. Cambridge,
MA: MIT Press.

Crowley, J. C., and Katz, L. C. (2000). Early development of ocular dominance columns.Science,
290:1321–1324.

Dalva, M. B., and Katz, L. C. (1994). Rearrangements of synaptic connections in visual cortex
revealed by laser photostimulation.Science, 265:255–258.

106



Das, A., and Gilbert, C. (1997). Distortions of visuotopic map match orientation singularities in
primary visual cortex.Nature, 387:594–598.

Eckhorn, R., Bauer, R., Jordan, W., Kruse, M., Munk, W., and Reitboeck, H. J. (1988). Coherent
oscillations: A mechanism of feature linking in the visual cortex?Biological Cybernetics,
60:121–130.

Eckhorn, R., Reitboeck, H. J., Arndt, M., and Dicke, P. (1990). Feature linking via synchro-
nization among distributed assemblies: Simulations of results from cat visual cortex.Neural
Computation, 2:293–307.

Ehrenstein, W. (1941).̈Uber abwandlungen der l. hermannschen helligkeitserscheinung.Zeitschrift
für Psychologie, 150:83–91. Modifications of Brightness Phenomenon of L. Hermann; trans-
lated by A. Hogg, in Petry and Meyer (1987), pp.35–39.

Engel, A. K., König, P., Kreiter, A. K., and Singer, W. (1991a). Interhemispheric synchronization
of oscillatory neuronal responses in cat visual cortex.Science, 252:1177–1179.

Engel, A. K., Kreiter, A. K., König, P., and Singer, W. (1991b). Synchronization of oscillatory neu-
ronal responses between striate and extrastriate visual cortical areas of the cat.Proceedings
of the National Academy of Sciences, USA, 88:6048–6052.

Erwin, E., Obermayer, K., and Schulten, K. (1995). Models of orientation and ocular dominance
columns in the visual cortex: A critical comparison.Neural Computation, 7(3):425–468.

Eurich, C. W., Pawelzik, K., Ernst, U., Cowan, J. D., and Milton, J. G. (1999). Dynamics of
self-organized delay adaptation.Physical Review Letters, 82:1594–1597.

Eurich, C. W., Pawelzik, K., Ernst, U., Thiel, A., Cowan, J. D., and Milton, J. G. (2000). Delay
adaptation in the nervous system.Neurocomputing, 32–33:741–748.

Fahle, M. (1993). Figure ground discrimination for temporal information.Proceedings of the
Royal Society of London B., 254:199–203.

Ferster, D., and Lindstr¨om, S. (1985). Synaptic excitation of neurons in area 17 of the cat by
intracortical axon collaterals of cortico-geniculate cells.Journal of Physiology, 367:233–252.

Field, D. J., Hayes, A., and Hess, R. F. (1993a). Contour integration by the human visual system:
Evidence for a local association field.Vision Research, 33:173–193.

Field, D. J., Hayes, A., and Hess, R. F. (1993b). Contour integration by the human visual system:
Evidence for a local association field.Vision Research, 33:173–193.

107



Finkel, L. H., and Edelman, G. M. (1989). Integration of distributed cortical systems by reen-
try: A computer simulation of interactive functionally segregated visual areas.Journal of
Neuroscience, 9:3188–3208.

FitzHugh, R. (1961). Impulses and physiological states in models of nerve membrane.Biophysics
Journal, 1:445–466.

Gabbini, F., and Koch, C. (1999). Principles of spike train analysis. In Koch, C., and Segev, I.,
editors,Methods in Neural Modeling, chapter 7, 313–360. MIT Press.

Geisler, W. S., Perry, J. S., Super, B. J., and Gallogly, D. P. (2001). Edge co-occurrence in natural
images predicts contour grouping performance.Vision Research. 711–724.

Geisler, W. S., and Super, B. (2000). Perceptual organization of two-dimensional patterns.Psy-
chological Review, 107:677–708.

Geisler, W. S., Thornton, T., Gallogly, D. P., and Perry, J. S. (1999). Image structure models of
texture and contour visibility. InProceeding of the NATO Workshop on Search and Target
Acquisition.

Gerstner, W. (1998a). Hebbian learning of pulse timing in the barn owl auditory system. In Maass,
W., and Bishop, C. M., editors,Pulsed Neural Networks, chapter 14, 353–377. MIT Press.

Gerstner, W. (1998b). Spiking neurons. In Maass, W., and Bishop, C. M., editors,Pulsed Neural
Networks, chapter 1, 3–54. MIT Press.

Gerstner, W., and van Hemmen, J. L. (1992). Associative memory in a network of spiking neurons.
Network, 3:139–164.

Gibson, J. J. (1950).The Perception of the Visual World. Boston: Houghton Mifflin.

Gilbert, C. D. (1992). Horizontal integration and cortical dynamics.Neuron, 9:1–13.

Gilbert, C. D., and Wiesel, T. N. (1979). Morphology and intracortical projections of functionally
identified neurons in cat visual cortex.Nature, 280:120–125.

Gilbert, C. D., and Wiesel, T. N. (1989). Columnar specificity of intrinsic horizontal and cortico-
cortical connections in cat visual cortex.Journal of Neuroscience, 9:2432–2442.

Gilbert, C. D., and Wiesel, T. N. (1992). Receptive field dynamics in adult primary visual cortex.
Nature, 356:150–152.

Goodhill, G. (1993). Topography and ocular dominance: A model exploring positive correlations.
Biological Cybernetics, 69:109–118.

108



Gove, A., Grossberg, S., and Mingolla, E. (1993). Brightness perception, illusory contours and
corticogeniculate feedback. InProceedings of the World Congress on Neural Network, vol. 1,
25–28. Erlbaum.

Gray, C. M., Konig, P., Engel, A., and Singer, W. (1989). Oscillatory responses in cat visual cor-
tex exhibit inter-columnar synchronization which reflects global stimulus properties.Nature,
338:334–337.

Gray, C. M., and McCormick, D. A. (1996). Chattering cells: Superficial pyramidal neurons con-
tributing to the generation of synchronous oscillations in the visual cortex.Science, 274:109–
113.

Gray, C. M., and Singer, W. (1987). Stimulus specific neuronal oscillations in the cat visual cortex:
A cortical functional unit. InSociety for Neuroscience Abstracts, vol. 13, 404.3.

Grieve, K. L., and Sillito, A. M. (1995a). Non-length-tuned cells in layer II/III and IV of the
visual cortex: the effect of blockade of layer VI on responses to stimuli of different lengths.
Experimental Brain Research, 104:12–20.

Grieve, K. L., and Sillito, A. M. (1995b). A re-appraisal of the role of layer VI of the visual cortex
in the generation of cortical end inhibition.Experimental Brain Research, 104:12–20.

Grinvald, A., Lieke, E. E., Frostig, R. D., and Hildesheim, R. (1994). Cortical point-spread func-
tion and long-range lateral interactions revealed by real-time optical imaging of macaque
monkey primary visual cortex.Journal of Neuroscience, 14:2545–2568.

Grossberg, S. (1999). How does the cerebral cortex work? Learning, attention, and grouping by
the laminar circuits of visual cortex.Spatial Vision, 12:125–254.

Grossberg, S., and Mingolla, E. (1985). Neural dynamics of form perception: Boundary comple-
tion, illusory figures, and neon color spreading.Psychological Review, 92:173–211.

Grossberg, S., Mingolla, E., and Ross, W. D. (1997). Visual brain and visual perception: How
does the cortex do perceptual grouping?Trends in Neuroscience, 20:106–111.

Grossberg, S., and Williamson, J. R. (2001). A neural model of how horizontal and interlaminar
connections of visual cortex develop into adult circuits that carry out perceptual grouping and
learning.Cerebral Cortex, 9:878–895.

Han, S. K., Kim, W. S., and Kook, H. (1998). Temporal segmentation of the stochastic oscillator
neural network.Physical Review E, 58:2325–2334.

Hata, Y., Tsumoto, T., Sato, H., Hagihara, K., and Tamura, H. (1993). Development of local
horizontal interactions in cat visual cortex studied by cross-correlation analysis.Journal of
Neurophysiology, 69:40–56.

109



Hebb, D. O. (1949).The Organization of Behavior: A Neuropsychological Theory. New York:
Wiley.

Henry, G. H. (1989). Afferent inputs, receptive field properties and morphological cell types in
different laminae of the striate cortex. In Leventhal, A. G., editor,The Neural Basis of Visual
Function, vol. 4 ofVision and Visual Dysfunction, 223–245. Boca Raton, Florida: CRC Press.

Hess, R. F., and Dakin, S. C. (1997). Absence of contour linking in peripheral vision.Nature,
390:602–604.

Hirsch, H. V. B., and Spinelli, D. (1970). Visual experience modifies distribution of horizontally
and vertically oriented receptive fields in cats.Science, 168:869–871.

Hirsch, J. A., and Gilbert, C. D. (1991). Synaptic physiology of horizontal connections in the cat’s
visual cortex.Journal of Neuroscience, 11:1800–1809.

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane current and its
application to conduction and excitation in nerve.Journal of Physiology, 117:500–544.

Hoffman, D. D. (1998).Visual Intelligence: How We Create What We See. Norton. First edition.

Horn, D., Levy, N., and Ruppin, E. (1998). Memory maintenance via neuronal regulation.Neural
Computation, 10:1–18.

Horn, D., and Opher, I. (1998). Collective excitation phenomenon and their applications. In Maass,
W., and Bishop, C. M., editors,Pulsed Neural Networks, chapter 11, 297–320. MIT Press.

Horn, D., and Usher, M. (1992). Oscillatory model of short term memory. InAdvances in Neural
Information Processing Systems, 4, 125–132.

Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex.Journal of Physiology (London), 160:106–154.

Hubel, D. H., and Wiesel, T. N. (1974). Sequence regularity and geometry of orientation columns
in the monkey striate cortex.Journal of Comparative Neurology, 158:267–294.

Hubel, D. H., Wiesel, T. N., and LeVay, S. (1977). Plasticity of ocular dominance columns in
monkey striate cortex.Philosophical Transactions of the Royal Society of London Series B,
278:377–409.

Issa, N. P., Trachtenberg, J. T., Chapman, B., Zahs, K. R., and Stryker, M. P. (1999). The critical
period for ocular dominance plasticity in the ferret’s visual cortex.Journal of Neuroscience,
19(16):6965–6978.

110



Issa, N. P., Trepel, C., and Stryker, M. P. (2001). Spatial frequency maps in cat visual cortex.
Journal of Neuroscience, 20:8504–8514.

Joliot, M., Ribary, U., and Lin´as, R. (1994). Human oscillatory brain activity near 40 Hz coexists
with cognitive temporal binding.Proceedings of the National Academy of Sciences, USA,
91:11748–11751.

Kalarickal, G. J., and Marshall, J. A. (1997). Visual classical rearing and synaptic plasticity:
Comparison of exin and bcm learning rules. InProceedings of Vision, Recognition, Action:
Neural Models of Mind and Machine, 28.

Kandel, E. R., Schwartz, J. H., and Jessell, T. M. (1991).Principles of Neural Science. New York:
Elsevier. Third edition.

Kanizsa, G. (1955). Margini quasi-percettivi in campi con stimolazione omogenea.Rivista di Psi-
cologia, 49:7–30. Quasiperceptual Margins in Homogeneously Stimulated Fields; translated
by W. Gerbino, in Petry and Meyer (1987), pp.40–49.

Kanizsa, G. (1976). Subjective contours.Scientific American, 234:48–52.

Kapadia, M. K., Gilbert, C. D., and Westheimer, G. (1994). A quantitative measure for short-term
cortical plasticity in human vision.Journal of Neuroscience, 14:451–457.

Katz, L. C., and Callaway, E. M. (1992). Development of local circuits in mammalian visual
cortex.Annual Review of Neuroscience, 15:31–56.

Katz, L. C., and Shatz, C. J. (1996). Synaptic activity and the construction of cortical circuits.
Science, 274:1133–1138.

Kirillov, A. B., and Woodward, D. J. (1993). Synchronization of spiking neurons: Transmission
delays, noise and nmda receptors. InProceedings of the World Congress on Neural Networks,
594–597.

Koch, C., and Davis, J. L., editors (1994).Large Scale Neuronal Theories of the Brain. Cambridge,
MA: MIT Press.

Koch, C., and Segev, I., editors (1998).Methods in Neuronal Modeling. Cambridge, MA: MIT
Press. Second edition.

Kohonen, T. (1981). Automatic formation of topological maps of patterns in a self-organizing
system. InProceedings of the 2nd Scandinavian Conference on Image Analysis, 214–220.
Espoo, Finland: Pattern Recognition Society of Finland.

Kohonen, T. (1982a). Analysis of a simple self-organizing process.Biological Cybernetics,
44:135–140.

111



Kohonen, T. (1982b). Self-organized formation of topologically correct feature maps.Biological
Cybernetics, 43:59–69.

Kohonen, T. (1989).Self-Organization and Associative Memory. Berlin; New York: Springer.
Third edition.

Kohonen, T. (1993). Physiological interpretation of the self-organizing map algorithm.Neural
Networks, 6:895–905.

Koulakov, A. A., and Chklovskii, D. B. (2001). Orientation preference patterns in mammalian
visual cortex: A wire length minimization approach.Neuron, 29:519–527.

Kovacs, I., and Julesz, B. (1993). A closed curve is much more than an incomplete one.Proceed-
ings of the National Academy of Sciences, USA, 90:7495–7497.

Lapicque, L. (1907). Recherches quantitatives sur l’excitation electrique des nerfs trait´ee comme
une polarization.Physiol. Pathol. Gen., 9:620–635.

Lee, S.-H., and Blake, R. (1999). Visual form created solely from temporal structure.Science,
284:1165–1168.

Lee, S.-W., Bülthoff, H. H., and Poggio, T., editors (2000a).First IEEE International Workshop,
Biologically Motivated Computer Vision 2000. Springer.

Lee, T.-W., Wachtler, T., and Sejnowski, T. J. (2000b). The spectral independent components of
natural scenes. In (Lee et al. 2000a), 527–534.

Leonards, U., and Singer, W. (1998). Two segmentation mechanisms with differential sensitivity
for colour and luminance contrast.Vision Research, 38:101–109.

Leonards, U., Singer, W., and Fahle, M. (1996). The influence of temporal phase difference on
texture segmentation.Vision Research, 36:2689–2697.

Lesher, G. W., and Mingolla, E. (1995). Illusory contour formation. In (Arbib 1995), 481–483.

Li, Z. (1998). A neural model of contour integration in the primary visual cortex.Neural Compu-
tation, 10:903–940.

Li, Z. (1999). Visual segmentation by contextual influences via inter-cortical interactions in the
primary visual cortex.Network: Computational Neural Systems, 10:187–212.

Linsker, R. (1986). From basic network principles to neural architecture: Emergence of spatial-
opponent cells.Proceedings of the National Academy of Sciences, USA, 83:7508–7512.

Lisman, J. (1998). What makes the brain’s ticker tock.Nature, 394:132–133.

112
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